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A b s t ra  c t
Hypertension and periodontitis are both highly prevalent co-morbidities worldwide, and their 
occurrence increases with age. Multiple observational epidemiological studies have shown that 
periodontitis is associated with an increased cardiovascular disease (CVD) occurrence. Large sys-
tematic reviews and metanalyses further show that periodontitis increases the risk of hypertension 
and is associated with increased systolic and diastolic blood pressure. Genetic and clinical evidence, 
utilizing mendelian randomization and randomized clinical trials, support the causal role of periodon-
titis in hypertension. The mechanisms of this link remain unclear. Critical components of immune 
and inflammatory pathogenesis of periodontitis considerably overlap with immune mechanisms 
of hypertension. Clinical studies support that both C-reactive protein (CRP) levels and white blood 
cell counts (WBC) mediate the relationship between periodontal disease and high blood pressure. 
In particular, activation of Th1, Th17, T regulatory cells, and proinflammatory monocytes has been 
shown to be essential in both conditions. Immunosenescent dysregulated CD28null T cells have been 
implicated, along with key effector cytokines such as interleukin 6 (IL-6), TNF-alpha (TNF-α), interfer-
on-gamma (IFN-γ), and interleukin 17 (IL-17). A better understanding of the relationships between 
hypertension and periodontitis is essential not only for possible utilization of this knowledge for 
a non-pharmacological approach to improving blood pressure control. It may also provide valuable 
pathogenetic clues linking inflammation and hypertension, which has become particularly relevant 
in the light of links between hypertension and autoimmune disorders or, more recently, COVID-19.
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Introduction
Hypertension is highly prevalent worldwide and leads 
to the development of coronary heart disease, stroke, 
and other renal and cardiovascular diseases (CVD). It has 
been estimated that in 2019 hypertension was present in 
626 million women and 652 million men aged 30–79 years 
[1–3]. In similarly, the incidence of periodontitis increases 
with age and amounts to as much as 60% in adults over 
65 years of age [4–5]. As a result, periodontitis is one of the 
most common causes of systemic inflammation that could 
potentially affect a wide range of chronic comorbidities 
including cardiovascular disease. Various immune and 
inflammatory diseases have been linked to hypertension 
[6, 7]. Indeed, periodontitis is associated with increased 
occurrence of CVD in general and, as has been recently 
established, is particularly strongly linked to hypertension 

[8]. Evidence of epidemiological associations between hy-
pertension and periodontitis is ample, but the mechanisms 
behind this relationship remain unclear. Numerous obser-
vational studies over the years have been challenged due 
to confounding factors, which are difficult to control, that 
predispose to both diseases. Studies published in the last 
decade provide a much clearer view not only of the clinical 
relevance of this relationship but also of the possible causal 
relationship between these two comorbidities. 

Epidemiological evidence linking 
periodontitis and hypertension

Association between severe periodontitis and hyper-
tension has been reported throughout the years [9–12]. 
In a meta-analysis of 40 studies, hypertension was related 
with moderate-severe periodontitis (odds ratio [OR], 1.22; 
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95% confidence interval [CI], 1.10–1.35), as well as severe 
periodontitis (OR, 1.49; 95% CI, 1.09–2.05) [13]. Analysis of 
large registries further supports these conclusions. Munoz 
Aguilera et al. [14] have provided evidence that periodon-
titis increases the odds of hypertension by 20%–60% in 
large populations from surveys based in the USA (n = 3460) 
and Korea (n = 4539). Periodontitis was related to the 
occurrence of hypertension and higher systolic blood 
pressure (SBP) compared to people without periodon-
titis. These observations have been further extended to 
several periodontitis-related phenotypes that may have 
clinical relevance. For example, Pietropaoli et al. have 
shown that unstable periodontitis and gingivitis linked to 
gingival bleeding were associated with an increased risk 
of uncontrolled/high blood pressure [15]. SBP was signifi-
cantly higher in patients with unstable periodontitis than in 
patients with gingivitis (increase by 5.3 mm Hg), as well as 
people with stable periodontitis (increase by 2.1 mm Hg). 
Gingival bleeding was correlated with an increased risk of 
high/uncontrolled BP (OR, 1.42; 95% CI, 1.19–1.68), which is 
particularly interesting considering that gingival bleeding 
is a very simple clinical marker of oral involvement [15]. 

