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A bstract     
Background: Intervention-induced platelet hypercoagulability may pose a risk of serious adverse 
events for patients. 

Aims: This study aimed to assess whether surgical and transcatheter aortic valve replacement (SAVR 
and TAVR) differ in periprocedural platelet activity. 

Methods: The total number of 24 patients with a mean age (SD) of 71 (13) years who underwent SAVR 
(n = 12) or TAVR (n = 12) were recruited for the study. The following parameters were evaluated at 
4 time-points: (i) platelet indices: total platelet count (PLT), platelet distribution width (PDW) and mean 
platelet volume (MPV), (ii) MPV/PLT ratio, (iii) platelet level of lipid peroxidation: malondialdehyde (MDA) 
content and MDA/PLT ratio. Eventually, percentage variations of PLT, PDW, and MPV in relation to the 
baseline values were determined.

Results: MPV/PLT ratio increased significantly after procedures in both groups (P = 0.01 in TAVI and 
P = 0.01 in SAVR). MDA concentrations were significantly higher when assessed directly post-procedure 
(P = 0.04) as well as 24 hours later (P = 0.01) in the SAVR and TAVI groups. The indirect parameter of 
platelet activity indexed for platelet counts (MDA/PLT) was comparable between both groups before 
and 48 hours after procedures, but was significantly higher in SAVR patients, particularly after 24 hours 
after interventions (P = 0.04; medians TAVR vs SAVR, respectively).

Conclusions: Standard surgical aortic valve replacement is associated with a more pronounced 
platelet reaction to intervention-induced injury, as compared to the transcatheter-based procedure. 
The importance of these laboratory findings requires further investigation focused on early and late 
clinical outcomes.

Key words: human platelets, lipid peroxidation, surgical aortic valve replacement, transcatheter aortic 
valve implantation
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INTRODUCTION
Aortic stenosis (AS) is the most common valvular heart disease 
among elderly patients [1]. Symptomatic severe AS is associat-
ed with a survival rate of 50% if untreated [2]. Thus, to improve 
a patient’s prognosis it is crucial to undertake invasive treat-
ment on time. Currently, there are two therapeutic options 
for patients with severe AS: surgical aortic valve replacement 
(SAVR) and transcatheter aortic valve replacement (TAVR). 
SAVR is the treatment of choice in symptomatic patients with 

severe AS [3]. However, TAVR has lately become less invasive 
although valuable alternative to manage symptomatic pa-
tients at intermediate or high risk of surgical procedure [4, 5]. 
It has already been proven that TAVR is non-inferior to surgery 
when performed in experienced centers, with respect to the 
risk of death or stroke within 5 years of follow-up [6, 7]. The 
estimation has been made that the number of SAVR proce-
dures is expected to decrease significantly due to the growing 
number of TAVR procedures [8].
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W h at  ’ s  new   ?
Intervention-induced platelet hypercoagulability may pose patients to potentially serious adverse events. This study aimed to 
assess whether surgical and transcatheter aortic valve replacement (SAVR and TAVR), differ in periprocedural platelet activity caused 
by iatrogenic injury due to intervention. Demonstrating the significance of parameters regarding platelets number and function 
such as total platelet count (PLT), platelet distribution width (PDW) and mean platelet volume (MPV), MPV/PLT ratio, platelet level 
of lipid peroxidation measured by means of its final major product, malondialdehyde (MDA) content and MDA/PLT ratio, and the 
percentage variation of PLT, PDW and MPV in relation to the baseline values, may be valuable in our understanding the effect of 
heart procedures on platelet dysfunction. We demonstrated that standard surgical aortic valve replacement is associated with 
a more pronounced platelet reaction to iatrogenic injury due to intervention, as compared to transcatheter-based technique. 

Pathophysiology of AS is an overly complex issue. 
Impaired fibrinolysis, pronounced calcification, coagula-
tion, and platelet activation abnormalities contribute to 
the progression due to increased fibrin deposition and 
inflammation [9–11]. Platelet activity has an impact on 
the development of atherosclerosis. Platelets contribute to 
the early stage of vascular pathology, such as endothelial 
dysfunction and rupture of vulnerable plaque [12]. Platelet 
activation caused by atherosclerotic plaque rupture or ero-
sion of the endothelium contributes to the formation and 
progression of the atherothrombotic disease [13]. These 
processes lead to clinically relevant consequences — ad-
verse cardiovascular events such as myocardial infarction 
or stroke [14, 15]. The influence of platelet activity on the 
course of AS has been investigated, but results remain 
unequivocal [16]. 

