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INTRODUCTION
When the heart is subjected to an additional haemodynamic 
load during a bout of exercise, it increases cross-bridge for-
mation, according to the Frank-Starling law, and activates 
neurohormonal mechanisms to enhance contractility. How-
ever, the efficiency of these mechanisms during prolonged 
and repeated exercise is limited and it might be harmful as 
a chronic adaptation. Therefore, the heart attempts to enlarge 

its muscle to carry the extra load. In patients with hypertrophic 
cardiomyopathy (HCM), even a regular load is recognised as 
an excess haemodynamic burden, because of abnormal struc-
tural and functional changes in the sarcomeres. The impaired 
function of the sarcomeres is compensated by cardiac muscle 
enlargement [1, 2]. Thus, the hypertrophy of cardiac muscle 
plays a key role in response to the absolute or relative, chronic 
increase of the haemodynamic load on the heart.
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It is generally believed that mechanical signals initiate 
a cascade of biological events leading to cardiac growth. 
In 1975, William Grossman, Donald Jones, and Lambert 
P. McLaurin published a landmark work “Wall stress and pat-
terns of hypertrophy in the human left ventricle” [3]. In their 
research, left ventricular hypertrophy (LVH) in patients with 
aortic stenosis was compared to LVH, observed in patients 
with aortic and mitral regurgitation. The measurements of left 
ventricular (LV) dimensions and LV wall thickness (LVWT), 
recorded with one-dimensional echocardiography, and 
simultaneous measurements of pressure in the LV, with high 
fidelity catheters, allowed matching the radius of the LV and 
LVWT and instantaneous pressure during the cardiac cycle. 

In accordance with the law of Laplace, wall stress in the LV 
is proportional to the product of LV pressure and radius and is 
inversely proportional to the thickness of the wall. Therefore, 
the pressure increase can be offset by an increase in the wall 
thickness. Because concentric hypertrophy develops under 
the influence of pressure overload and eccentric hypertrophy 

under the influence of volume overload, peak systolic wall 
stress has been proposed as a stimulus for parallel replica-
tion of the sarcomeres, causing concentric hypertrophy and 
end-diastolic wall stress, as a stimulus for serial replication of 
the sarcomeres and eccentric hypertrophy (Fig. 1). 

The Working Group ‘Myocardial Function’ of the Euro-
pean Society of Cardiology (ESC), recommends using the term 
‘hypertrophy’ only in the context of cardiac myocyte size, and 
not the whole heart [4]. Instead, the Working Group recom-
mends using the term ‘remodelling’ to define the rearrange-
ment of different cardiac tissue elements, a process by which 
the heart changes its size, geometry, and function over time. 
However, the terms remodelling and hypertrophy are often 
used interchangeably. In everyday clinical practice, an increase 
in the thickness of the LV wall beyond the limits established 
for a population is often regarded as hypertrophy. According 
to the guidelines published by Lang et al. [5], LVH is defined 
as a substantial increase in LV mass, expressed as LV mass, 
indexed to the body surface area of more than 95 g/m2 for 

Figure 1. A drawing explaining Grossman’s hypothesis about the patterns of hypertrophy related to wall stress. Volume overload 
induces an increase of end-diastolic wall stress. This is a stimulus for ventricular enlargement and an increase in the radius of the 
left ventricle (LV) in the mechanism of serial addition of new sarcomeres; the systolic wall stress increases. In response, a parallel 
addition of new sarcomeres gives balanced wall thickening and contributes to eccentric hypertrophy. Eventually, concentric hy-
pertrophy causes a decrease in systolic wall stress in pressure overload, and eccentric hypertrophy reduces the diastolic wall stress 
in volume overload [3]
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female and 115 g/m2 for male. Additionally, by calculating the 
relative wall thickness (RWT), defined as (2 × PWT)/LVEDD, 
where PWT is the posterior wall thickness and LVEDD is LV 
end-diastolic diameter, it is possible to perform a geometric 
distinction of the LV mass increase. If RWT is more than 0.42, 
hypertrophy is concentric; if RWT is equal to or less than 0.42, 
the hypertrophy is eccentric (Fig. 2) [6].

LEFT VENTRICULAR HYPERTROPHY  
OF ATHLETE’S HEART

Hypertrophy of the LV in athletes represents cardiac remodel-
ling in response to training. However, what is a stimulus for 
athlete’s heart LV remodelling? I (HK) addressed this question 
to Bill Grossman, and he has compared the changes in ath-
lete’s heart to the natural growth of the heart with age, from 
the neonatal period to adulthood. He pointed out that volume 
overload during exercise generates both systolic and diastolic 
stress; therefore, the hypertrophy is balanced.

Fundamentally, LVH, as a feature of the athlete’s heart, 
is regarded as balanced eccentric hypertrophy, in spite of the 
ongoing debate about the effect of resistance training on in-
duction of concentric hypertrophy — a hypothesis introduced 
by Morganroth et al. in 1975 [7–9]. In 2000, Pluim et al. [8] 
presented a meta-analysis of 59 studies involving 1451 male 
athletes. The results confirmed the hypothesis of divergent car-
diac adaptation in dynamic and static sports, respectively. This 

conclusion was based on a comparison of RWT in resistance 
trained athletes and endurance athletes. RWT in the resist-
ance athletes was significantly higher than in the endurance 
and combined sports athlete groups. The mean values were 
estimated at 0.44, 0.39, and 0.40, respectively [8].

