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higher fluctuations of R-R intervals for the slow average HR 
than for the fast one. Moreover, the fluctuations of R-R inter-
vals for fast HR may not be as high as for slow HR because the 
R-R intervals should have become negative (Fig. 1) [13–15, 
17–20]. Due to these facts, standard HRV analysis may be 
mathematically biased, particularly if patients exhibit different 
average HRs. To overcome this problem, one should calculate 
the variability of R-R intervals with respect to the average R-R 
interval, i.e. normalise the oscillations with respect to the 
mean value. One can do that by dividing the sequence of 
R-R intervals by the corresponding average R-R interval [15, 
17–20]. Or, one may divide standard deviation of R-R inter-
vals by average R-R interval (i.e. calculation of coefficient of 
variation), or divide HRV power spectrum (or its components) 
by the average R-R interval squared [15]. 

Such a normalisation is critical for investigations of HRV 
after different interventions which change HR because by 
employing this approach, one may differentiate between 
physiologically and mathematically mediated changes in HRV 
(i.e. one may exclude the mathematical bias) [15, 17–21]. 
For example, metoprolol-induced changes of HRV become 
insignificant after they are normalised to the same R-R interval, 
suggesting that the increase in HRV after beta-blockade can be 
explained by a change of HR [22]. Also, in an animal model, 
it has been shown that beta-adrenergic receptor blockade 
may reduce rather than increase R-R interval variability after 
correction for the drug-induced HR reductions [21]. Further-
more, an employment of this correction method has helped 
to demonstrate that HR is a better indicator of higher fitness 
than its variability — i.e. an association between HRV indices 
and maximal oxygen intake (VO2max) exists mainly due to 
the relationship between HR and VO2max [23]. On the other 
hand, the same method has shown that an increase in HRV 
following dengue viral infection does not result from the ac-
companying reduction in HR, but reflects a real improvement 
in cardiac autonomic nervous control [24].  

Therefore, it is necessary to establish to what extent HRV 
changes associated with HR alterations are physiologically and 

INTRODUCTION
Heart rate (HR) has been extensively 
investigated for many years and has been 
found to be a significant risk factor, es-
pecially for cardiovascular events [1–3]. 
Its predictive ability has been proven in 
different settings, i.e. both at rest and 
during or after exercise [1–5]. However, 

even resting HR is not a constant quantity but one that changes 
beat by beat, a phenomenon that is commonly called heart 
rate variability (HRV) [6]. Both HR and HRV are under the 
influence of the autonomic nervous system activity, and to 
some extent may reflect autonomic imbalance associated with 
different pathological states [6–8]. Years of investigations have 
shown that HRV is an important risk factor associated with 
adverse outcomes in various diseases [8–12]. However, HRV 
reveals a significant correlation with HR, and therefore HRV 
actually provides information on two quantities, i.e. heart rate 
and its variability [13–15]. The question arises as to which of 
these two really matters in HRV prognostic value; in other 
words, what is the HR contribution to the prognostic ability 
of HRV? This article summarises recent reports concerning 
this intriguing point as well as methodological aspects of 
such research.

HRV CORRECTION FOR AVERAGE HR
HRV is usually estimated from sequences of R-R intervals of 
electrocardiogram (ECG) and as such is negatively correlated 
with HR [6, 16]. However, the relationship between HRV and 
HR is both physiologically and mathematically determined 
[13–15, 17–20]. 

The physiological determination comes from the auto-
nomic nervous system activity, especially from its parasym-
pathetic branch, i.e. the higher the parasympathetic activity, 
the lower the HR and the higher its variability [6]. 

The mathematical determination is caused by the 
non-linear (inverse) relationship between R-R intervals and 
HRs. Consequently, the same changes of HR cause much 
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mathematically determined — by the correction for average 
HR, one is able to differentiate these two essentially differ-
ent effects [15]. It is also worth noting that HR influences the 
reproducibility of HRV measurements, i.e. HRV corrected for 

average HR is significantly more reproducible than standard 
HRV [25]. Therefore, differences in average HR should be 
taken into account when one compares HRV measurements 
in a given patient [25–28].