Intervention-induced platelet hypercoagulability may 
pose patients to potentially serious adverse events. It has 
already been proven that platelets play a significant role in 
reparation after injury, wound healing, and organ regenera-
tion [17]. The coagulation cascade is initiated at the injured 
endothelial surface, where platelets migrate and a fibrin-rich 
clot is formed. Progressive postinjury thrombocytosis induc-
es a hypercoagulable state associated with an increased 
risk of thromboembolic complications [18]. Postinjury 
thrombocytosis seems to be an underestimated factor 
of a hypercoagulable state causing platelet hyperactivity.

As reported in the previous study, both TAVR and 
SAVR can induce systemic oxidative stress, although the 
former is associated with a significantly lower redox im-
balance and faster recovery of antioxidant capacity [19]. 
As established experimentally and through observational 
studies, increased levels of endo- and exogenous reactive 
oxygen species are important factors triggering platelet 
activation [20–22]. It is therefore important to understand 
whether there is an association between platelet-related 
oxidative stress and platelet function following TAVR and 
SAVR procedures. In this regard, malondialdehyde (MDA) in 
platelets appears to be a feasible marker and a link between 
oxidative stress and platelet activity, since it is a hallmark 
of lipid peroxidation, a common outcome of cellular redox 
imbalance [23]. Moreover, it correlates with platelet aggre-
gation in response to arachidonic acid, epinephrine, and 
collagen [24], and it is, besides thromboxane A2, a product 

of prostaglandin H2 conversion by thromboxane synthase 
[25, 26]. 

This study aimed to assess whether two available 
methods of AS treatment differ in periprocedural platelet 
activity caused by iatrogenic injury due to intervention. 
To this end, the platelet indices and platelet MDA were 
compared in patients undergoing TAVR and SAVR during 
the hospital stay.

METHODS
The total number of 24 patients with a mean age (SD) of 
71 (13) years who underwent SAVR (n = 12) or TAVR (n = 12) 
procedures between May 2016 and March 2017 were 
recruited for the study. The baseline characteristics of the 
studied group are summarized in Table 1. Written informed 
consent was obtained from each patient before participat-
ing in the research. The study protocol was approved by 
the Ethical Committee of the Medical University in Poznan 
(No. 968/15). All of the studied individuals fulfilled the cri-
teria for high-gradient AS defined according to the current 
European Societ of Cardiology guidelines [27].

The following parameters were evaluated in all stud-
ied patients: (i) platelet indices: total platelet count (PLT), 
platelet distribution width (PDW) and mean platelet 
volume (MPV), (ii) MPV/PLT ratio, (iii) platelet level of lipid 
peroxidation measured by means of its final major product, 
MDA content and MDA/PLT ratio, and (iv) the percentage 
variation of PLT, PDW and MPV in relation to the baseline 
values were also determined [28]. All parameters were 
measured at 4 time-points: pre-procedure, immediately 
post-procedure, then 1 and 2 days after the procedure. 
Subsequently, all values were compared between the two 
groups at each of the measured time-points: functional 
parameter (MDA) vs platelet morphological indicators (PLT, 
MPV, PDW, PLT/MPV). Additionally, the percentage varia-
tion of MDA vs PLT values, MDA vs PDW, MDA vs MPV, and 
MDA vs PLT/MPV ratio, in relation to the baseline values, 
were calculated.