However, an analysis of the results of Pluim’s research 
and the results of a recent meta-analysis by Utomi et al. [9] 
show that the adaptation is not necessarily divergent, but 
rather, the morphological features associated with specific 
training may represent consecutive points on a continuous 
line of cardiac growth, associated with exercise. If we assume 
the starting point of the line as the RWT of the control group, 
the course of RWT changes with training, regardless of the 
type of sport is directed toward the higher values. But, in 
healthy athletes, RWT should not reach the value defined 
as concentric hypertrophy (Table 1) [8, 9]. It is interesting 
that, for RWT calculation, Pluim et al. [8] used the sum of 
interventricular septum (IVS) thickness and PWT and divided 
it by LVEDD, but Lang et al. [5], and also Ganau et al. [6], 
recommend the use of double PWT instead of the sum of 
IVS thickness and PWT. In this case, RWT is probably over-
estimated (Table 1). 

Relative wall thickness is a function of LVWT and inter-
nal diameter. It is noteworthy that, in the meta-analysis of 
Pluim et al. [8], the differences between athlete groups were 
noted only for LVEDD and LV end-diastolic volume, which 
were larger in the endurance athletes than in the resistance 
athletes. There were no differences in the wall thickness be-
tween those groups. The same results were presented in the 
above-mentioned meta-analysis by Utomi et al. [9], in which 
the authors, contrary to the previous meta-analysis, concluded 
that the training-specific pattern of concentric hypertrophy 
was not discerned in the resistance athletes.

The strict classification of LV adaptation in the resistance 
athletes as concentric hypertrophy is probably not proper. 
The typical pattern of concentric hypertrophy is regarded 
as an adverse phenomenon. Even in hypertension one can 
observe eccentric hypertrophy or concentric remodelling, 
and concentric hypertrophy is a rare phenomenon, as was 
presented in the Ganau et al. work from 1992 [6].  

The changes in size, geometry, and function of the heart 
are a result of the athlete’s physical training and apply to 
almost all athletes. Of course, some sports disciplines require 
little training volume and intensity, and then the changes are 
just small. Nevertheless, unambiguously, athletes who are 
engaged in physical training have a greater LVWT and LVEDD, 
compared to the non-athletic population, and endurance 
athletes have the biggest hearts — those practicing rowing, 
cross-country skiing, cycling, and long-distance running. The 
aforementioned meta-analyses confirm this unequivocally 
[8, 9]. Athletes also have proportionally larger left atria (LA) 
and right ventricles (RV), and this reflects a balanced cardiac 
remodelling process [9–12].

Figure 2. The four patterns of left ventricular geometry, pro-
posed by Ganau et al. [6] in 1992 with modifications regar-
ding LV mass index (LVMI) and relative wall thickness (RWT) 
introduced by Lang at al. [5]. Patients with normal LV mass can 
have either normal geometry if RWT ≤ 0.42 or concentric re-
modelling if RWT > 0.42. Patients with increased LV mass can 
have either concentric (RWT > 0.42) or eccentric (RWT ≤ 0.42) 
hypertrophy
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This adaptation process is very dynamic. First, changes 
on a molecular level can be observed at the beginning of 
the training regime. The changes are not uniform, and many 
determinants affect their course. However, an important fea-
ture of the athlete’s heart is their reversibility after cessation 
of exercise, for example in detraining. The term “detraining” 
is commonly associated with athletes’ activity; it describes 
withdrawal of morphological and physiological changes 
induced by training, after reduction of training intensity and 
volume, for example during the off-season or after injury. 
This phenomenon is considered as a feature distinguishing 
the athlete’s heart from HCM.

Note that we usually think about the athlete’s heart as 
a special entity, different from the normal reference rang-
es. However, what is the norm for us? These are our control 
groups. Groups of sedentary males and females. Did you 
ever think about it in an opposite way? To our knowledge, 
the human body evolved in an environment that required 
high physical activity. The human genome is programmed for 
high physical activity. Thus, it is possible that athletes should 
represent a reference point, and our control groups are in 
a permanent detraining period [13].

THE ATHLETE’S HEART AND THE “GREY ZONE” 
OF UNCERTAINTY

Sometimes, the magnitude of wall thickness or internal 
diameter of the LV resembles morphological manifestations 
of a pathological condition of the heart. Then, we have to 
remember that athletes are not a disease-free population. 
This is particularly important in the case of HCM because 
this disease is responsible for a substantial number of sudden 
cardiac deaths (SCD) in athletes [14]. The challenge starts 
when LVWT exceeds the lower limit of diagnostic value for 
HCM but is still below the upper limit observed in athletes.

According to the 2014 ESC guidelines on diagnosis and 
management of HCM, cardiomyopathies are defined by struc-
tural and functional abnormalities of ventricular myocardium 
that are unexplained by flow-limiting coronary artery disease 
or abnormal loading conditions. Specifically, HCM is defined 
by the presence of increased LVWT that is not solely explained 
by abnormal loading conditions [15].

In the section ‘diagnostic criteria’, the ESC guidelines state 
that in adults HCM is defined by LVWT equal or more than 
15 mm in one or more myocardial segments, but also that the 
disorder can present with a lesser degree of wall thickening of 
13 mm to 14 mm. Therefore, according to the guidelines, all 
athletes with LVWT greater than 12 mm should be evaluated 
as suspected of HCM [15].

