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A B S T R A C T
Background: Aortic dissection (AD) is frequently associated with abnormalities in electrocardio-
graphic findings. Advancements in medical technology present an opportunity to leverage these 
observations to improve patient diagnosis and care.

Objectives: This study aimed to develop a deep learning artificial intelligence (AI) model for AD 
detection using electrocardiograms (ECGs) and introduce the AI-Aortic-Dissection-ECG (AADE) score 
to provide clinicians with a measure to determine AD severity.

Methods: From a cohort of 1878 patients, including 313 with AD, and 313 with chest pain (control 
group), we created training and validation subsets (7:3 ratio). A convolutional neural networks (CNN) 
model was trained for AD detection, with performance metrics like accuracy and F1 score (the har-
monic mean of precision and recall) monitored. The AI-derived AADE score (0–1) was investigated 
against clinical parameters and ECG features over a median follow-up of 21.2 months.

Results: The CNN model demonstrated robust performance with an accuracy of 0.93 and an 
F1 score of 0.93 for the AD group, and an accuracy of 0.871 with an F1 score of 0.867 for the chest 
pain group. The AADE score showed correlations with specific ECG patterns and demonstrated that 
higher scores aligned with increased mortality risk.

Conclusions: Our CNN-based AI model offers a promising approach for AD detection using ECG. 
The AADE score, based on AI, can serve as a pivotal tool in refining clinical assessments and man-
agement strategies.

Key words: aortic dissection, artificial intelligence, deep learning, electrocardiogram, mortality 
risk

INTRODUCTION
Aortic dissection (AD) is a serious cardio-
vascular disorder despite its relative rarity 
[1–3]. Emergency physicians frequently face 
the challenging task of diagnosing and 
managing AD, as this condition can rapidly 
deteriorate and pose a life-threatening risk 
to patients. Therefore, prompt and accurate 
diagnosis and intervention are crucial, par-
ticularly in the emergency department (ED) 
[1–3]. Initial misdiagnosis in 14%–39% of AD 

cases can have severe or fatal consequences 
due to incorrect treatment [4].

Accurate AD diagnosis can be achieved 
using non-invasive imaging techniques like 
computed tomography angiography (CTA) 
and magnetic resonance angiography (MRA), 
but they are a lengthy process, impractical 
for bedside use, and unsuitable for elderly 
frail patients or those with renal insufficiency, 
which restricts their utility [4–6]. X-ray and 
echocardiography, while valuable for bedside 
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W H A T ’ S  N E W
This article delineates significant progress in the diagnosis of aortic dissection achieved by deploying an innovative Convolu-
tional Neural Networks model adept at differentiating with high precision aortic dissection from non-aortic dissection electro-
cardiograms (ECGs). The AI-Aortic-Dissection-ECG score exhibits substantial correlations with pivotal clinical parameters and 
aortic dissection-associated mortality risk. Transcending traditional diagnostic modalities, the AI-Aortic-Dissection-ECG score 
has a stronger association with D-dimer distribution, augments diagnostic acuity, and can be considered a supreme tool for 
exhaustive aortic-dissection risk evaluation. This study further elucidates the model’s interpretability, highlighting crucial ECG 
signals pertinent to aortic dissection and associated aortic risk levels. This pioneering approach can substantially enhance aortic 
dissection diagnostic protocols and facilitate clinical decision-making processes.

AD diagnosis, especially for hemodynamically unstable 
patients, are limited in diagnostic precision and technical 
applicability [5, 7]. Many blood biomarkers, such as D-dim-
er, a product of thrombus formation and fibrinolysis, have 
been suggested as AD diagnosis biomarkers, yet they also 
have diagnostic limitations [8].

AD patients often present with electrocardiogram 
(ECG) abnormalities during their disease course [2, 9]. ECG 
examination, as a non-invasive method, is one of the most 
readily available assessments that can provide immediate 
results, and, therefore, is extensively implemented across 
medical institutions at all levels to facilitate expedited and 
accessible disease evaluation. ECG is good for recording 
cardiac electrical activity and can reflect physiological and 
pathological changes, which is pivotal in the diagnosis of 
many cardiovascular diseases [10]. However, when diagnos-
ing AD, the diagnostic value of ECG is relatively weak [11]. 

