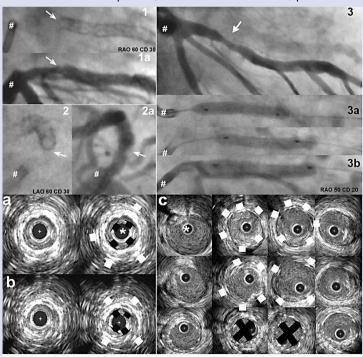
STUDIUM PRZYPADKU / CLINICAL VIGNETTE


Re-stenting technique with a second drug--eluting stent and re-narrowing recurrence as assessed in intravascular ultrasound. Mechanism of a late pre-dilatation effect

Technika ponownego stentowania z użyciem drugiego stentu uwalniającego lek a nawrót zwężenia w ocenie za pomocą ultrasonografii wewnątrznaczyniowej. Mechanizm odległego efektu pre-dylatacji

Kamil Zieliński¹, Łukasz Kalińczuk², Adam Trzciński¹, Michał Proczka¹, Marcin Demkow²

¹Medical University of Warsaw, Warsaw, Poland ²Institute of Cardiology, Warsaw, Poland

Intravascular ultrasound (IVUS) scans frequently identify the presence of a stent under-expansion among late drug-eluting stent (DES) failures. We present two patients referred for a control angiography due to relapse of symptoms, both with a history of proximal left anterior descending (LAD) artery stenting with a DES. The first patient, 64-year-old female, six-months earlier had a second DES implanted on top of the initial one that had a focal restenosis located on both edges (re-stenting with DES of 2.75×32 mm). The procedure was done using a direct stenting technique (without pre-dilatation). Figure — Panel 1 and 2 — present the angiographic appearance of a focal model of in-DES re-narrowing, recognised at the proximal edge of the overlapping stents (Panel 1–1a and 2–2a, white arrows). Relevant vessel cross-sections recorded with IVUS are displayed on Panel a –b. Inner DES under-expansion, with its minimal cross-sectional area (CSA) of < 3.0 mm² (black arrows indicate single stent's struts), is seen. Remarkably, also the originally implanted DES (white arrows) appeared to be inadequately expanded (minimal CSA < 5.0 mm²). The second patient, a 67-year-old man, was diagnosed for the first time with in-DES (3.5×18 mm) restenosis, presenting a typical focal model (Panel 3, white arrows). Re-stenting with a second DES was performed, with a high-pressure pre-dilatation (2×20 atm.) with a non-compliant balloon (9×3.5 mm; being 2×9 of the original DES, Panel 3a). IVUS revealed that the pre-dilatation re-expanded the original DES, thus creating enough space for a second DES (Panel 3c). Note that the relative expansion of the originally implanted DES (stent CSA/lumen CSA in distal reference $\times 100\%$; white arrows) was < 80%. The upper row of Panel c displays the stent's struts recorded prior to, and the middle row after, pre-dilatation (distal and proximal references are located far

M SiemensTM 1024x1024 angiograph # - 6Fr catheter
* - IVUS transducer

right and left, respectively). Finally, re-stenting using a second DES ($3.5 \times 22 \text{ mm/18}$ atm.) was performed successfully with IVUS documenting adequate DES expansion with its minimal CSA $> 5.0 \text{ mm}^2$ (black arrows). Even a small amount of intimal hyperplasia located at the under-expanded stent's regions leads to significant lumen compromise. Proper re-stenting technique aimed at an adequate expansion of stents could lower the 30% rate of a recurrent re-narrowing after DES restenosis treatment with a second DES. Aggressive balloon pre-dilatation using an appropriately sized NC balloon could be a valid option applied prior to a re-stenting treatment.

Figure. Panel 1 and 2 present angiographic appearance of a focal re-narrowing after re-stenting done with a drug-eluting stent (DES) for a treatment of restenosis in a DES implanted in proximal left anterior descending (LAD) artery. Panel a and b display relevant vessel cross-sections recorded with intravascular ultrasound (IVUS; OptiCrossTM, 40 MHz), documenting under-expansion of both stents. Panel 3–3a and 3b display angiographic view of a high-pressure balloon pre-dilatation prior to a re-stenting of restenosis in the DES implanted in proximal LAD. IVUS images, presented in Panel c, document the mechanism of pre-dilatation, performed to achieve an adequate expansion of stents'

Address for correspondence:

Kamil Zieliński, Department of Coronary and Structural Heart Diseases, The Cardinal Stefan Wyszynski Institute of Cardiology, ul. Alpejska 42, 04–628 Warszawa, Poland, email: kamilziel@gmail.com

Conflict of interest: none declared

Kardiologia Polska Copyright © Polskie Towarzystwo Kardiologiczne 2018