This is, more or less, consistent with recommendations 
of leading sports cardiologists. Only a small subset of white 
male athletes, estimated at 2–4%, exceeds LVWT of 12 mm 
[16, 17]. There is no evidence of LVWT greater than 16 mm 
in healthy male athletes regardless of ethnicity [18]. Therefore, 
the overlap is estimated at 12–13 mm to 16 mm. In healthy 
female athletes, LVWT does not exceed 12 mm. The female 
athletes have larger LV diameter and LVWT compared to 
sedentary females, but the extent of cardiac remodelling is 
less, compared to adult male athletes of the same ethnicity 
and sports discipline. This difference can be partly attributed 
to smaller body size, but it persists even after indexing to the 
body surface area. This is another feature considered as help-
ful in distinguishing the athlete’s heart from HCM. Maximal 
LVWT greater than 12 mm in female athletes favours the 
diagnosis of HCM.

DETERMINANTS OF CARDIAC SIZE IN ATHLETES
Haemodynamic changes during intensive exercise are the 
stimulus for cardiac growth. However, a few factors affect the 

Table 1. The mean values of interventricular septum thickness (IVST), posterior wall thickness (PWT), and left ventricle end  
diastolic diameter (LVEDD) from the meta-analysis of Pluim et al. [8] and the meta-analysis of Utomi et al. [9] and the results  
of calculations of relative wall thickness with two methods

Athletes PWT IVST LVEDD Relative wall thickness

(2 × PWT)/LVEDD (PWT + IVST)/LVEDD

Pluim et al. 2000 [8]

Control 8.8 8,8 49.6 0.35 0.35

Endurance 10.3 10,5 53.7 0.38 0.39

Combined 11 11.3 56.2 0.39 0.40

Resistance 11 11.8 52.1 0.42 0.44

Utomi et al. 2013 [9]

Control 8.8 9.2 50.1 0.35 0.36

Endurance 10.6 11 54.8 0.39 0.39

Resistance 10.4 11 52.4 0.40 0.41
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magnitude of cardiac remodelling in athletes. So far, we have 
referred to the type of sport and gender. The next important 
factor is the age of the athlete. LVWT and LV diameter in-
crease in a linear manner from childhood to adulthood and 
correlate with changes in body size. Adolescent athletes have 
the greater LV diameter and LVWT compared to non-athletic, 
age-matched colleagues. However, the diameter and thick-
ness are smaller than in adult athletes. Only a small subset 
exceeds 11 mm of LVWT. In the study by Sharma et al. [19] of 
720 adolescent athletes it was 5%, and only 0.4% exceeded 
12 mm. All female adolescent athletes had LVWT less than 
or equal to 11 mm. The upper limit of the wall thickness in 
male adolescent athletes was 14 mm. This difference, between 
the adolescent athletes and the adult athletes, should also be 
taken into account in the evaluation process, in the case of 
HCM suspicion.

Recently, particular attention has been paid to the impact 
of ethnicity on cardiac remodelling. Specifically, athletes of 
African or Afro-Caribbean origin exhibit significant differ-
ences compared with widely studied groups of Caucasian 
athletes. Black athletes have significantly larger LVWT and 
LV dimensions of the LA, but LVEDD is similar to that of the 
white athletes [18, 20].

In 2008, Basavarajaiah et al. [18] compared LV re-
modelling in highly-trained, male athletes of African and 
Afro-Caribbean ethnicity (black athletes) and the same level 
Caucasian athletes and showed, that the greater mean LV 
diameter and LVWT have black athletes. Additionally, they 
found that in black athletes there is an 18% greater prevalence 
of hypertrophy beyond the limit of 12 mm, compared to white 
athletes. Although 3% of black athletes had LVWT equal to 
or more than 15 mm, none of the white and black athletes 
had LVWT more than 16 mm.

Similar results were demonstrated in black female athletes 
in the study by Rawlins et al. [20]. LVH greater than 11 mm 
was found in 3% of black female athletes but in none of the 
white female athletes [20]. Thus, in the black athletes, adop-
tion of the bottom LVWT limit of 12 mm will prompt us to 
HCM-oriented evaluation much more frequently, compared 
to the white athletes, and of course will generate a false posi-
tive diagnosis.

There is one more factor considered as a determinant 
of cardiac size in athletes: the genetic factor. Some authors 
suggest that the genetic determinants may explain one-quarter 
of the overall variability of LV dimensions. In particular, 
polymorphisms of the angiotensinogen gene (AGT) and the 
angiotensinogen converting enzyme (ACE) gene have been 
investigated, with the supposition that the AGT-TT genotype 
and the ACE-DD genotype are independently related to the 
greater LV mass after training, compared to the AGT-MM and 
ACE-II genotypes, respectively [21].  

We are not making an error when we say that genes have 
an influence on heart size, since they have an impact on body 

size. It is not wrong even to say that genes independently have 
an influence on heart size. However, today our knowledge 
in this particular field is limited and the polymorphisms of 
renin–angiotensin system genes are a good example of these 
limitations. These genes are also considered to be determi-
nants of HCM; so-called distant-acting modifiers. This phe-
nomenon, independently of a direct genetic mutation, is in 
part responsible for the great phenotypic diversity observed 
in HCM, besides locally acting modifiers, epigenetic mecha-
nisms, and environmental factors [22].