Over the past decade, deep learning (DL), a type of 
AI, has significantly advanced and brought innovation 
in disease diagnosis [12, 13]. Unlike traditional machine 
learning, DL models (DLM) automatically extract complex 
features, improving disease detection, including in atrial 
fibrillation [14, 15], hypertrophic cardiomyopathy [16], left 
ventricular systolic dysfunction [17, 18], and aortic stenosis 
[19]. Compared to internal medicine doctors’ identification 
of arrhythmias, deep learning models exhibit higher accu-
racy [12]. This indicates that deep learning has a promising 
clinical future in interpreting ECG [20]. 

In our study, we aimed to accurately identify AD pa-
tients through a DLM trained with a convolutional neural 
network (CNN) based on 12-lead ECG and to generate an 
AADE score that would correlate with disease severity. By 
applying deep learning technology to ECG diagnosis, we 
aim to develop a new and simpler method to enhance 
the accuracy of AD diagnosis and reduce misdiagnosis 
rates, thereby providing patients with more precise treat-
ment plans.

METHODS
The confirmation of AD was based on the following criteria: 
CTA showed the presence of an intimal flap separating true 
and false lumens in the aorta, or there was an intramural 
hematoma; it involved the ascending aorta (defined as 
type A), the aortic arch, or descending aorta (type B). In 

our study, penetrating atherosclerotic ulcers and intramu-
ral hematomas were defined as AD, as they are similar in 
treatment and prognosis to typical AD [21]. This study was 
approved by the Review Committee of Tongji Hospital, af-
filiated with Tongji Medical College of Huazhong University 
of Science and Technology (TJ-IRB20230647).

Study population
Our retrospective study at Tongji Hospital’s Emergency 
Department, conducted from January 2018 to July 2022, in-
cluded 1878 patients. This cohort consisted of 313 individ-
uals diagnosed with AD, 1252 general emergency patients 
without AD, and a specific control group of 313 patients 
with chest pain. We included all patients hospitalized with 
a diagnosis of AD during the study period. Exclusion criteria 
included patients without adequate electrocardiographic 
data, and those diagnosed by CTA or angiography but 
without follow-up data.

Data collection and analysis
Data collection focused on ECG features, demographics, 
biochemical indices, and medical histories of the AD group 
(Supplementary material, Appendix 1). We also compiled 
data for a control group of 1252 non-AD patients, matched 
1:4 with the AD group based on age and sex. An additional 
control group of 313 non-AD patients with chest pain was 
also included (Supplementary material, Figure S1), con-
firmed by emergency and ward physicians. We conducted 
a follow-up of AD patients via telephone, with the follow-up 
period for all participants calculated from the date of 
diagnosis to the date of death or the end of the study, 
with a median duration of 21.3 months; the interquartile 
range (IQR) was approximately 15.51 months (11.6 months, 
27.1 months). To address the problem of missing data dur-
ing the follow-up period, we utilized Multiple Imputation 
by Chained Equations (MICE) [22]. We defined death as the 
endpoint event.

ECG data 
For our study, we analyzed each patient’s first pre-treat-
ment ECG, recorded at 500 Hz using a Philips PW TC10 and 
stored in XML format. ECG interpretations were performed 
manually by experienced cardiologists. Our dataset includ-
ed 1878 ECGs, encompassing records from both AD and 
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non-AD patients. The samples were divided into training 
and validation sets in a 7:3 ratio, with no overlap.

Model development and performance evaluation
We employed a CNN as the primary architecture for our 
deep learning model to extract features from the 12-lead 
ECGs (detail in Supplementary material, Appendix 2 and 
Figure S2). The model’s training process involved optimiza-
tion and adjustments to improve AD diagnosis accuracy. 
A 10-fold cross-validation method was used to ensure the 
model’s robustness. To further evaluate the effectiveness of 
our deep learning model in identifying AD, we compared 
the model’s predictive results with the actual diagnostic 
outcomes. We also conducted model testing with 313 pa-
tients experiencing chest pain and 313 patients with AD 
to evaluate the model’s performance in these two specific 
groups. The model’s performance was evaluated using 
metrics like accuracy, sensitivity, specificity, and the area 
under the receiver operating characteristic (ROC) curve. In 
addition to the original 1:4 matched sample set, we also 
tested 1:1, 1:2, and 1:3 ratios to assess whether there were 
significant changes in the model’s accuracy and stability 
with different sample sizes and patient proportions.

