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INTRODUCTION
Left ventricular hypertrophy (LVH) is known as an independ-
ent risk factor for coronary heart disease, heart failure (HF), 
stroke, and sudden cardiac arrest. LVH implicates changes in 
the architecture of myocardial tissue, which consist of perivas-
cular and myocardial fibrosis, as well as medial thickening of 
intramyocardial coronary arteries, in addition to cardiomyo-
cyte hypertrophy [1–3].

The impact of miR-1 level on cardiac hypertrophy and 
cardiomyocyte apoptosis has been recently suggested [3, 4]. 
Also, the association between miR-21 and galectin-3 (gal-3) 
levels and maladaptive cardiac remodelling, fibrosis, and 
inflammation has been described [5, 6]. Nevertheless, the 
synergistic role of these molecules in LVH has not been 
explained to date. We analysed the expressions of miR-1, 
miR-21, and gal-3 concentration in patients with symptomatic 
HF (SHF) and a history of hypertension and LVH revealed 
in echocardiography.

METHODS
A total of 59 consecutive patients with SHF hospitalised in the 
1st Chair and Department of Cardiology, Medical University of 
Warsaw were enrolled. SHF was defined as a decompensated 
acute HF, de novo, or decompensation of chronic HF. Symp-
tomatic chronic HF was determined as a class ≥ II specified 
by the New York Heart Association (NYHA) criteria. Clinical or 
radiological signs of pulmonary congestion and left ventricular 
ejection fraction (LVEF) below 50% were assessed according to 
the Simpson’s method using a Philips iE 33 ultrasound system. 
We measured the following M-mode parameters: interven-

tricular septal thickness diameter (IVSD), left atrial diameter 
(LAD), left ventricular end-diastolic diameter (LVEDD), left 
ventricular mass index (LVMI), posterior wall diastolic thick-
ness (PWDT), and right ventricular diameter (RVD). Detailed 
characteristics of patients are presented in Table 1.

The concentrations of serum N-terminal pro-B-type 
natriuretic peptide (NT-proBNP) and gal-3 were measured 
using a Dimension Xpand instrument (Siemens Health Care 
Diagnostics, Erlangen, Germany) and VIDAS family (bioMer-
ieux SA, Marcy-I`Etoile, France), respectively. Total RNA, 
with the fraction of RNAs smaller than 200 nt, was extracted 
from 300 μL of serum using NucleoSpin miRNA Plasma kit 
(Macherey Nagel, Düren, Germany), and cDNA synthesis 
was assembled with a Universal cDNA Synthesis kit (Exiqon, 
Vedback, Denmark), according to the manufacturer’s instruc-
tions. Quantitative real-time polymerase chain reaction (qPCR) 
was performed with a ViiA™ 7 Real-Time PCR System (Thermo 
Fisher Scientific, Waltham, MA, USA) using ExiLENT SYBR 
Green master mix (Exiqon, Vedback, Denmark) with LNA 
primer sets. qPCR data were normalised to miRNA-103-3p. 
The DDCt method was used to evaluate relative expressions of 
examined miRNAs in the study group compared to 17 healthy 
volunteers (age- and sex-matched). Finally, the results were 
presented as a fold change calculated using the 2−DDCt formula.

RESULTS
Of 59 analysed patients, a total of 41 had a history of 
hypertension and were identified with different sever-
ity of LVH (Table 1). In 27 HF patients with severe LVH 
(LVMI > 149 [men]/122 [women] g/m2) there was a significant 
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negative correlation between IVSD vs. miR-1 (Rs = –0.533, 
p = 0.004) and PWDT vs. miR-1 (Rs = –0.404, p = 0.037). We 
found also a positive correlation: IVSD vs. gal-3 (Rs = 0.383, 
p = 0.049), miR-1 vs. miR-21 (Rs = 0.520, p = 0.005), 
as well as NT-proBNP vs. gal-3 (Rs = 0.369, p = 0.019)  
(Supplementary Figures 1 and 2 — see journal website).

DISCUSSION
The main study findings could be summarised as follows: ex-
pression of miR-1 was markedly downregulated in HF patients 
with severe LVH, being negatively correlated with IVSD and 
PWDT; downregulation of miR-21 was found in all patients, 
independently of the LVH severity, and significantly correlated 
with gal-3 concentration.