Periodontitis causes hypertension
Evidence of the causal relationship between periodontitis 
and hypertension comes from genetic evidence and rand-
omized clinical trials of intensive periodontal therapy. The 
Mendelian randomization analysis in the UK Biobank (near-
ly 400 000 individuals), indicated a significant potentially 
causal relationship between periodontitis-linked single 
nucleotide polymorphisms (SNPs) and blood pressure 
phenotypes [16]. The identified SNPs included SIGLEC5, 
DEFA1A3, MTND1P5, and LOC107984137 and had been 
identified using Genome-Wide Association Studies (GWAS) 
[16]. Evidence from randomized clinical trials further shows 
that supra- and sub-gingival instrumentation combined 
with instillation of chlorhexidine in gingival pockets (in-
tensive periodontal treatment [IPT]) improved endothelial 
function and its cardiovascular complications. Metanalysis 
performed in hypertensive and prehypertensive individ-
uals revealed a significant blood pressure decrease in 
successfully periodontal treatment [17]. Direct data from 
the largest so far randomized study utilizing ambulatory 
blood pressure monitoring, has clearly shown that IPT was 
associated with lowering blood pressure in hypertensive 
patients with periodontitis. The difference in SBP change 
between subjects randomized to IPT or conventional perio-
dontal treatment (CPT) was 11.1 mm Hg [16]. Other studies 
further support these conclusions [16, 18–21]. In another 
trial performed in 107 patients [22], IPT was associated with 
reductions of endothelial microparticles (EMP) which coin-
cided with blood pressure-related effects and persisted for 
up to 6 months after IPT [22]. We have recently published 
a detailed systematic review and metanalysis of all rand-
omized studies reporting the effects of periodontal therapy 

on hypertension and related cardiovascular outcomes 
[17]. Sharma et al. [17] reported an improvement in the 
cardiovascular health of patients with hypertension after 
IPT. Comparing the effects of CPT and IPT, a decreased level 
of CRP and an improvement in endothelial function after 
IPT were observed. Importantly, the systematic review and 
meta-analysis demonstrated similar reductions of both SBP 
and DBP to the levels reported by individual trials. In the 
prehypertensive and hypertensive patients, IPT decreased 
diastolic blood pressure (DBP) (decrease by 8.43 mm Hg) 
and SBP (decrease by 11.41 mm Hg) compared with CPT, 
while in the non-hypertensive populations, blood pressure 
remained unchanged [17]. In conclusion, the combination 
of genetic and clinical trial data strongly suggests that 
periodontitis may be causal in hypertension and that inten-
sive periodontal treatment can support anti-hypertensive 
therapy and reduce cardiovascular risk.  

Systemic inflammation as 
a mediator between periodontitis 

and hypertension
There is increasing evidence that hypertension can be 
caused and modulated by inflammatory responses [23–25]. 
Blood pressure can be regulated by various immune-target-
ed therapies [26, 27] or diets [28]. Systemic inflammatory 
cytokines and CRP serve as biomarkers linking periodontitis 
and hypertension (Figure 1). The mediation analysis in 
large epidemiological survey studies discussed above has 
suggested that CRP and white blood cell counts (WBC) 
mediated partly the association between periodontitis and 
hypertension [14]. Similar results were observed in anoth-
er population [29]. In a study of 500 participants, higher 
blood pressure, elevated high-sensitivity CRP, and white 
cell counts were obtained in patients with periodontitis 
compared to the control group [29].