AADE score and patient characteristics
The model produced an AADE score, reflecting the like-
lihood of AD on each ECG. We explored correlations of 
AADE scores with patient characteristics, including demo-
graphics, biochemical indicators, and D-dimer levels. D-di-
mer concentrations were divided into four quartiles: low 
(<0.840 ug/ml), medium (0.840~1.450 ug/ml), medi-
um-high (1.451~5.700 ug/ml), and high (>5.700 ug/ml), 
The relationship between these concentrations and AADE 

scores was visualized using box plots, and statistical com-
parisons were made using the Kruskal-Wallis test.

Statistical analysis
We displayed continuous variables with a normal dis-
tribution in the sample information as means (standard 
deviations). For continuous variables that are not normally 
distributed, the medians and IQRs from the first quartile 
(Q1) to the third quartile (Q3) were used for presentation. 
In addition, we used the Student’s t-test to analyze com-
parisons between the two groups. Categorical data were 
presented as frequency and percentage and compared 
using the Chi-squared (χ2) test and Spearman correlation 
coefficients for continuous variables, and point-biserial 
correlation coefficient for binary variables. We employed 
the Kruskal-Wallis test to compare the distributions of the 
medians. Additionally, Kaplan-Meier survival curve analysis 
was applied in our study. In all hypothesis tests, a two-sided 
significance level of 0.05 was adopted. Histograms were 
used to plot the classification of ECG features. We used 
accuracy, sensitivity, specificity, F1 score, and area under 
the receiver operating characteristic curve (ROC-AUC) 
to evaluate the generated models. R packages (ggplot2, 
pROC, survminer) were used for statistics and plotting. P 
<0.05 was considered statistically significant, all tests were 
two-sided.

RESULTS

Study population characteristics
In this study, we compared the clinical characteristics of 
313 patients with AD with 1252 non-AD patients (Table 1). 
Our findings showed differences in average age (59.1 years) 

Table 1. Comparison of the characteristics of aortic dissection (AD) patients and non-AD patients

Variables AD 
(n = 313)

Non-AD
(n = 1252)

P-value

Age, year, mean (SD) 59.1 (12.9) 59.1 (13.2) 0.9

Female, n (%) 58 (18.5) 233 (18.6) 0.87

BMI, mean (SD) 25.6 (3.9) 24.9 (4.2) 0.21

Body temperature, mean (SD) 37.2 (0.8) 37.1 (0.9) 0.82

SBP, mm Hg, mean (SD) 142.2 (25.9) 131.6 (27.5) <0.001

DBP, mm Hg, mean (SD) 82.1 (17.2) 72 (16.3) <0.001

Hypertension, n (%) 269 (85.9) 642 (51.3) <0.001

Diabetes, n (%) 176 (56.4) 760 (60.7) 0.18

Hyperlipidemia, n (%) 266 (85.2) 806 (64.4) <0.001

Renal insufficiency, n (%) 101 (32.2) 81 (6.5) <0.001

Coronary artery disease, n (%) 83 (26.8) 60 (4.8) <0.001

Cerebrovascular disease, n (%) 9 (2.8) 20 (1.6) <0.001

Respiratory system diseases, n (%) 24 (7.6) 99 (7.9) 0.74

Digestive system diseases, n (%) 11 (3.5) 102 (8.2) <0.001

Trauma or injury, n (%) 2 (0.6) 114 (9.1) <0.001

Smoke, n (%) 220 (70.3) 895 (71.5) 0.36

Alcohol, n (%) 223 (71.2) 881 (70.4) 0.41

Hospital death, n (%) 17 (5.4) 18 (1.4) <0.001

Values are mean (SD) or n (%)

Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure; SD, standard deviation
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and sex distribution (approximately 18.5% female) between 
the groups (P-values of 0.9 and 0.87). However, disparities 
were noted in several key health indicators. Specifically, the 
AD group exhibited higher mean systolic blood pressure 
(142.2 mm Hg vs. 131.6 mm Hg), mean diastolic blood 
pressure (82.1 mm Hg vs. 72 mm Hg), prevalence of hyper-
tension (85.9% vs. 51.3%), hyperlipidemia (64.4% vs. 85.2%), 
and renal insufficiency (32.2% vs. 6.5%), compared to the 
non-AD group (all P <0.001). Additionally, the incidence 
of coronary artery disease and cerebrovascular disease 
were higher in the AD group than in the non-AD group (P 
<0.001). In the non-AD group, there was a higher incidence 
of digestive system diseases, trauma, or injuries (P <0.001), 
which may be associated with diversity of emergency 
department patients. However, there were no differences 
between the groups in the prevalence of diabetes, inci-
dence of respiratory system diseases, smoking and drinking 
habits (P-values of 0.18, 0.74, 0.36, and 0.41, respectively). 
We analyzed the ECG characteristics of the 313 AD patients 
(Supplementary material, Figure S3).