HYPERTROPHIC CARDIOMYOPATHY
Hypertrophic cardiomyopathy, defined by the presence of 
unexplained LVH, affects 1 in 500 people, and the majority 
of the cases are caused by genetic mutations. It is the most 
common genetic heart disease [15, 23]. The disease has 
heterogeneous morphology and variable clinical manifesta-
tions. The disease has complex pathophysiology, predomi-
nantly involving cardiomyocytes but also many different cells 
and tissues of the heart [15, 24].

Left ventricular hypertrophy is the phenotypic hallmark 
of HCM. It develops during adolescence or early adulthood, 
usually. However, HCM can be found at birth and can emerge 
at the senior age — so called late phenotypic presentation. 
Typical distribution of hypertrophy in the LV is asymmetric 
and regional [24]. It may involve one segment or virtually 
all walls of the LV, along with papillary muscles and the RV. 
A cardiac magnetic resonance imaging (CMR) study of Maron 
et al. [24] shows that in 54% of HCM patients, hypertrophy 
is diffuse, involving more than seven segments of LV wall. In 
34%, hypertrophy is moderate — confined to three to seven 
segments. In the remaining 12% of HCM patients, only one 
or two segments are involved and this is regarded as focal 
hypertrophy. In 15% of patients, the hypertrophied segments 
might be separated by a wall of normal thickness [24]. 

It is noteworthy that focal or moderate distribution of hy-
pertrophy with mild wall thickness is not necessarily associated 
with increased LV mass. The average hypertrophy, understood 
as increased wall thickness, confirmed in large cohort stud-
ies is estimated at 21–23 mm, but in about 5–6% of cases 
a thickness of 13–15 mm can be found. On opposite side, 
extreme hypertrophy of 30 mm or more might be seen [24].

The first-line imaging modality applied in the evaluation 
of LVH is two-dimensional echocardiography. In athletes 
suspected of HCM all segments from the base to the apex 
should be precisely examined. The measurements should be 
done at the end-diastole and in short-axis views, at the level 
of the mitral valve, papillary muscles, and apex. Of course, 
all available views might be used to verify wall thickness, but 
it should be noted that the measurements in apical views 
might cause an overestimation. Special attention is needed 
regarding base segments of the IVS because of the possibil-
ity of inclusion of RV structures to measurements and risk of 
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overestimation [25]. Right ventricular wall thickness should 
be evaluated too. The normal wall thickness of the RV is less 
than 5 mm in the parasternal long-axis view. 

If any segments are not visualised properly to allow effec-
tive measurements, use of contrast agents should be considered 
[25, 15]. In HCM patients, the most frequently hypertrophied 
regions of the LV are the anterior free wall and contiguous basal 
anterior septum. In these locations the wall thickness is com-
monly maximal. In the evaluation of LVH, besides the absolute 
values of the measurements, estimation of the symmetry of 
the wall thickness distribution is important. According to the 
2014 ESC guidelines, a septal-to-PWT ratio of 1.5 or more is 
suspicious [15]. We have to remember that in almost 50% of 
HCM patients LVH is confined to seven segments [24]. 

In about 20% of cases, echocardiography fails to give an 
adequate visualisation of LVH, especially in the lateral wall 
and apex. Therefore, CMR is recommended in HCM. It gives 
a clear separation of endocardial and epicardial borders and is 
considered the ‘gold standard’ to evaluate the wall thickness 
and diameter of the LV and RV [15]. Recently, apical HCM is 
recognised more frequently, due to better access to the CMR.

Left ventricular hypertrophy in HCM is often considered 
as concentric, and an LVEDD less than 45 mm favours the 
HCM diagnosis. Caselli et al. [26] compared a group of athletes 
with LVWT range 13–15 mm with HCM patients matched for 
LVWT. They concluded, that LV diameter represents the most 
reliable and independent criterion to differentiate physiologic 
from pathologic LVH. In their population, an LV diameter 
of 55 mm showed the highest sensitivity and specificity for 
distinguishing the athlete’s heart from HCM. All the patients 
with HCM had LV diameter less than 55 mm [26]. In turn, 
Pagourelias et al. [27] in their study compared a group of 
healthy athletes to HCM patients engaged in regular exercise 
at least three times a week. In this study LVEDD, less than 
48 mm (47.9) was estimated as the cut-off value, with sen-
sitivity and specificity of 87.5% and 77.8%, respectively. It is 
noteworthy that small LV size might be considered as a risk 
factor, predisposing to sudden death in HCM patients [28]. 
Additionally, small LV size at end-systole is characteristic for 
females with HCM. This configuration is frequently associated 
with significant obstruction of LV outflow tract (LVOT) [29].

Common features of HCM on the tissue level are cardio-
myocyte disarray, microvascular dysfunction, and fibrosis [30]. 
The disarray is a profound disorganisation of cardiomyocyte 
alignment, expressed as a lack of parallel orientation of cells 
with additional branching intensifying an impression of disor-
der. Changes at the cellular level are associated with changes at 
the sarcomere level. The presence of disarray is independent 
of the degree of hypertrophy. A consequence of disarray is 
dysfunction of contraction and relaxation processes. It is also 
considered as a substrate for arrhythmias [30, 31].