Recently published studies have provided evidence 
that periodontitis, as a chronic inflammatory disease, is 
associated with the prevalence of hypertension [5, 13–17, 
30–32]. Poor oral health is linked to systemic inflamma-
tion and increased probability of the development of 
hypertension. In a meta-analysis of several interventional 
studies, Sharma et al. [14] also reported that the blood pres-
sure-lowering effect was accompanied by the reduction of 
CRP levels [17]. Specific mediators of this relationship are 
still under investigation. Interestingly, the improvement 
of the periodontal status in humans is accompanied by 
the reduction of immunosenescent CD57+CD28nullCD8+ 
T cells bearing the activation marker CD38 [16]. These 
immunosenescent T cells were originally implicated in 
the pathogenesis of hypertension [33, 34]. Also, the levels 
of circulating pro-hypertensive cytokines, such as inter-
feron-gamma (IFN-γ), interleukin 17A (IL-17A), TNF-alpha 
(TNF-α), and interleukin 6 (IL-6), were diminished with the 
improvement of both periodontal status and blood pres-
sure [16] suggesting their possible involvement. To better 
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understand the possible mechanisms linking periodontal 
inflammation with hypertension, it is essential to look 
closely at the immune pathogenesis of periodontitis itself. 

Immune mechanisms of periodontitis
Periodontal disease (PD) is initially caused by the accumu-
lation of biofilm on the teeth. Consequently, it promotes 
localized inflammation called gingivitis. This stage of in-
flammation is reversible and represents the mildest form 
of PD. Further development of inflammation encompasses 
deeper layers of the periodontium, causing the loss of the 
connective tissue and bone. The involvement of these 
tissues is characteristic of periodontitis. In most cases, this 
stage of inflammation is irreversible [35]. For a long time, 
a lot of evidence suggested that bacteria are the primary 
etiology of periodontal diseases. Bacteria implicated in 
periodontitis are predominantly anaerobic, gram-negative, 
and may include Porphyromonas gingivalis, Aggregatibac-
ter  actinomycetemcomitans, Prevotella intermedia, Bacte-
roides forsythus, Campylobacter rectus, Peptostreptococcus 
micros, Eubacterium nodatum, Streptococcus intermedius, 
and Treponema sp. [36]. Nowadays, periodontitis is per-
ceived as a result of the imbalance of the microbial biofilm, 
known as dysbiosis, rather than the presence of a single 
pathogen [36]. The pathogenesis of PD is more complex 
and depends on many additional environmental factors as 

well as the susceptibility of the host [37, 38]. It is known, 
that exacerbated immune responses to the biofilm in the 
periodontal tissue result in the destruction of the structural 
component of the periodontium [35]. In this context, both 
bacteria and activated host immunity coincide to trigger 
immune responses resulting in bone loss  [39]. Initially, 
chemotactic factors released by the activated immune cells 
are responsible for the recruitment of leukocytes into the 
inflamed tissues [34, 40].

Neutrophils: Neutrophils are the most abundant leuko-
cytes, which are the first line of antimicrobial defense. These 
cells act as professional phagocytes, that recognize, engulf, 
and kill extracellular pathogens. In this way, neutrophils 
link the innate and adaptive immune responses and help 
the resolution of inflammation and healing of the tissue 
[41]. Neutrophils in the periodontal pocket form the wall 
against the plaque biofilm. This mechanism may initially be 
protective. However, it is known that neutrophils cannot 
engulf the large structure of the biofilm and during this pro-
cess called frustrated phagocytosis, they release enzymes, 
products of the oxidative burst, and other noxious contents 
to the surrounding milieu. In this arm of the response, 
neutrophils have a predominantly destructive effect on the 
pocket and surrounding tissue [41]. Neutrophils contain 
the membrane-bound intracellular granules called primary 
(azurophilic), secondary (specific), and tertiary (gelatinase), 

Figure 1. Potential inflammatory mechanisms linking periodontitis and hypertension. This figure has been created with BioRender 