These findings indicate that, while patients with AD 
and the emergency department control group were 
similar in certain baseline characteristics, there were 

significant differences in blood pressure, prevalence of 
chronic conditions and specific diseases, as well as hospital 
mortality rates.

Model performance
The CNN demonstrated excellent performance as a model 
within the validation group. We selected a control group of 
patients (n = 1252) that matched the age and sex of the AD 
patients (n = 313) and used a standard 10-second 12-lead 
ECG full model. We tested the model with control group 
ratios of 1:4, 1:3, 1:2, and 1:1, using an AADE score of 0.5 as 
the optimal threshold for diagnosing AD. Performances 
of all four models were good. We compared the AUC by 
calculating the model’s accuracy, sensitivity, specificity, 
and F1 value (Figure 2). The 1:1 model showed an accuracy 
of 0.93, sensitivity of 0.914, specificity of 0.946, F1 value 
of 0.93, and an AUC of 0.97, all superior to other models’ 
ratios, demonstrating that the AADE score’s diagnostic 
effect is best at a 1:1 match. The CNN generated an AADE 
score, a continuous value between 0 and 1, indicating the 
estimated likelihood of AD on each ECG. Furthermore, in 
the specially introduced control group (Supplementary 
material, Figure S4) designed to enhance the model’s 

Figure 1. Study flowchart 

Abbreviations: AD, aortic dissection; 
CTA, computed tomography angiogra-
phy; ECG, electrocardiogram
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adaptability to clinical scenarios (the cohort with chest 
pain, n = 313), the model also demonstrated satisfactory 
performance, albeit slightly reduced. Within this group, the 
model achieved an accuracy of 0.871, a sensitivity of 0.837, 
a specificity of 0.903, an F1 score of 0.867, and an AUC of 
0.92 (Supplementary material, Figure S5).

Comparison of accuracy indicators for AADE 
groups and distribution of D-dimer 
We collected the demographic characteristics information 
(Supplementary material, Table S1) and ECG features (Sup-
plementary material, Figure S6) of the validation group. 
Assessing the correlation coefficients (r) between the 
AADE score and several laboratory-test-based markers 
of AD severity, we found that the AADE score positively 
correlated with AD type (P = 0.02) (Table 2). This means 
that an increase in these factors may be associated with 
an increase in AADE. Other variables, including sex, age, 
smoking, alcohol, height, weight, blood pressure, etc. 
showed no statistical correlation with AADE. Among the 
laboratory tests, D-dimer showed a difference in the risk 
score (Table 2).

Figure 3A depicts AADE score distributions across 
D-dimer groups. The median score increased from the 
low (<0.840 ug/ml) to medium (0.840~1.450 ug/ml) D-di-
mer groups (P = 0.04), remained stable for medium and 
medium-high (1.451~5.700 ug/ml) groups, but rose in 
the high group (>5.700 ug/ml, 0.983) compared to both 
low (P = 0.005) and medium-high groups (P = 0.003). Fur-
thermore, the type A dissection group exhibited a higher 

median AADE score (0.985) compared to the type B group 
(0.823), with a P-value of 0.002 (Figure 3B).

Significant ECG features in the CNN model
To improve the CNN model’s interpretability (Figure 4), 
we found that abnormal ECG was the most strongly cor-
related feature with the model’s predictions (r = 0.384; 
P <0.001), highlighting ECG significance in the model’s 
decision-making. ST-segment abnormalities (r = 0.302; 
P = 0.003) and ST-segment depression (r = 0.302; P = 0.003) 
also demonstrated positive correlations, suggesting their 
importance in AD diagnosis. Other ECG features, such as 
anterior and anterolateral wall ST-segment depression, 
sinus tachycardia, sinus bradycardia, and left ventricular 
hypertrophy, showed moderate correlations (r ranging 
from 0.219 to 0.263; P <0.05), indicating their relevance in 
the model’s analysis. A correlation heatmap was created to 
visually represent these relationships, offering an intuitive 
view of how the CNN model interprets ECG data.