Malondialdehyde concentration
The content of MDA was measured in isolated plate-
lets. Firstly, the platelet-rich plasma was obtained from 
the patient’s blood samples by centrifugation at 200 g for 
12 minutes. Platelet-rich plasma was then transferred to 
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polypropylene tubes, 1/10 vol acid citrate dextrose was 
added, centrifuged again at 900 g for 15 minutes. Plasma 
was aspirated and platelets were suspended in 200 µl of 
distilled water. The platelet MDA level was assessed using 
the TBARS Assay kit (Cayman Chemicals, Ann Arbor, MI, 
USA). The platelets were treated with 300 ml of RIPA Buffer 
(50 mM Tris-HCl, pH 7.4, 1% Triton X-100, 150 mM NaCl, 
1% Tergitol type NP-40, 0.5% sodium deoxycholate, 0.1% 
sodium dodecyl sulfate) to conduct the lysis of cellular 
components. The butylated hydroxytoluene was added 
to the RIPA Buffer to prevent artificial lipid peroxidation 
during platelet lysis. The samples were then centrifuged 
at 1600 g for 10 minutes and the resulting 100 µl of su-
pernatants were transferred to new tubes. The 800 µl of 
thiobarbituric acid was added to generate an MDA-thio-
barbituric acid adduct. The reaction was conducted 
at 95°C for 60 minutes, samples were then placed for 
10 minutes on an icebath for inhibition and centrifuged at 
1600 g for 10 minutes. The absorbance of the final product 
was measured at 532 nm using a SynergyHTX multi-mode 
plate reader (BioTek Instruments, Winooski, VT, USA). The 
MDA content, given as µM, was calculated by comparing 
the absorbance values to a calibration curve (r2 = 0.99) 
prepared using the MDA standard (Cayman Chemicals, 
Ann Arbor, MI, USA). 

Surgical aortic valve replacement
All operations were performed from full median sternot-
omy with the use of cardio-pulmonary bypass (CPB) in 
moderate hypothermia (28°C) and cardioplegic cardiac 
arrest according to St. Thomas Hospital II formula [29]. CPB 
was conducted through an arterial cannula introduced to 
the ascending aorta and a two-staged venous cannula to 
the right atrium. After the ascending aorta was opened, the 
aortic valve was completely removed and the aortic pros-
thesis using 2-0 sutures with Teflon pledges was implanted. 

After aortotomia was closed with 5-0 monofilament suture 
and de-airing of the left heart was completed, ascending 
aorta was de-clamped and reperfusion phase of CPB 
initiated. Successful weaning from CPB was followed by 
removal of all cannulas, protamine administration, careful 
hemostasis, and closure of the chest.

Percutaneous aortic valve implantation
Patients were eligible for TAVR based on the institutional 
heart team’s decision (interventional cardiologist, cardiac 
surgeon, and echocardiography specialist).

The pre-procedural evaluation included: coronary angi-
ography, transthoracic echocardiography (TTE) and trans-
esophageal echocardiography (TEE); contrast-enhanced 
computed tomography (CT) with off-line reconstruction 
to evaluate the aortic valve, and access site (femoral and 
iliac arteries). The final decision regarding the route of the 
vascular approach was made based on the results of the 
CT scan. General anesthesia or deep sedation was used 
during the procedures. The TTE monitoring was performed 
and a temporary pacemaker was inserted from the femoral 
vein for rapid pacing and as a backup in case of iatrogenic 
atrioventricular block consequences [30].

In patients with the percutaneous femoral approach, 
two Proglides™ were introduced before insertion of the 
vascular sheath. The Medtronic CoreValve Evolut R pros-
thesis was implanted in all cases. Once the prosthesis was 
correctly positioned, expanded, and deployed, the contrast 
injection was performed to assess the presence and degree 
of paravalvular leak. Control angiography of the access 
site was performed to assess vessel patency and possible 
bleeding [31]. 

Data presentation and statistical analysis
First, all continuous variables were checked for normality 
by means of the Shapiro–Wilk W test. Those meeting the 

Table 1. Baseline characteristics of studied patients (n = 24)