Diffuse microvascular dysfunction in the heart, in the 
absence of changes in epicardial coronary arteries, is an ef-

fect of pathological remodelling in small intramural vessels, 
with thickening of the arteriole wall, hyperplasia of smooth 
muscles, and disorganisation of elastic fibres [32]. A result of 
the remodelling process is a narrowing of the luminal diameter, 
most often irregular and impaired vasodilator reserve [33]. 
Therefore, microvascular dysfunction, along with compres-
sion forces, resulting from the hypertrophy may be a cause 
of ischaemia in HCM [32].

The additional and important consequence of microvas-
cular dysfunction is fibrosis. Although earlier considered as 
a primary process in HCM patients, today it is believed that 
this is a reparative process, following microvascular dysfunc-
tion [34]. The process might range from increased, diffuse, 
interstitial collagen deposition to large focal areas of fibrosis, 
most often observed in mid-wall location, preferentially in 
the most hypertrophied regions.

In HCM patients, CMR with the gadolinium-based con-
trast agent, in late phase, may show an enhancement within 
the LV wall (the late gadolinium enhancement [LGE]), which 
corresponds to focal fibrosis [35]. The recently introduced 
method of measurement of myocardial longitudinal relaxation 
time (T1 mapping), following administration of gadolinium 
contrast agents, gives a chance to distinguish normal myo-
cardium from diffuse myocardial fibrosis with standard CMR 
tools and machines [36]. LGE is present in about 60–90% of 
HCM patients, and the extent of LGE is inversely related to 
systolic function [37]. It is possible that LGE areas are also 
a substrate for ventricular arrhythmias [38].

The presence of LGE is generally considered as a con-
firmatory feature in case of suspected HCM. However, in 
patients with mild hypertrophy, LGE is frequently absent. 

One of the defining features of HCM is LVOT obstruc-
tion. The obstruction is a result of morphological changes in 
the IVS, fibrous trigones and mitral valve [39]. During systole, 
a hypertrophied IVS comes in contact with an anterior leaflet 
of the mitral valve or even both elongated leaflets of the valve. 
This causes narrowing of the outflow tract and, consequently, 
blood flow acceleration and local under-pressure in the out-
flow tract (Venturi effect).

Several conditions must be met, but the most important 
are the changes in mitral valve apparatus resulting in a systolic 
anterior motion (SAM) of the anterior leaflet. In the majority 
of HCM patients both mitral leaflets are enlarged, which is 
a part of the HCM phenotype. The anterior papillary muscle 
is often displaced anteriorly and occasionally inserted directly 
into the mitral leaflet. It might be additionally complicated by 
fixation of papillary muscles to the ventricular free wall. The 
functional effect of the changes is mitral regurgitation, due to 
loss of the leaflets coaptation. Other elements are hypertrophy 
of LV wall below posterior mitral annulus and calcification of 
the posterior mitral annulus, causing a shift of the mitral valve 
leaflets anteriorly and the inability of the subaortic curtain 
to move backward during systole, due to the obliteration of 
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fibrous trigones [39, 40]. M-mode echocardiography gives 
the opportunity to assess the severity of the systolic anterior 
motion. An incomplete SAM is recognised when, during car-
diac cycle, the mitral valve leaflet does not touch IVS; mild, 
when a mitral-septal contact starts in late systole and lasts less 
than 10% of the systole; and severe, when the mitral-septal 
contact occurs in mid-systole and lasts more than 30% of the 
systole duration [41]. 

In advanced hypertrophy and particularly in elderly 
patients, LVOT obstruction is more commonly present with 
a deformation of hypertrophied septum, causing anatomic 
reduction of the subaortic area [40].

It should be noted, however, that in young people LVOT 
is often of normal size and arrangement, and the obstruction is 
caused by the wide excursion of elongated mitral leaflets. This 
type of obstruction is highly dynamic and varies in different 
physiological situations. Often not observed in resting condi-
tions, it can be elicited during passive standing or exercise in an 
upright position, and sometimes during the Valsalva manoeuvre 
[42]. In this situation, drag forces deriving from high-velocity, 
abnormally directed anterograde systolic flow within the LV 
produce a systolic anterior motion. Increased flow velocity, 
secondary to the obstruction, quantified with continuous wave 
Doppler, has a characteristic dagger-shaped contour [43]. 

A gradient of 30 mm Hg or more at rest or elicited with 
provocative manoeuvres defines the LVOT obstruction. Under 
resting conditions, the obstruction is found in about 30% of 
patients. In another 30–40%, the obstruction is only seen 
after provocative manoeuvres [40, 43]. Therefore, exclu-
sion of LVOT obstruction should be a priority of the clinical 
search, and the presence of SAM, even if incomplete, suggests 
the diagnosis.

In a significant subset of HCM patients with hypertro-
phied papillary muscles, an intraventricular gradient can be 
observed. In some of the patients, a mid-ventricular obstruc-
tion can be seen. Then, the gradient may be clinically relevant, 
and a consequence of the morphological and functional 
changes can be the occurrence of the LV apical aneurysm, 
which is observed in about 2% of HCM patients [44].