MODIFICATIONS OF THE RELATIONSHIP  
BETWEEN HRV AND HR

The modification method of the association between HRV 
and HR has been recently considerably developed, and now 
enables us to completely remove HRV dependence on HR 
(even the physiological one) or mathematically enhance this 
dependence [13]. Such an approach allows us to explore the 
HR contribution to the prognostic ability of HRV. In order to 
decrease or increase the HRV dependence on HR, one should 
respectively divide or multiply the sequences of R-R intervals 
(or HRV spectra) by different powers of the corresponding 
average R-R interval. The principle of such modifications is 
simple, i.e. by division by the average R-R interval, the HRV 
of slow HR is attenuated, while that of fast HR is relatively 
amplified and consequently HRV loses its dependence on HR; 
conversely, multiplication by the average R-R interval boosts 
the association between HRV and HR — the resulting HRV 
reveals much higher dependence on HR than standard HRV 
(Fig. 2) [13]. The higher the power of the average R-R inter-
val is used, the stronger the effect on HRV/HR dependence 
is achieved (Table 1). Such a method may be employed for 
any HR dynamics analysis which parameters are significantly 
associated with HR — all details concerning this modification 
method have been published elsewhere [13, 15].

The method has been recently tested in a large post 
myocardial infarction (MI) patient population, i.e. almost 
1,500 patients who were followed up for five years [14]. 
Seven different classes of spectral HRV parameters with in-
creasing dependence on HR were calculated, as described in 
Table 1. The hrv1 class was independent of HR, but in other 
classes the association between HRV and HR increased, up 
to a very high level for the hrv7 class (Table 1). During the 
follow-up period, 135 patients died (76 from cardiac causes 
and 59 from non-cardiac ones). The analysis of areas under 
the receiver-operator characteristic curves revealed that if 
HRV is becoming more dependent on HR, its predictive 
power increases for cardiac death, while it decreases for 
non-cardiac death. Conversely, when losing its dependence 
on HR, HRV loses its prognostic power for cardiac death, but 
gains its power for non-cardiac death (Fig. 3). Thus, the HR 
contribution to the HRV prognostic power turns to be different 
for different outcomes, i.e. positive for a cardiac death, but 
negative for a non-cardiac one. In such a context, HR may be 
treated as a cardiovascular factor of the HRV predictive value. 
Moreover, HRV highly dependent on HR (i.e. hrv7 in Fig. 3) 
presents much stronger predictive power for cardiac than 
non-cardiac death; therefore by using it one may potentially 
find patients being at higher risk of cardiac than non-cardiac 

Figure 1. Panel I: The nonlinear (mathematical) relationship 
between R-R interval and heart rate (HR) is depicted. One can 
see that the oscillations of a slow average HR (x-axis, dark grey 
area) result in much greater oscillations of R-R intervals (y-axis, 
dark grey area) than the same oscillations of a fast average 
HR (light grey area). As a consequence, the variability of R-R 
intervals is higher for the slow average HR than for the fast 
one, despite the fact that the variability of HR is the same. 
Panel II: the relationship between R-R interval and HR with 
two hypothetical examples of R-R interval oscillations (i.e. 
A and B) are presented. It can be seen that the fluctuations of 
R-R intervals may be potentially quite high for a slow average 
HR (A); however, such fluctuations are not possible for a fast 
average HR (B) since the R-R intervals should have become ne-
gative. Owing to the above phenomena, the standard analysis 
of HR variability may be mathematically biased. Reprinted with 
modifications from Sacha [17]
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death. On the other hand, HRV fully independent of HR (i.e. 
hrv1) is very specific for non-cardiac mortality (Fig. 3), so it 
allows the identification of patients predominantly burdened 
with extra-cardiac risk. In multivariate analysis, both hrv1 and 
hrv7 proved to be independent predictors of the respective 
mode of death — furthermore, of all other clinical risk factors, 
hrv1 turned out to be the strongest predictor for non-cardiac 
mortality [14]. The specific abilities of hrv1 and hrv7 for 
predicting a certain mode of death have been validated in 

other post-MI population (i.e. 946 patients followed up for 
five years) [14]. 