Variable SAVR (n = 12) TAVR (n = 12) P value

Gender (male), n (%) 7 (58) 6 (50) 0.7

Age, years, mean (SD) 63 (10) 80 (3) 0.001

Height, m, mean (SD) 1.67 (0.11) 1.64 (0.06) 0.43

Weight, kg, mean (SD) 78.8 (13.2) 74.2 (12.3) 0.39

BMI, kg/m2, mean (SD) 28.2 (3.9) 27.5 (4.7) 0.73

Obesity (BMI >30 kg/m2), mean (SD) 4 (33) 5 (42) 0.69

Prior medical history

Arterial hypertension, n (%) 8 (67) 5 (42) 0.24

Atrial fibrillation, n (%) 2 (17) 3 (25) 0.63

PCI, n (%) 3 (25) 5 (42) 0.41

Myocardial infarction, n (%) 0 (0) 3 (25) 0.08

Diabetes mellitus, n (%) 3 (34) 6 (50) 0.43

CABG, n (%) 1 (8) 2 (17) 0.56

COPD, n (%) 1 (8) 2 (17) 0.56

Stroke/TIA, n (%) 0 (0) 2 (17) 0.17

Abbreviations: BMI, body mass index; CABG, coronary artery bypass grafting; COPD, chronic obstructive pulmonary disease; PCI, percutaneous coronary intervention; SAVR, 
surgical aortic valve replacement; TAVI, transcatheter aortic valve implantation; TIA, transient ischemic attack
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criteria of normal distribution were presented as means 
with standard deviations and then compared with the 
use of unpaired Student t-test (between TAVI and SAVR 
groups) or repeated-measures ANOVA followed by post 
hoc Tukey HSD test (for time-related changes within 
groups). Otherwise (i.e., for not normally distributed con-
tinuous variables), they were expressed as the medians 
with interquartile range (IQR: first to third quartile) and 
then analyzed statistically by non-parametric tests such 
as Friedman test followed by Dunn’s multiple comparisons 
of ranks. Qualitative variables were compared by means 
of Yates’ corrected χ2 test. P-value <0.05 was considered as 
statistically significant. Analyses were performed with the 
use of Statistica 10.0 for the Windows package (StatSoft, 
Tulsa, OK, USA). 

RESULTS

PLT count 
In both groups, PLT decreased significantly following proce-
dures (P <0.001). However, this drop was more pronounced 
in the SAVR group (P = 0.02 vs TAVI) because in all postop-
erative analyses (samples ‘1’ to ‘3’) PLT count was markedly 
lower than before surgery, whereas in the TAVI group only 
between two points, before procedure vs 48 hours after it 
(Table 2). Interestingly, the intergroup comparison did not 
show any statistical significance (Figure 1).

MPV and PDW
In both groups, these platelet parameters did not change 
during the periprocedural period (MPV, P = 0.67 and 
P = 0.26; PDW, P = 0.05 and P = 0.16; respectively for TAVI 
and SAVR in ANOVA) (Table 3). Of note, MPV before the 
procedure was significantly lower in SAVR than in the 
TAVI group.

MPV/PLT
MPV/PLT ratio increased significantly after procedures in 
both groups (P = 0.01 in TAVI and P = 0.01 in SAVR), although 
its value did not differ between groups (Figure 2A).

Post-hoc analysis disclosed that marked increase in 
MPV/PLT ratio between baseline vs both 24 (P = 0.04) and 
48 hours (P = 0.01) after valve implantations in the SAVR 
group whereas in the TAVI group only between baseline 
and 48 hours after (P = 0.01) the procedures. These findings 
encouraged us to perform a more detailed analysis of this 
parameter. In the next step, a relative increase of this ratio 
was compared between groups and was found to be more 
pronounced 24 hours after procedures (Figure 2B).

Table 2. The results of non-parametric tests of multiple comparisons of platelet count

TAVI

SAVR ‘0’ ‘1’ ‘2’ ‘3’

‘0’ 0.624 0.239 0.010

‘1’ 0.022 1.000 0.777

‘2’ 0.020 1.000 1.000

‘3’ 0.003 1.000 1.000

Abbreviations: SAVR, surgical aortic valve replacement; TAVI, transcatheter aortic valve implantation; ‘0’, baseline; ‘1’, immediately post-procedure; 2’, 24 hours after procedure; 
3’, 48 hours after procedure

0

50

100

150

200

250

1’ 2’ 3’0’

TAVI SAVR

PLT [10e9/L]

Median 
with IQR

0’ 1’ 2’ 3’

TAVI 175 
(157–231)

141 
(117–182)

137 
(117–156)

112 
(99–137)a

SAVR 210 
(169–230)

144 
(102–164)

137 
(98–172)a

123 
(11–140)a

P value 0.600 0.470 0.862 0.624

Figure 1. Platelet counts in the periprocedural period.
aP <0.05 after (‘1’–‘3’) vs before procedure (‘0’) in multiple compari-
sons of ranks.
Abbreviations: PLT, platelet counts; SAVR, surgical aortic valve repla-
cement; TAVI, transcatheter aortic valve implantation

Table 3. Distribution of mean values and standard deviation (SD) of mean platelet volume (MPV) and platelet distribution width (PDW) 
depending on sampling time after transcatheter aortic valve implantation (TAVI) and surgical aortic valve replacement (SAVR) 

Sampling time

0’ 1’ 2’ 3’

MPV, fl PDW, % MPV, fl PDW, % MPV, fl PDW, % MPV, fl PDW, %

TAVI, mean (SD) 8.83 (0.91) 54.6 (5.4) 8.96 (1.05) 58.8 (5.2) 8.99 (0.86) 59.0 (6.5) 9.27 (0.98) 60.8 (7.0)

SAVR, mean (SD) 8.62 (1.04) 55.1 (5.7) 9.05 (1.17) 60.2 (6.0) 9.31 (1.36) 60.1 (6.6) 9.61 (1.24) 59.7 (6.1)

P value 0.04 0.70 0.30 0.49 0.80 0.48 0.70 0.75
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Figure 2. MPV/PLT ratio (A) and its relative changes (B) after proce-
dures.