Abbreviations: IFN-γ, interferon γ; IL, interleukin; Th, T helper cells; TNF-α, tumor necrosis factor α; Treg, T regulatory cells
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as well as secretory vesicles. Granule proteins contribute to 
reactive oxygen species (ROS) production. In this process, 
myeloperoxidase (MPO) produces singlet oxygen, hydroxyl 
radical (•OH), and hypochlorous acid (HOCl) from chloride 
and H2O2 [42]. This initiates degradation of the proteins and 
induction of DNA damage resulting in the killing of most 
prokaryotes [43]. Neutrophil-derived molecules with anti-
microbial activities include lysozyme, lactoferrin, elastase, 
azurocidin (hCAP 37kDa), cathelicidin (LL-37), and human 
neutrophil peptides (HNPs; α-defensins) [44]. Neutrophils 
can also release decondensed chromatin with histones 
and granules into the extracellular space. The formation 
of neutrophil extracellular traps (NETs) aims to fight mi-
croorganisms [45]. During the process of transmigration 
into the tissue, neutrophils produce chemokines, and they 
alter their surface expression markers, presenting a higher 
expression of integrins and proteases. Also, delayed apop-
tosis is commonly observed because of this process [46]. 
The measurements of the specific surface cell markers 
revealed that the potential changes in their expression 
are likely due to the momentary activity of the cells rather 
than reflecting specific cell subsets [45]. It is suggested 
that the oral neutrophils, in comparison to cells isolated 
from peripheral blood, are terminally migrated cells, which 
are exposed to high osmotic stress, as well as a high load 
of bacteria and their toxins [45]. Recently published data 
provided evidence that neutrophils were elevated in perio-
dontitis tissue when compared to healthy tissue. This effect 
was also accompanied by increased infiltrates of plasma 
cells and naïve B cells [38]. It has been postulated that the 
infiltration of different subpopulations of immune cells 
in periodontitis is the result of the host immunity against 
periodontal disease [38].

Th1/Th2 subsets: In the next stage of the immune 
responses, macrophages, monocytes, and dendritic cells 
known as the antigen-presenting cells (APCs) are observed 
in the inflamed tissue. Such imbalances may provide es-
sential links to cardiovascular pathology [47]. Although 
the content of dendritic cells and macrophages in the 
periodontal tissue is decreased in comparison to healthy 
tissue [38], their role in capturing and presenting antigens 
to lymphocytes is essential. In the periodontal lesions, T 
cells and both CD4+ and CD8+ subsets are found in the 
dense inflammatory infiltrate [48]. Interestingly, those 
cells revealed memory/activated phenotype, presenting 
CD45RO+/CD29+ markers [38, 48]. CD4+ T cells play a cru-
cial role in antigen recognition since the bacteria involved 
in periodontitis are extracellular pathogens [48]. Based on 
the profile of cytokine production, CD4+ cells are divided 
into T helper 1 (Th1) and T helper 2 (Th2). Th1 and Th2 po-
larized cells have been shown to play different roles in per-
iodontal diseases. In general, Th1 cells produce IFN-γ and 
IL-2, while Th2 subsets produce IL-4, IL-5, IL-6 [49]. Th1 cells 
induce the production of IL-1 and TNF-α, which can initiate 
bone resorption by activating osteoclasts and promoting 