Currently, it is hard to understand why HRV completely 
independent of HR (i.e. hrv1) reveals such a high potential 
for the prediction of non-cardiac death. However, if stan-
dard HRV (i.e. hrv3 in Fig. 3) predicts all-cause mortality, the 
exclusion of HR influence (which seems to be a cardiovas-
cular factor) may make HRV predominantly associated with 
extra-cardiac risk (i.e. hrv1 in Fig. 3) [14, 15].

Figure 2. The mechanism of modifications of heart rate variability (HRV) dependence on heart rate (HR) is presented: the R-R 
interval tachograms with different average HR (i.e. 55 and 100 bpm) are shown: A and B standard tachograms; C and D tacho-
grams after division by their corresponding average R-R intervals; and E and F tachograms after multiplication by their average 
R-R intervals. In panels I, II, and III, the dependencies of variance (s2) of the respective HRV tachograms on HR are exhibited, in 
other words the standard HRV dependence on HR (I); the weakened dependence (II); and the strengthened dependence (III). 
One can see that after the division by an average R-R interval, HR has little influence on HRV (II) and conversely, after the multipli-
cation by an average R-R interval, HRV is more dependent on HR (III) than the standard HRV (I). The higher the power of average 
R-R interval is employed, the stronger the effect on HRV/HR dependence is achieved. By using the above modifications one may 
weaken or strengthen HR influence on HRV. To facilitate the comparison of the fluctuation amplitudes, the mean values have been 
subtracted from the respective tachograms in panels A, B, C, D, E, and F. Reprinted with modifications from Sacha et al. [13]
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HR has a detrimental effect on the HRV prognostic value 
in females — therefore, it is possible that variability, but not 
average HR, reflects the prognosis in this population [15, 33]. 

In general, it is likely that for outcomes and populations 
where HR is not a risk factor, the exclusion of its influence may 
improve the HRV prognostic value; however, if HR is a risk 
factor, the enhancement of its impact makes HRV a better 
predictor [15]. This concept has been recently confirmed by 
Pradhapan et al. [37] who has examined the HR impact on 
the HRV after exercise test. The authors found that HR im-
mediately before exercise is not a risk factor of death, and the 
removal of its influence improves the HRV predictive power. 
Conversely, HR during the recovery phase is a significant 
mortality predictor, and consequently the enhancement of 
its impact increases the HRV predictive ability. 

CONCLUSIONS
HR significantly contributes to the HRV clinical value, although 
this contribution may be different for different outcomes 

Table 1. Spearman correlations between different classes of to-
tal powers of heart rate variability (HRV) spectra and heart rate 

HRV class CC P

hrv1 –0.006 NS

hrv2 –0.44 < 10–11

hrv3 –0.68 < 10–11

hrv4 –0.81 < 10–11

hrv5 –0.88 < 10–11

hrv6 –0.94 < 10–11

hrv7 –0.98 < 10–11

CC — correlation coefficient; NS — non significant; Total powers 
(TPs) of HRV spectra were modified as follows: hrv1 — by division of 
standard TP by average R-R interval to the power 4; hrv2 — by division 
of standard TP by average R-R interval squared; hrv3 — standard TP; 
hrv4 — by multiplication of standard TP by average R-R interval squa-
red; hrv5 — by multiplication of standard TP by average R-R interval to 
the power 4; hrv6 — by multiplication of standard TP by average R-R 
interval to the power 8; and hrv7 — by multiplication of standard TP 
by average R-R interval to the power 16. One can see that TP depen-
dence on heart rate increases from hrv1 to hrv7; hrv1 is completely 
independent of heart rate, whereas in subsequent cases this dependen-
ce progressively increases, up to the extremely high level in the case of 
hrv7. According to Sacha et al. [13]