Data are presented as the means with standard deviations (a) or the 
medians (b). *P < 0.05 TAVI vs SAVR.
Abbreviations: MPV, mean platelet volume; others: see Figure 1
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Figure 3. Total malondialdehyde (MDA) concentration (A) and its content in a single platelet (B). 
aNon-parametric continuous variables are presented as medians. *P <0.05 TAVI vs SAVR.
Abbreviations: see Figure 1

[%]  ‘1’ vs ‘0’ 2’ vs ‘0’ 3’ vs ‘0’

TAVI 31.4  
(17.2–39.8)

30.5  
(20.4–58.1)

60.4  
(47.9–81.9)

SAVR 56.2  
(42.0–86.6)

63.2  
(31.0–94.3)

85.4  
(62.8–114.6)

P value 0.09 0.04 0.34

MDA and MDA/PLT
Multiple comparisons of ranks test revealed that platelet 
levels of MDA were significantly higher soon after proce-
dures (P = 0.046) and 24 hours (P = 0.02) later in the SAVR 
group than in the TAVI group (Figure 3A).

The parameter of single platelet activity (i.e., MDA/PLT) 
was comparable between groups before and 48 hours after 
procedures but in the other sampling points its value was 
significantly higher in SAVR patients (Figure 3B). 

Multiple comparisons of MDA-to-PLT ratios within 
groups showed differences both in TAVI and SAVR pa-
tients. In the SAVR group, significant differences were noted 
not only after surgery (‘1’ vs ‘0’; P <0.001) but also 24 hours 
later (‘2’ vs ‘0’; P = 0.01) whereas in TAVI one only soon after 
procedures (‘1’ vs ‘0’; P = 0.02).

DISCUSSION 
Certain laboratory tests are done routinely in everyday 
clinical practice. The present study aimed to find out 
whether any of the available platelet-related indices such 
as PLT, MPV, PDW have importance in perioperative care in 
patients after TAVI and SAVR. 

The decrease in PLT after procedures was observed 
in both studied groups. Platelet count was significantly 
lower in patients after SAVR at each time point after the 
operation. It is worth mentioning that none of the in-
vestigated patients had severe thrombocytopenia that 
would require blood or platelet transfusion following 
the procedure. Reasons behind the decrease in PLT after 
SAVR have been studied before. Aortic valve replacement 
operation was carried out using cardio-pulmonary bypass 
in moderate hypothermia (28oC). According to previously 
published data, hemodilution and destructive effect of CPB 
often cause secondary thrombocytopenia [32]. Moreover, 
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preoperative use of antiplatelet agents and hypothermia 
aggravate thrombocyte dysfunction [33].

Platelet count drop has already been observed after 
SAVR but also following percutaneous interventions. It has 
been postulated that it is due to the use of low-osmolar 
contrast agents and unfractionated heparin administration 
during the procedure [34–36]. The decrease in PLT is also 
a consequence of blood loss during (although minimally 
but still invasive) intervention. Unsurprisingly, classical 
aortic valve replacement generates more pronounced 
blood loss than TAVI, which is a transcatheter procedure. 
However, in the present study, the PLT was significantly 
lower 48 hours after TAVI in comparison to baseline. There 
is evidence that patients who have a decrease in PLT 
following transcatheter aortic valve implantation are at 
increased risk of adverse events [37]. However, the exact 
mechanisms for the condition and its consequences require 
further investigation.

Other possible reasons for PLT decrease include dam-
age to the endothelium caused by prosthesis implantation 
and tissue injury. Moreover, shear stress modifications may 
play an important role in the platelet activation [38].