Another feature of HCM is LA remodelling. It is probably 
due to LV diastolic dysfunction and increased filling pressure 
[45]. An additional factor can be mitral regurgitation resulting 
from SAM. There is also a hypothesis that the atrial myopathy 
is a primary pathology; an effect of an HCM-causing mutation. 
A transverse dimension of the LA exceeds the reference value 
of 40 mm in more than half patients with HCM, compared to 
20% of athletes. In only 2% of athletes the LA dimension is 
equal to or more than 45 mm, comparing to more than 25% 
of HCM patients [10]. Therefore, the LA dimension of more 
than 45 mm may favour the diagnosis of HCM. However, 
in the aforementioned study by Caselli et al. [26], in HCM 
patients with mild hypertrophy, LA size was within normal 
limits and smaller than in athletes.

One more pathology in HCM, responsible for ischaemia, 
is myocardial bridging, and sometimes even myocardial tun-
nelling. In patients with HCM the myocardial bridging occurs 
more frequently than in the general population; the preva-
lence rate is about 30%, compared to 1% to 3%, respectively. 
Myocardial bridging occurs when epicardial coronary arteries 
are located intramyocardially, resulting in systolic compression 
of a coronary artery [46]. 

THE hypertrophic cardiomyopathy 
 AETIOLOGY — GENETICS AND BEYOND

As mentioned earlier, the majority of HCM cases are caused 
by genetic mutations. Among these, most common are muta-
tions that affect sarcomere proteins [22]. In 1990, a mutation 
responsible for HCM was identified in the beta-myosin heavy 
chain (MYH7) gene. During the following decade, numerous 
genes were reported to be associated with the disease. Most 
of these genes encode proteins of myofilaments or the Z-disc 
of the sarcomeres. As such, HCM has been described as 
‘a disease of the sarcomere’, and this aetiology is most often 
considered in a case of LVH that is not explained by increased 
loading conditions [22]. 

Among sarcomere genes, which clearly proved to have 
a pathogenic role in HCM, most often recognised are the 
cardiac myosin-binding protein C (MYBPC3) gene, a gene 
encoding the MYH7 of thick filaments of the sarcomeres, and 
the cardiac troponin T (TNNT2) and I (TNNI3) genes of thin 
filaments, respectively. Rare variants have been reported in 
other genes of the sarcomere apparatus, or genes coding for 
proteins of the adjacent Z-disc. However, for some of these 
latter genes, evidence for direct pathogenicity in HCM has 
not been clearly established [22].

Over the past two decades, more than 1400 mutations 
have been described in association with HCM. The major-
ity of them are familial mutations, but 40% are apparently 
sporadic cases with no family history. Almost all mutations 
associated with HCM are ‘private mutations’, identified in 
one or only a few families. However, some mutations arise 
recurrently in a large number of unrelated families because 
of mutations in mutational ‘hot spots’ — fragile regions of 
DNA. Other interesting cases are founder mutations: very old 
mutations persisting in a population because of their benign 
course and minimal impact on survival. Some of them may 
be older than thirty thousand years. The founder mutations 
almost universally occur in the MYBPC3 [47].

Pathogenic mutations are often missense substitutions, 
resulting in an exchange of a single amino acid for another 
at the protein level. Alternatively, and particularly in the 
MYBPC3, structural changes or truncation of the protein are 
identified. The final result is disruption of normal sarcomere 
function or haploinsufficiency [47].

What is the impulse for remodelling in HCM? Altered 
calcium handling is universally reported in sarcomeric car-
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diomyopathies and is considered as a probable primary or 
secondary trigger for pathological hypertrophy and some other 
features of HCM [2]. Sarcomeric mutations may cause sus-
tained elevation of intracellular calcium by two mechanisms: 
increased sarcomeric adenosine triphosphate (ATP) utilisation, 
which may lead to down-regulation of sarcoplasmic reticu-
lum ATPase and, consequently, impaired calcium removal, 
and increased myofilament calcium sensitivity, which slows 
its dissociation from the myofilaments and contributes to 
increased concentration during diastole. Sustained elevation 
of calcium concentration leads to activation of calcineurin 
phosphatase. The calcineurin then dephosphorylates a nuclear 
factor of activated T-cells (NFAT). The transcription factor, 
after translocation to the nucleus, induces genes responsible 
for pathological cardiac hypertrophy [48].

On the other hand, experimental studies have shown 
that one of the beneficial effects of regular exercise might be 
a down-regulation of the calcineurin signalling, competing 
with the pathological up-regulation observed in HCM. Thus, 
taking into account the lack of comparative data regarding 
the effect of exercise on HCM patients, it is worth consider-
ing, whether exclusion from exercise and sport for every 
asymptomatic HCM patient is the best way to save a life [48].

THE CHALLENGE OF DIFFERENTIAL DIAGNOSIS
Two overlapping circles symbolise the challenge of differ-
entiating the athlete’s heart from HCM. As was mentioned 
above, in a subset of athletes the maximum LVWT overlaps 
with that observed in HCM patients. In about 5–6% of the 
patients the maximum wall thickness is below the diagnostic 
value of 15 mm and may be of 13–14 mm. In turn, about 
4% of white athletes and even more black athletes have wall 
thickness greater than 12 mm. Therefore, we must assume that 
every athlete whose LVWT is beyond 12 mm needs special 
attention and exclusion of HCM.