AD risk prediction according to the AADE score 
In the Kaplan-Meier survival analysis depicted in Figure 5, 
an association was observed between the AADE score and 
the survival time (P = 0.02), with the high-AADE-score group 
exhibiting a substantially lower survival rate throughout 
the follow-up compared to the low-score group. This indi-
cates a more rapid decline in several surviving patients in 
the high-score group. During the one-year follow-up, the 
mortality rate in the high-AADE-score group was 31.25%, 
compared to 10.34% in the low-score group. When the 

Figure 2. Performance of artificial intelligence 
algorithms in detecting aortic dissection. The 
ROC curves represent four lines corresponding 
to random matching with different ratios (1:1, 
1:2, 1:3, and 1:4) based on age and sex

Abbreviation: AUC, area under the curve
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accuracy. The results from the special control group further 
confirm the effectiveness of our model in differentiating 
between AD and non-AD patients, even among non-AD 
patients presenting in clinical settings with symptoms of 
chest pain. The model provides an AADE score that can 
effectively assess the likelihood of AD on each ECG. The 
AADE score is correlated with certain laboratory tests and 
types of dissection. Compared with existing DL research 
on AD, our study has several significant advantages [23]. 
Firstly, our model included more patients with AD. Second-
ly, we identified ECG features correlated with the model, 
improving the explanatory power of the AI model. More 
importantly, in our follow-up, we evaluated the mortality 
risk of patients through the AADE score, which could pro-
vide clinicians with a more accurate and comprehensive 
risk assessment tool. 

D-dimer has turned out to be effective in distinguish-
ing AD from other diseases, and its levels were positively 
correlated with AD mortality risk [24]. However, some AD 
patients may present negative D-dimer levels [25, 26], 
which underlines the necessity of utilizing a combination 
of diagnostic methods for accurate AD detection. Currently, 
combining the aortic dissection detection risk score and 
D-dimer offers higher diagnostic accuracy than using 
single indicators [27], but its sensitivity and specificity for 
acute aortic syndrome diagnosis fall short of our AADE 
score model [28]. Our study found a positive relationship 
between AADE scores and D-dimer distribution, suggesting 
that higher AADE scores correspond to an increased AD 
mortality risk. This adds another dimension to diagnostic 
precision, particularly, in identifying more severe cases of 
AD. In distinguishing between two AD types, A and B, which 
present different anatomical and clinical characteristics 
that affect treatment strategies [29, 30], the AADE score 
proves valuable. We observed that type-A AD generally 
scored higher on the AADE scale, indicating the potential 
use of this model in predicting AD type and thereby guiding 
treatment decisions. 

Table 2. Correlations between AADE scores and clinical variables

Variable Correlation coefficient P-value

Sex –0.076 0.47

Age –0.003 0.97

Smoke –0.14 0.18

Alcohol –0.155 0.14

Height –0.005 0.96

Weight –0.087 0.41

SBP –0.015 0.89

DBP –0.073 0.48

Hospital death 0.084 0.42

Hypertension 0.059 0.57

Diabetes –0.059 0.57

Renal insufficiency 0.074 0.48

Hyperlipidemia –0.099 0.35

AD type 0.242 0.02

Creatinine –0.082 0.44

eGFR 0.079 0.45

CRP –0.078 0.46

CTn 0.095 0.37

PT 0.085 0.42

Fbg 0.057 0.59

APTT 0.094 0.37

TT –0.048 0.65

D-dimer 0.322 0.002

Spearman Correlation Coefficients for continuous variables, Point-Biserial correla-
tion coefficient for binary variables

Abbreviations: APTT, activated partial thromboplastin time; CRP, C-reactive protein; 
CTn, cardiac troponin; DBP, diastolic blood pressure; eGFR, estimated glomerular 
filtration rate; Fbg, fibrinogen; PT, prothrombin time; SBP, systolic blood pressure; 
TT, thrombin time

Figure 3. Distribution of AADE score values corresponding to D-dimer and type A and B dissection. A. D-dimers are categorized by quartiles 
on the x-axis. B. Types A and B dissection are categorized on the x-axis. The y-axis shows quartile values, with the top, middle, and bottom 
lines of the box indicating upper quartile, median, and lower quartile, respectively. Lines extending from the box represent the maximum 
and minimum values, with outliers marked as points outside the box. P-values between groups are indicated above the figure.

follow-up was extended to two years, the mortality rate in 
the high-score group rose slightly to 34.38% while in the 
low-score group, it remained stable. This means that the 
risk of death was higher in the high-score group.