differentiation of the osteoclast precursors [48]. It is inter-
esting to note that activated T cells have the expression of 
the osteoprotegerin ligand (OPG-L) that promotes oste-
oclast differentiation. Moreover, Th1 cells predominantly 
express OPG-L. T cells’ recruitment into the inflamed tissue 
is regulated by chemokines and their receptor as well as by 
the adhesion molecules. In diseased gingiva, Th1 cells with 
high expression of C-C motif chemokine receptor 5 (CCR5) 
and C-X-C motif chemokine receptor 3 (CXCR3) have been 
found [48]. Interestingly, in the inflamed periodontal tis-
sue, elevated levels of Regulated on Activation, Normal T 
Cell Expressed and Secreted (RANTES) and Macrophage 
inflammatory protein 1 alpha (MIP-1α) chemokines (both 
are CCR5 ligands), as well as  Interferon gamma-induced 
protein  10 (IP-10, CXCR3 ligand), were observed [48]. In 
the gingival tissue, an increased number of mononuclear 
cells, which express α4 and α6 integrins, has been found. 
As a result, the lymphocyte migration was increased [50]. 
It has been observed that T cells express the leukocyte 
function-associated antigen 1 (LFA-1, CD11a) in the gingival 
tissue and gingival crevicular fluid. Also, the pocket epithe-
lium in the gingiva expresses the intercellular adhesion 
molecules 1 (ICAM-1, CD54). It has been shown that the 
expression of ICAM-1 in the pocket epithelium is associated 
with the migration of CD11a+CD25+CD4+ cells in the af-
fected periodontally gingival tissue [51]. Lymphocytes can 
also adhere to gingival fibroblast using CD44/hyaluronate, 
LFA-1/ICAM1, and very late antigens 4/5 (VLA-4/5) [52]. 
Th1 lymphocytes and especially IFN-γ positive cells are 
associated with bone resorption [53]. IFN-γ positive T cells 
induced osteoclastogenesis from monocytes through the 
expression of NF-κB ligand (RANKL) [53]. Infection of dental 
pulp with Porphyromonas gingivalis, caused inflammation 
and alveolar bone destruction in Th1 biased mice, while 
Th2 biased mice developed minimal lesions. Moreover, 
inflammatory granulomas, associated with Th1 response, 
were infiltrated with osteoclast and had high expression 
of IFN-γ, IL-1α and IL-1β [54]. Another study has revealed 
osteoclast activity in granulomas, and this was correlated 
with Th1 response [55] that can also affect cardiac patho
logy [56]. 

In turn, Th2 response was associated with minimalized 
bone loss [57]. The protective effect was dependent on 
IL-4/IL-13 induced Signal transducer and activator of tran-
scription 6 (STAT6) pathway [57]. It is interesting to note that 
the development of periodontitis is mediated by an imbal-
ance between Th1 and Th2 responses which can be affected 
by various immune and non-immune triggers [55, 58–63]. 
On the other hand, cells isolated from peripheral blood of 
patients with early-onset periodontitis were characterized 
by decreased Th1 cytokine expression, while peripheral 
cells derived from patients with adult periodontitis were 
predominantly Th2/Th0 polarized [64]. Also, the progres-
sion of periodontal disease may be regulated by the local 
cytokines and the dominance of Th2 response and could 
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be an exacerbating factor [65].  This observation suggests 
that cytokines released by the cells infiltrating the gingival 
tissue affect the progression of gingivitis to chronic and 
destructive periodontitis with Th2 predominance.  Thus, 
Th2 cells could be associated with progressive lesions while 
Th1 could be related to stable lesions [61, 65]. In contrast, it 
has been shown that IFN-γ cells increased with the severity 
of inflammation in human gingival tissue [66]. Some of 
the published studies revealed a comparable presence 
of Th1 and Th2 in periodontitis in humans [67, 68]. Taking 
together the above data, more research is needed to fully 
explain the role of Th1/Th2 subsets in the pathogenesis of 
periodontitis. Th1 cells are particularly important from the 
standpoint of the possible link to cardiovascular disease 
as these cells are present in perivascular tissues [69], and 
Th1 effector cytokines can modify cardiac and vascular 
remodeling and pathology [70-71].