It is generally recommended to withdraw an athlete with 
“probable or unequivocal clinical diagnosis of hypertrophic 
cardiomyopathy” from most competitive sports because 
of increased risk of SCD, which is associated with vigorous 
exercise [51, 52]. However, it is important to recognise that 
in the case of HCM there is still a deficit of randomised and 
controlled clinical trials, and the recommendations are based 
on expert opinions. We have to accept that the established 
approach in differential diagnosis promotes sensitivity at the 
expense of specificity, and we have to face the problem of an 
apparently healthy athlete excluded from the sport because 
the athlete’s safety is the first priority.

A few features recognised as important in the differentia-
tion process are listed in Table 2. The presence of the features 
favours the diagnosis of HCM. Some of them result from medi-
cal history and physical examination. Some of them we can 
find in the resting electrocardiogram (ECG) because electrical 
remodelling is a part of both entities [53]. Some of them are 

the result of imaging diagnostics — from the evaluation of 
structure and geometry to advanced functional analysis. Oth-
ers, like reduction of the wall thickness after detraining and 
the level of maximal oxygen uptake, are based on responses 
to prolonged immobilisation and exercise, respectively. One 
biochemical parameter is listed in this table: the B-type 
natriuretic peptide, recognised as a marker of heart failure. 
Finally, there is genetic analysis, which is highly specific and 
is becoming more available, but demands new competencies 
and skills for the conclusive application.

Separately, we would like to discuss the functional abnor-
malities, with a focus on LV diastolic dysfunction, as an early 

Table 2. Features recognised as important in differentiation 
of left ventricular hypertrophy (LVH) related to exercise from 
hypertrophic cardiomyopathy (HCM)

Specific data from personal and family history relevant to diagnosis 
of HCM (detailed in Table 3) 

Cardiovascular findings in physical examination 

Heart murmur

Electrocardiogram abnormal findings 

T-wave inversion; ST depression; pathological Q;

LBBB; Intraventricular conduction delay;

Left axis deviation; LA enlargement;

RVH pattern; PVCs; ventricular arrhythmias

Cardiac structural features 

LV wall thickness > 16 mm in adult male and > 12 mm in adult 
female athlete regardless of ethnicity

LV wall thickness > 14 mm in adolescent male and > 11 mm in 
adolescent female athlete

Asymmetrical or unusual LVH (IVST/PWT ratio ≥ 1.5); 

LVEDD < 45 mm; LA > 45 mm; RVH;

LVOTO; SAM;

Late gadolinium enhancement on CMR; 

Myocardial bridging 

Functional abnormalities 

E wave < A wave; 

TDI e’ wave < 9 cm/s;

Ar-A duration > 30 ms;

Increased BNP;

Low VO2max

No effect of detraining to LVH 

Genetics

A wave — pulsed-wave mitral peak velocity of late filling; BNP —  
B-type natriuretic peptide; CMR — cardiac magnetic resonance ima-
ging; E wave — pulsed-wave mitral peak velocity of early filling; IVST —  
intraventricular septum thickness; LA — left atrium; LBBB — left  
bundle branch block; LVEDD — left ventricular end-diastolic diameter; 
LVOTO — left ventricular outflow tract obstruction; PWT — posterior 
wall thickness; PVCs — premature ventricular contractions; RVH — 
right ventricle hypertrophy; SAM — systolic anterior motion; TDI  
e’ wave — tissue Doppler imaging early diastolic peak velocity;  
VO2max —  maximal oxygen uptake
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symptom of HCM and the family history, the procedure which 
as the rule should start every clinical investigation. Here, in 
the context of the sarcomere mutations.

LEFT VENTRICULAR DIASTOLIC FUNCTION  
IN hypertrophic cardiomyopathy

During the normal cardiac cycle, just after closure of the aortic 
valve, the stage of diastole starts. It begins with an isovolu-
mic ventricular relaxation. This active process initiates a fall 
of pressure in the LV. When the LV pressure is equal to the 
LA pressure, the mitral valve opens and rapid inflow to the 
LV starts. At this point, the isovolumic relaxation ends, but 
myocardial relaxation continues during early diastole until the 
minimal diastolic pressure in the LV is reached. The blood is 
sucked to the LV. Rapid inflow causes the LV pressure to rise 
and equalise with the pressure in the LA, and thus early dias-
tolic filling decelerates. Then the phase of diastasis starts. The 
filling of the LV almost closes the mitral valve leaflets, and then 
atrial contraction starts. The pressure in the LA rises and this 
initiates the late filling. Once again the mitral annulus moves 
away from the apex. During LA contraction, a small portion 
of blood goes back to the pulmonary veins. The mitral valve 
closes and this is the end of diastole.

Impairment of LV diastolic function may be an early sign 
of HCM development, and it is a consequence of disturbances 
in calcium handling, because of sarcomeric mutation. Dias-
tolic function is related to the active process of relaxation and 
passive properties of the myocardium. However, the relaxa-
tion is impaired, at first, causing an increase of minimum LV 
end-diastolic pressure and consequently a decrease of early 
diastolic velocity of the mitral inflow and prolongation of 
the deceleration time [54]. In this situation, the conduit LA 
volume decreases, and the pump function gains importance. 
The late diastolic velocity of the mitral inflow increases. An 
increase in the LV filling pressure generates an increase of the 
LA pressure, and during atrial contraction a retrograde flow to 
the pulmonary veins, observed as the atrial reversal velocity, 
is magnified. Relaxation is accompanied by the movement of 
the mitral annulus away from the apex. Its velocity correlates 
well with how fast the LV relaxes.