In recent years, the correlation between circulating 
miRNA expressions and cardiac diseases has been rapidly 
emerging [7]. To our knowledge, this is the first study simul-
taneously evaluating the miR expression in association with 
gal-3 concentration in a population of unselected hyper-
tensive patients with HF and LVH. Based on recent studies, 
miR-1 and miR-21 expressions have been hypothesised 
as potentially significant prognostic biomarkers in patients 
with SHF and LVH [8]. Karakikes et al. [9] reported that 
miR-1 was downregulated in hypertrophy, reversed cardiac 
hypertrophy, and attenuated pathological remodelling by 
simultaneously affecting multiple processes associated with 

pathological hypertrophy and HF. Further agreement with 
our findings is provided by recent studies revealing that 
hypertrophy-related microRNAs (miR-1, miR-133a, miR-26b, 
miR-208b, miR-499, and miR-21) show distinct expression 
profiles in hypertensive patients [10]. In addition, Zhang et 
al. [11] suggested that miR-1 could be helpful in predicting 
the onset of HF in patients after myocardial infarction (MI). In 
our survey, we found significant downregulation of miR-1 ac-
companied by the increase of NT-proBNP concentration. 
Moreover, it has been proposed that miR-1 is a potential 
biomarker not only for early diagnosis of acute MI, but 
circulating miR-1 levels can also be used to differentiate 
between acute MI and other cardiac events such as angina 
pectoris [12] and other cardiovascular diseases.

Although miR-21 is known to be the most upregulated 
miRNA in the cardiac remodelling process, the exact mecha-
nisms implicated in the pathogenesis of HF remain under-ex-
plored [5]. In our study, we found significant downregulation 
of miR-21 associated with the increase of LVEDD.

Of note is the value of gal-3 as a prospective bio-
marker, also playing a key role in the fibrosis process [6, 13]. 
Gal-3 stimulates the synthesis of type I collagen, which causes 
the interruption of extracellular matrix homeostasis because 
loss of balance between the amount of collagen type I and III 
leads to impaired systolic and diastolic functions of the heart 
and contributes to the progression of HF [13, 14].

Table 1. miR-1, miR-21, and gal-3 in hypertensive patients with SHF and LVH

SHF patients with LVMI  

> 149 g/m2 (men)/ 

/122 g/m2 (women)

SHF patients with LVMI  

< 149 g/m2 (men)/122 g/m2 (women)  

> 115 g/m2 (men)/95 g/m2 (women)

p 

Demographic data

Number of patients 27 14 NS

Age [years] 69.8 ± 12.5 72.5 ± 10.9 NS

Men 23 (85.2%) 9 (64.3%) NS

Echocardiographic parameters

LVEF [%] 27.6 ± 10.6 43.6 ± 17 < 0.001

LVEDD [cm] 6.53 ± 0.81 5.36 ± 0.90 < 0.001

LAD [cm] 5.35 ± 0.60 4.58 ± 0.84 0.002

RVD [cm] 3.47 ± 0.49 2.89 ± 0.31 0.001

IVSD [cm] 1.14 ± 0.20 1.14 ± 0.22 NS

Laboratory parameters

NT-proBNP [pg/mL] 5428 (1766–15941) 1849 (642–6079) 0.024

Galectin-3 [ng/mL] 18 (13.6–23.3) 14.45 (9.9–18.4) NS

miR-1 [change fold] 0.299 (0.163–0.72) 0.395 (0.180–1.00) NS

miR-21 [change fold] 2.216 (1.216–4.78) 2.056 (1.101–5.31) NS

Data are expressed as number (percentage), mean ± standard deviation or median (interquartile range). IVSD — interventricular septal thickness 
diameter; LAD — left atrial diameter; LVEDD — left ventricular end-diastolic diameter; LVMI — left ventricular mass index; LVEF — left ventricular 
ejection fraction; LVH — left ventricular hypertrophy; NS — nonsignificant; NT-proBNP — N-terminal pro-B-type natriuretic peptide; RVD — right 
ventricular diameter; SHF — symptomatic heart failure

https://ojs.kardiologiapolska.pl/kp/article/view/KP.2018.0117#supplementaryFiles
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In our study, we found a significant positive correlation 
between gal-3 and NT-proBNP concentrations, as was already 
shown in other studies [14]. Interestingly, the concentration 
of gal-3 was also associated with IVSD (significantly higher in 
patients with IVSD > 12 mm than IVSD ≤ 12 mm).

In conclusion, in SHF patients with LVH, gal-3 concentra-
tions and miR-1 expressions were correlated with anatomic 
changes of the left ventricle. Downregulation of miR-1 expres-
sion may be associated with LVH intensity. Such observations 
should be validated in independent and large-cohort stud-
ies. Profiling of some types of miRs might become a new tool 
allowing early HF and LVH diagnosis and treatment.
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