Large size platelets have increased metabolic and enzy-
matic activity profile and high prothrombotic potential [39]. 
It has been proven that increased MPV has an impact on 
myocardial infarction and cardiovascular death occurrence 
and thus is associated with worse outcome [40]. There is an 
inverse relationship between PLT and MPV observed in the 
physiological and pathophysiological state. The goal is to 
maintain hemostatic balance by the sustenance of constant 
platelet mass. The inflammatory process with enhanced 
thrombopoiesis is a clear example of this mechanism. The 
number of circulating platelets increases and many reactive 
large-sized platelets flow to the inflammatory site [41]. 

However, in the present study, no significant correla-
tion with MPV levels was observed among investigated 
patients. Only a trend towards an increase of MPV after 
invasive procedures was noted, probably due to the low 
number of subjects included in this study. 

Further study on a large group of patients is necessary 
to reveal whether any platelet-related laboratory test could 
serve as prediction markers and would be useful in the peri-
operative assessment of patients after SAVR or TAVI. Demon-
strating the significance of parameters regarding platelet 
number and function may be valuable in understanding the 
effect of heart procedures on platelet dysfunction. 

The aim of our study was also to use the levels of MDA in 
platelets in the assessment of oxidative stress. The present 
study has indicated that TAVR induced significantly lower 
redox imbalance as the platelet MDA content, the marker 
of lipid peroxidation, was lower than that in patients un-
dergoing SAVR. These findings have important implications 
— they support the observations of previous research in 
which oxidative stress was measured using several different 
oxidative-stress biomarkers in the patient’s serum [42]. 
Clearly, redox imbalance is less pronounced in the case 

of TAVI compared to SAVR, in which serum MDA levels in-
crease significantly right after the surgical procedure [43]. 
Lower MDA in platelets not only highlights less cellular 
injury but also relates to how the MDA can affect platelet 
reactivity. Previous research has indicated the detrimental 
activation of platelets in some patients after SAVR [44]. Al-
though platelet reactivity can be due to numerous factors 
and can be triggered via various pathways, reactive oxygen 
species are known to play their role as important media-
tors. For example, hydrogen peroxide supports platelet 
activation depending on arachidonic acid and collagen 
and triggers tyrosine phosphorylation of β3 [45, 46]. In turn, 
superoxide anion can enhance platelet activation by ADP, 
arachidonic acid, collagen, and thrombin, but also through 
scavenging endothelium- or platelet-derived nitric oxide 
[47, 48]. Therefore, reactive oxygen species can both induce 
oxidative stress in platelets and trigger their activation. 
Furthermore, MDA can be produced enzymatically by the 
thromboxane synthase in amounts equimolar to throm-
boxane A2 [49]. This further indicates that increased in-
traplatelet MDA content, more profoundly seen in patients 
undergoing SAVR, may also relate to the modification of 
thrombocyte function. Importantly, other studies suggest 
that suppression of platelet MDA levels can normalize 
arachidonate- and collagen-induced aggregation [50]. In 
SAVR patients, the post-procedural increase in this marker 
was higher than in TAVR, but a decreasing trend towards 
the baseline level was seen within 48 hours. This indicates 
that the potential effects of MDA on platelet activity were 
most likely ameliorated. 

Limitations
The limitations of the present study should also be high-
lighted. Firstly, the research encompassed a small sample 
size. It is an effect of the complex protocol including 
the performance of surgical procedures requiring many 
preparations, precise timing of blood sample collection 
at 4 accurate time-points and a proper sample transfer 
to the experimental laboratory for determination of 
MDA levels. Furthermore, there is a need to emphasize 
a significant difference in the age of patients in both 
studied groups (TAVI vs SAVR; mean 80 years vs 63 years, 
respectively). It is a consequence of the qualification 
process by the heart team according to European Society 
of Cardiology guidelines on the management of patients 
with severe symptomatic AS. TAVR is a method preferred in 
elderly and high-risk patients. The findings of the present 
study cannot be used to modify the antiplatelet therapy, 
although they lay a foundation for further investigations 
encompassing larger groups and additional platelet-re-
lated parameters.

CONCLUSIONS
Standard surgical aortic valve replacement is associated 
with a more pronounced platelet reaction to interven-
tion-induced injury, as compared to the transcathe-
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ter-based technique. The importance of these laboratory 
findings warrants further investigation focused on early, 
as well as late, clinical outcomes. Whether these findings 
are of any significance in terms of selecting the appro-
priate antiplatelet therapy after SAVR and TAVI requires 
further investigations.
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