Doppler parameters of diastolic function in athletes and 
the untrained controls were analysed in the work of Caselli et 
al. [55]. A significantly lower mitral inflow pulsed-wave late 
diastolic filling (A-wave) peak velocity in the athletes group 
confirms that in athletes the reservoir and conduit function 
of the LA predominates. The same effect was observed in the 
study by D’Ascenzi et al. [56] of 150 athletes compared to 
90 matched controls.

Some doubts might arise regarding the seemingly un-
favourable direction of change of the isovolumic relaxation 
time and deceleration time, but bradycardia and physiological 
hypertrophy are mainly responsible for this picture.

In the athlete’s heart the majority of the LV filling occurs in 
early diastole, because of effective suction forces generated by 
relaxation. The blood flow meets almost no resistance because 
of good compliance, and the LV filling pressure is low even 
during strenuous exercise. Generally, the diastolic reserve is 
large and all the processes of active relaxation, passive filling, 
and LA contraction are very well organised [55, 56].

Non-invasive estimation of diastolic function in HCM 
patients, especially in those with preserved or even enhanced 
systolic function, is difficult [57]. It is even more difficult in 
athletes with HCM because there is a lack of comparative 
studies of athletes with HCM and healthy athletes. Some 
experts believe that echocardiographic assessment of diastolic 
function in HCM has no clinical value [43]. However, if we 
assume that in healthy athletes the diastolic stage is a very 
well designed process then it is worth analysing some vari-
ables. The most recommended is the tissue Doppler annular 
early diastolic velocity. A value less than 9 cm/s is considered 
as favouring the diagnosis of HCM [15, 57]. 

From the perspective of diastolic function, reduced tis-
sue Doppler annular early diastolic velocity is consistent with 
HCM. Prominent atrial reversal velocity in the pulmonary 
veins is also consistent with pathologic LVH and could also 
be of value [25, 57]. 

In everyday clinical practice the atrial reversal velocity 
and its derivatives are often treated as old variables and are 
rarely performed. However, they have a significant correlation 
with LV diastolic pressure and the time difference between 
atrial reversal velocity duration and mitral inflow A-wave du-
ration; more than 30 ms indicates elevated LV end-diastolic 
pressure [25]. 

FAMILY HISTORY OF HCM
In 1958 Donald Teare described cases of young adults who 
died suddenly [58]. An autopsy revealed asymmetric LVH. 
In 1960 Hollman et al. [59] published the family pedigree 
of one of the patients, a 21-year-old woman. Besides fam-
ily history and a review of medical records, including three 
autopsy reports, a clinical evaluation in living family members 
was performed. The result of the analysis revealed for the first 
time the hereditary nature of the disease. They described this 
entity as a ‘dominant one, not sex-linked’. It means that every 
child of an HCM patient has a 50% chance of being affected. 
It means that parents and every sibling of the patient have 
a very high probability of being affected. 

Hollman’s analysis shows how effective this kind of in-
quiry can be. Today, with easy access to sophisticated imaging 
techniques, we sometimes forget to put special emphasis on 
such ‘basic’ medical examination procedures, such as fam-
ily history, limiting inquiry into questions about the medical 
history of first-degree relatives. However, in HCM, which is 
predominantly a result of autosomal dominant mutation, com-
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prehensive, multi-generational family history complemented 
by a review of available medical records and followed by 
clinical evaluation of the athlete’s immediate family members, 
may be of great value. 

In the case of an athlete with LVH that raises any doubts, 
the first step in the clinical investigation should be a thorough, 
three-generation family history. The occurrence of SCD among 
family members is crucial information [60]. However, we 
should also ask about heart failure and stroke, cardiothoracic 
surgeries, and others procedures, particularly in young age, 
which may have been a result of HCM. We need information 
on the occurrence of typical symptoms of HCM, like shortness 
of breath, chest pain, palpitations, and syncope, particularly 
associated with exertion, especially in younger family mem-
bers. It is worth asking about cardiac diagnoses, using custom-
ary, simple terms. Do not forget about other related events, 
such as drowning, or a strange or unexplainable car accident 
in which a family member was the driver, or sudden infant 
death — these may suggest sudden cardiac arrest (Table 3). 

The consequence of the inquiry should be an analysis 
of available medical records of family members, particularly 
ECGs and echocardiograms. The next step should be a clini-
cal evaluation of selected members of immediate family, with 
ECG and echocardiography and other tests, depending on 
clinical context. 

The great phenotypic diversity of HCM, even within the 
same family, means that unequivocally distinguishing the 
disease from the athlete’s heart is often difficult. Therefore, 
differentiation is possible using a methodical and comprehen-
sive clinical approach.

However, we have to remember that we do not know the 
cumulative effect of regular exercise and sarcomeric mutation 
on hypertrophy development in athletes, and we still do not 
know what the interrelations between regular exercise and 
HCM are. A lack of direct comparative studies of athletes with 
physiological and pathological hypertrophy limits the accuracy 
of recommended criteria.

Sarcomeric HCM is often an asymptomatic, benign 
disease with normal life expectancy. Advanced methods of 
genetic testing, although with ethical limitations, can give 
a chance for effective diagnosis in the near future. However, 
some identified mutations probably have no clinical relevance 
and introduce confusion into the accurate interpretation of 
genetic testing.
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