Th17 lymphocytes: Th17 cells express RAR-related 
orphan receptor gamma (RORγ) and produce a whole 
range of cytokines such as IL-17A, IL-17F, IL-21, IL-22, and IL-
26 [72]. Th17 development and differentiation are initiated 
in the presence of IL-2, IL-1β, IL-21, and IL-23 [73]. IL-17 is 
considered an important regulator of granulopoiesis, and 
neutrophils are known to provide antimicrobial defense 
against periodontitis. IL-17RA-/- mice were characterized 
by enhanced periodontal bone destruction. Moreover, IL-
17RA-/- mice revealed both reduced neutrophil migration 
to the bone and serum chemokine levels [74]. This observa-
tion suggests the protective role of IL-17 to the bone [74]. In 
rheumatoid arthritis (RA), both human and animal studies 
have provided evidence that IL-17 plays a pathogenic role 
in bone destruction [75, 76]. IL-17, in a dose-dependent 
manner, induced the expression of osteoclast differentia-
tion factor (ODF) mRNA in osteoblasts. Kotake et al. have 
shown that IL-17 is the crucial cytokine for osteoclastic 
bone resorption in patients with RA [77, 78]. It is important 
since periodontal diseases represent the most common 
form of bone loss. PD is also a risk factor for chronic obstruc-
tive pulmonary disease (COPD), diabetes, atherosclerosis, 
and increased preterm labor, and low birth weight  [79, 80]. 
It is well documented that IL-17 upregulates the expression 
of RANKL leading to the loss of RANKL/OPG balance and 
stimulating osteoclastogenesis and erosion of bone [81, 
82]. IL-17 also stimulates the expression of osteoclastogenic 
cytokines such as IL-6, IL-8, IL-1, and TNF [83]. The significant 
overexpression of IL-21 and Th17 related cytokines such as 
IL-1β, IL-6, IL-17, and IL23, has been observed in the tissue 
affected by periodontitis [84]. 

In conclusion, the Th17 response plays a crucial role 
in bone loss.

Regulatory T cells (Tregs): Regulatory T cells play an 
important role in suppressing the activation and expansion 
of other T cells thus maintaining immune homeostasis and 
tolerance [85]. It has been shown that Tregs can directly 
inhibit APC [86]. Taking into account the site of Tregs 

development, two subsets can be distinguished. Natural 
Tregs (nTreg) develop in the thymus. Second subsets, 
named induced or peripheral Treg (pTreg), differentiate 
from naïve CD4+ T lymphocytes at the periphery [86]. 
The main Tregs phenotypic marker is the transcription 
factor Forkhead Box P3 (Foxp3). Regulatory T cells are 
also characterized by the high expression of the α chain 
of the high-affinity IL-2 receptor (CD25) [86]. Tregs have 
been found in chronic lesions in periodontitis [87]. Initial-
ly, during periodontitis, Tregs accumulate at the infected 
tissue, limiting the immune response and promoting the 
survival of the pathogens [87]. On the one hand, immune 
responses have to be controlled to avoid the dissemi-
nation of the microorganisms, and, on the other hand, 
tissue damage has to be protected [86]. Patients with 
chronic periodontitis presented the increased content of 
CD4+CD25+ T cells in the inflammatory gingival tissue. 
These cells were characterized by the expression of Foxp3, 
cytotoxic T lymphocyte-associated protein 4 (CTLA-4), 
CD103, CD45RO, and glucocorticoid-inducible TNFR (GITR). 
In patients with chronic periodontitis, the levels of CCL17, 
CCL22, and CCR4 were increased in gingival biopsies, in 
comparison to controls. Simultaneously, the affected tissue 
presented high expression of TGF-β and IL-10 [87]. Tregs can 
inhibit osteoclastogenesis and regulate bone metabolism 
by releasing cytokines such as IL-10, TGF-β, IL-4, and by 
using CTLA-4 molecules to direct contact with cells [88]. 
Nakajima et al. have also described increased infiltration 
of Tregs in periodontitis compared with gingivitis [89]. 
Moreover, C57Bl/6 mice infected with Aggregatibacter 
actinomycetemcomitans developed the inflammatory 
response and alveolar bone resorption. In this model, the 
migration of Tregs, as well as Th2, was associated with 
temporal attenuation of disease progression. The blockade 
of CCR4 ligand, CCL22, in wild type (WT) mice resulted 
in increased bone loss. A similar effect was observed in  
CCR4-/- mice. Moreover, the adoptive transfer of CCR4+Tregs 
into CCR4-/- reverted the exacerbated PD phenotype result-
ing in bone loss and inflammation reaching levels  similar to 
the ones observed in WT. Despite numerous data reporting 
increased infiltration of Tregs in periodontal diseases [87, 
89, 90], the reduced content of Foxp3+CD25+ cells has 
been demonstrated as well [91]. To conclude, the decreased 
content of Tregs or lack of their function contribute to an 
exacerbated immune reaction in the periodontium leading 
to the progression of periodontitis. 