DISCUSSION
In our study, we developed a CNN model based on ECG 
data (see the graphical abstract), which is capable of 
distinguishing between AD and non-AD ECGs with high 
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Figure 4. Correlations between AADE scores and ECG features. The figure includes a table and heatmap, illustrating Spearman correlations 
between AADE scores and ECG features. The table lists correlation coefficients, while the heatmap visually displays correlation strengths 
using color intensity.

Abbreviations: see Figure 1

Figure 5. Aortic dissection Kaplan-Meier Survival Estimates. Ka-
plan-Meier survival estimates for high- and low-AADE-score groups, 
with survival probabilities from 0 to 100%. Participant numbers 
at risk are shown for 0, 150, to 900 days of follow-up. The opti-
mal AADE score cutoff is set at 0.86 based on receiver operating 
characteristic analysis (Youden index, J =sensitivity + specificity – 1). 
Patients are classified into high and low-score groups.

Despite the lack of interpretability inherent to CNN 
models due to their “black-box” nature, our research utilizes 
advanced AI methods to discern strong AD signals on ECG 
and quantify these in relation to aortic risk levels. This not 
only boosts model interpretability but may also influence 
future clinical practices and studies. We discovered posi-

tive correlations between the AADE score and several ECG 
features including abnormal ECG, sinus tachycardia, sinus 
bradycardia, and ST-segment depression. Interestingly, 
while T-wave inversion was common, it showed no corre-
lation with the AADE score, unlike ST-segment depression, 
which was the most closely linked. This suggests that, for 
ECG examinations of AD patients, ST-segment depression, 
particularly in anterior and anterolateral walls, could be 
a critical feature for the AI model to identify AD. Howev-
er, the exact mechanism behind the link between ECG 
ST-segment changes and AD occurrence remains unclear 
[9], and further research is required to explain these po-
tential connections.

In conclusion, our research shows that a CNN-based AI 
model can effectively distinguish between patients with 
and without AD based on 12-lead ECG data. In patients 
with chest pain, the model also demonstrated stable per-
formance. After training at different ratios, the performance 
of the model was maintained, and the AI model indicated 
an AADE score related to the probability of assessing the 
risk of disease. Moreover, our study showed correlations 
between the AADE score and ECG features, D-dimer, and AD 
type. During the one and two-year follow-up periods, the 
mortality rate of the high-scoring group was significantly 
higher than the low-scoring group, indicating a significant 
association between the AADE score and the patient’s 
survival period. This suggests that the AADE score is an 
important prognostic factor that may impact AD patients 
survival. These findings may provide valuable information 
for clinicians assessing the risk and severity of AD and help 
to diagnose and manage AD patients more accurately.
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Early detection and timely treatment of AD are crucial 
for improving patient survival rates [31]. Our model can 
assist lower-level hospitals in rapid diagnosis of dissection 
without CTA. This can facilitate swift transfers to higher-lev-
el hospitals for further diagnosis and treatment and help 
avoid severe consequences of incorrect treatment. Addi-
tionally, in circumstances where patients have contraindi-
cations to CTA, including renal insufficiency, this algorithm 
can be useful in distinguishing a specific population that 
requires special attention. In the future, this model could be 
used to develop wearable devices to identify AD patients 
in non-hospital settings, aiding their swift triage.

Limitations
Our study has some limitations, including a small sample 
size that may affect reliability and generalizability of the 
results, and there is a necessity for larger studies. Its sin-
gle-center nature and exclusion of certain patients limited 
its scope, highlighting the need for multi-center validation 
and more inclusive patient selection. Additionally, the study 
was retrospective, and future prospective studies could 
enhance the efficacy of this AI model.  

Supplementary material 
Supplementary material is available at https://journals.
viamedica.pl/kardiologia_polska.
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