CLINICAL VIGNETTE

High-density bipolar voltage mapping for substrate-guided ablation of atrial fibrillation

Maciej Wójcik¹, Łukasz Konarski¹, Robert Błaszczyk¹, Piotr Aljabali¹, Przemysław Zając²

¹Department of Cardiology, Medical University of Lublin, Lublin, Poland ²Abbott Poland

A 64-year-old diabetic man (body mass index 28 kg/m²; enlarged left atrial diameter of 45 mm and left ventricular ejection fraction of 67% on echocardiography) with an eight-year history of symptomatic (score 2b according to the modified European Heart Rhythm Association symptom classification for atrial fibrillation [AF]), drug-resistant, long-standing persistent AF was referred for elective AF ablation. After performing transseptal puncture, sinus rhythm was restored with direct current cardioversion, and high-density three-dimensional mapping of the left atrium was performed with a circular diagnostic catheter (Advisor™ FL Sensor Enabled™, Abbott, St. Paul, MN, USA). We collected 8571 points, and 2207 points were used (EnSite Precision™, Abbott; best-duplicate algorithm marked by small yellow dots, Fig. 1) for a final bipolar voltage map, which revealed low-voltage areas (LVAs; defined as 0.2–0.5 mV) within the left atrium. The diagnostic catheter was exchanged with the ablation catheter (TactiCathTM, Abbott), and AF was reinduced with burst pacing. We used our standard radio-frequency energy settings (45°C, 30 W, and 25 W on the posterior wall only). Following our standard stepwise ablation protocol at that time (pulmonary veins isolation [PVI] > roof line > mitral isthmus line) we could not terminate AF after completing all procedural steps. After reconfirming LVA on the anterior wall with a contact-force catheter (Fig. 2) we ablated there, reaching a successful endpoint with sinus rhythm restoration (Fig. 3). The next day the patient was discharged home (on a β -blocker and non-vitamin K antagonist oral anticoagulant only) with sinus rhythm documented in electrocardiogram (ECG). He has been followed-up for 18 months and there have been no symptoms of AF or recurrence of left atrial arrhythmia since the procedure. No arrhythmia was documented in seven-day Holter ECG monitoring (at the 3rd, 6th, 9th, and 12th month) or in ECG recordings presented by the patient at follow-up visits. Previous reports showed that LVA substrate modification in addition to PVI was more effective than PVI alone or PVI plus additional empirical lesion ablation in patients with non-paroxysmal AF. Moreover, LVA ablation has lower pro-arrhythmic potential (demonstrated by reduced occurrence of post-ablation atrial tachycardia) as compared to PVI plus conventional wide empirical ablation. Nevertheless, the detailed identification of the substrate, i.e. ultra-high-density substrate mapping, is crucial in LVA ablation.

Figure 1. High-density bipolar voltage mapping of the left atrium: anterior (upper panel) and posterior (lower panel) view; LAA — left atrium appendage; LIPV — left inferior pulmonary vein; LSPV left superior pulmonary vein; RIPV — right inferior pulmonary vein; RSPV — right superior pulmonary vein Figure 2. The confirmation of a low-voltage area (the anterior wall of the left atrium) with contact force ablation catheter (stable catheter — tissue contact of 13 g); low--voltage areas (0.2–0.5 mV) marked in yellow/red/green/blue, healthy tissue (> 0.5 mV) in purple; abbreviations see Figure 1

Figure 3. Restoration of sinus rhythm during ablation of low-voltage area; abbreviations — see Figure 1

Address for correspondence:

Maciej Wójcik, MD, PhD, Department of Cardiology, Medical University of Lublin, SPSK No. 4, ul. Jaczewskiego 8, 20–954 Lublin, Poland, tel/fax: +48 81 72 44 151, e-mail: m.wojcik@umlub.pl

Conflict of interest: Przemysław Zając is an Abbott employee. Kardiologia Polska Copyright © Polish Cardiac Society 2018