Mechanistic links between 
periodontitis and hypertension

The mechanisms linking hypertension and periodontitis 
may include systemic inflammatory and local immune 
mechanisms, chronic pain, sympathetic activation, and gut 
microbiota (Figure 1) [28]. As discussed above, increasing 
understanding of the immune mechanisms of hyperten-
sion has pointed our attention to all components of perio-
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dontitis immunopathogenesis discussed above with Th1, 
Th17, and T regulatory T cell taking center stage [16, 23, 92]. 
This has been extensively studied in both animal-model 
and human studies [93, 94]. Most recently, Mendelian ran-
domization provided strong evidence linking immune cells 
with hypertension. Lymphocyte, monocyte, or neutrophil 
counts positively correlate with increased SBP, DBP, and 
pulse pressure in the large population of UK Biobank [94]. 
Moreover, recent epidemiological evidence revealed the 
link between lifetime exposure to oral inflammation and 
future cardiovascular risk [8]. Angiotensin II (Ang II), salt, 
and other pro-hypertensive stimuli cause the increase of 
the expression and accumulation of immune cells includ-
ing Th17, effector T cells producing Th1 type cytokines [93, 
95]. In line with this, animal studies indicated that hyper-
tension was exacerbated by exposure to Porphyromonas 
gingivalis antigens, which are commonly present in peri-
odontal diseases [30]. Recently, we observed an increase 
in the expression of Th1 cytokines such as IFN-γ, TNF-α, 
and T-Box Transcription Factor 21 (TBX21) in aortas of P. 
gingivalis/IL-12/aluminum oxide immunized mice. In this 
model, IL-4 and TGF-β expressions were unchanged. More-
over, this phenotype was accompanied by the enhanced 
elevation of blood pressure and endothelial dysfunction 
[30]. Circulating in the blood CD4+ T cells, which have been 
immunized with P. gingivalis antigens, were characterized 
by the higher expression of CD69 and CCR5 molecules 
in comparison to controls [30]. It is interesting to note 
that the cells activated on the periphery can migrate into 
the heart, kidney, brain, and blood vessel adventitia and 
periadventitial fat [34, 96]. Simultaneously, we observed 
that Ang II dependent inflammation was associated with 
increased expression of RANTES in perivascular adipose 
tissue (PVAT). This effect was accompanied by increased 
T cells content in PVAT. Infiltrating T cells were character-
ized by high expression of CCR1, CCR3, and CCR5 mol-
ecules. Furthermore, RANTES-/- were protected against 
leukocyte, and especially T cell infiltration, and this effect 
was associated with improvement of vascular function 
[97]. Thus, periodontal disease initiates systemic inflam-
mation that affects the cardiovascular system by inducing 
activation of the immune cells and their infiltration into the 
inflamed tissue leading finally to the end-organs damage. 

How activated immune cells can cause hypertension is 
still unclear. Most mechanisms link to the effects of effector 
cytokines on endothelial dysfunction [98] and renal expres-
sion of key ion transporters such as ENAC, which can then 
directly regulate blood pressure and contribute to hyper-
tension. Indeed, interferon gamma, a key cytokine in both 
hypertension and periodontitis, has been shown to directly 
induce endothelial dysfunction in the vasculature [97].

Understanding the mechanisms of the immune system 
and hypertension may be crucial in preventing cardiovas-
cular diseases in people with periodontitis. More studies 
are needed to investigate this relationship.

Conclusion
A better understanding of the relationships between hy-
pertension and periodontitis is essential not only for possi-
ble utilization of this knowledge for a non-pharmacological 
approach to improvement of blood pressure control. It may 
also provide valuable pathogenetic clues linking inflam-
mation and hypertension, which has become particularly 
relevant in the light of links between hypertension and 
autoimmune disorders or more recently, COVID-19 [99].
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