Figure 3. The predictive powers (AUC, area under receiver-
-operator characteristic curves) of heart rate variability (HRV) 
(i.e. very low frequency component of HRV spectrum) modi-
fied with respect to heart rate (HR) are depicted. The case of 
hrv3 corresponds to standard HRV; in the cases of hrv1 and 
hrv2, the HRV dependence on HR was weakened, but it was 
strengthened in the cases of hrv4, hrv5, hrv6, and hrv7 — HRV 
was modified according to the method described in Table 1. As 
HRV is getting more dependent on HR (i.e. from hrv1 to hrv7), 
its predictive power increases for cardiac death, while it decre-
ases for non-cardiac death. Of note: hrv1 (which is completely 
HR independent) is a stronger predictor of non-cardiac than 
cardiac death and conversely hrv7 (which is highly HR depen-
dent) is more powerful in predicting cardiac than non-cardiac 
death, but hrv3 (which is a standard HRV) is equally effective in 
both modes of death, thus it actually predicts all-cause mortali-
ty. Reprinted with modifications from Sacha et al. [14]

An excellent example of the importance of risk stratifica-
tion of a specific mode of death is primary prevention with 
an implantable cardioverter-defibrillator (ICD). In this kind 
of treatment, it is crucial to identify patients whose risk of 
sudden cardiac death (SCD) significantly exceeds their risk 
of other modes of death — such patients may fully benefit 
from ICD therapy [14, 29, 30]. However, almost all commonly 
recognised risk factors of SCD (including low left ventricular 
ejection fraction [LVEF]) are associated with all-cause mortal-
ity, and therefore patients stratified with these risk factors are 
under threat of all-cause death, but not specifically cardiac or 
SCD. As a consequence, the benefit from ICD in terms of the 
reduction of SCD may be completely offset by the increased 
mortality from non-arrhythmic causes [29, 31, 32]. In such 
a circumstance, the specific ability of the modified HRV (i.e. 
hrv1 and hrv7) to predict non-cardiac and cardiac death is 
very promising. The employment of these modified param-
eters among post-MI patients with LVEF ≤ 35% has revealed 
that almost one fifth of them may not benefit from ICD due 
to their high non-cardiac risk [14]. 

New insight into the interaction between HR and HRV 
has been given by its investigation in different genders. Name-
ly, it turns out that if HRV is becoming more dependent on HR, 
its predictive power increases for cardiac and decreases for 
non-cardiac death; but only in men, because in women it de-
creases for either outcome (Fig. 4) [33]. This is probably caused 
by the fact that in the female subgroup, HR is a very weak risk 
factor of adverse outcomes [1, 33–36], and the exclusion of 
its impact improves the HRV predictive power (Fig. 4) [33]. 
This is a very important observation because it seems as if 
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tion, yet a separate approach to HR and its variability should 
enable us to judge which of the two quantities presents the 
highest clinical value for a given population and outcome. The 
analyses with modification methods show us that if HR is clini-
cally relevant in a given clinical context, the amplification of its 
influence makes HRV a better predictor; nevertheless, if HR 
is not clinically significant, the exclusion of its impact allows 
HRV to become a stronger risk factor. In future, it will probably 
be feasible to determine specific therapeutic targets, i.e. HR 
or HRV, in order to overcome different adverse outcomes. 

Therefore, the interaction between HRV and HR not 
merely requires but deserves further investigation. Ultimately, 
it should be stressed that all aspects described in this article 
could also refer to any other heart rate dynamics analysis 
which parameters are significantly correlated with HR.
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