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A B S T R A C T
Chronic kidney disease (CKD) and heart failure (HF) represent two modern diseases of civilization 
and are closely related. According to the concept of cardio-renal and reno-cardiac syndromes, most 
patients with CKD are affected by cardiovascular disease (CVD), and CVD (including HF) is one of 
the factors not only promoting progression of established CKD but also triggering its onset and 
development. Treatment of CVD and HF in CKD patients remains challenging since CKD patients 
are characterized by extremely diverse and strongly expressed risk profiles, and the data from well- 
-designed clinical trials addressing this population are scarce. Nevertheless, it seems that most of 
the drugs used in the treatment of CVD and HF (including beta-blockers, angiotensin-converting 
enzyme [ACE] inhibitors, angiotensin II receptor blocking agents, mineralocorticosteroid receptor 
antagonists, and sacubitril/valsartan) are of similar efficacy in patients with glomerular filtration 
rate (GFR) ranging between 45 and 60 ml/min/1.73 m2 (although higher prevalence of side effects 
may limit their use). The data on cardiovascular (CV) drug efficacy in patients with lower GFR  
values (i.e., below 30–45 ml/min/1.73 m2) remain limited. In this review, we focused on the efficacy of 
sodium-glucose cotransporter 2 inhibitors (SGLT2i) in the treatment of CVD and HF in CKD patients 
with or without diabetes. SGLT2i are clearly cardioprotective in a wide spectrum of estimated GFR 
although the data for HF patients with respect to urine albumin-creatinine ratio (UACR) are scarce, 
and for those with significantly reduced estimated GFR are still not available or not convincing, 
even after completion of large-scale high-quality major cardiovascular outcome trials (CVOT) in 
type 2 diabetes mellitus (T2DM) or trials with flozins in CKD and HF.
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CHRONIC KIDNEY DISEASE 
AND HEART FAILURE: MODERN 

CIVILIZATION DISEASES
Chronic kidney disease has only recently 
been recognized as a prevalent worldwide 
disease. According to different national and 
international registries, between 7 and 15% 
of the whole world population suffers from 
the disease [1–3]. CKD is not a particular 
diagnosis but rather describes common 
pathways and consequences of several spe-
cific pathologies which significantly differ in 
terms of etiology, dynamics of progression, 
and prognosis. The leading one is diabetic 
kidney disease (DKD) accounting for 20%– 
–30% of all patients who suffer from diabetes 
(i.e. up to 3%–4% of whole populations in 
Western societies) [4, 5]. Glomerular, cystic, 

tubulointerstitial, and other well-defined 
renal pathologies together with DKD allow 
explanation of the background of up to 60% 
of CKD cases; even in best-functioning health 
systems, more than 40% of CKD patients have 
their underlying cause of CKD undefined. 
CKD developing as a consequence of diverse 
cardiac and vascular pathologies may be an 
important part of this undefined number 
and best fits the definition of cardio-renal 
syndrome type 2 (according to the classi-
fication developed by Claudio Ronco, with 
further modifications) [6]. It is fair to assume 
that renal injury secondary to cardiovascular 
disease (CVD) (beyond primary hypertension 
which seems to be heavily overestimated as 
a cause of renal failure) may account for or 
at least significantly contribute to the de-
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velopment of CKD in many patients in whom no certain 
underlying renal pathology has been established [7, 8]. 

The kidney is not only the target organ suffering from 
CVD but also the culprit accelerating and worsening the 
course of CVD (Ronco’s cardio-renal syndrome type 4) 
[6]. Heart failure (HF) is highly prevalent among patients 
with CKD (and vice versa — CKD is one of the leading 
comorbidities in patients with HF). The incidence of HF in 
patients with CKD is extremely high: 15%–20% of patients 
with CKD and estimated glomerular filtration rate (eGFR) 
<60 ml/min/1.73m2 would develop this disease — the risk 
of HF is on average 3 times higher in patients with eGFR 
below this threshold as compared to people with normal 
renal function. It increases further by a factor enormously 
high – 12 to 36 – in subjects treated with dialysis [9]. CKD 
is also a universal risk factor for adverse outcomes in many 
other CV diseases, in addition to HF [10, 11]. 

Looking at the other side of the coin, as mentioned 
above, 7%–15% of the general population may suffer from 
CKD (defined as GFR <60 ml/min/1.73 m2) – the prevalence 
rises to as high as 35%–55% in patients with HF, both with 
preserved (HFpEF) and reduced (HFrEF) ejection fraction 
[12–15]. These epidemiological data have been reproduced 
by the key HF trials with SGLT2i (Table 1) [16–19]. The four 
pivotal HF trials with SGLT2i reflect real life practice when 
looking at their renal aspects and should convince the 
medical community that CKD is the leading comorbidity 
in the HF population. 

Both reduced GFR and albuminuria significantly and 
synergistically increase the risk of adverse outcomes in 
HF [20, 21]. It has been repeatedly confirmed in such trials 
as SOLVD, CHARM, GISSI, RENAAL, MESA, and ARIC that 
albuminuria predicts HF incidence and/or progression. 
Even more importantly, in contrast to GFR, which is as-
sociated with increased CVD risk when decreased to less 
than 45–60 ml/min/1.73 m2, the relationship between 
albuminuria and CVD is linear and starts to increase from 
values as low as 6–10 mg/g of creatinine. i.e. below the tra-
ditionally defined threshold of microalbuminuria (30 mg/g 
of creatinine) [22–25]. 

Several mechanisms explain the increased risk of CVD 
and HF in CKD patients. They include, among others: fluid 
overload and sodium retention, hypertension (which is like-
ly to be resistant and require three or more antihyperten-

sive drugs), increased activity of the renin-angiotensin-al-
dosterone system, increased sympathetic nervous system 
activity (with a special role of afferent sympathetic signaling 
from injured kidneys to the central nervous system as 
a contributing factor), systemic inflammation, endothelial 
dysfunction and many others [6, 26–32]. Although most of 
these mechanisms are not specific to CKD, they are more 
pronounced as compared with patients with preserved 
kidney function. Some factors considered more specific 
for CKD that may contribute to CVD and HF include arterial 
stiffness, mineral and bone disorders of CKD (including 
severely disturbed metabolism of vitamin D), renal anemia, 
and accumulation of uremic toxins (cardiotoxins) [33]. 

HOW TO TREAT HF IN CKD PATIENTS?
Patients with CKD were for decades abandoned as can-
didates for clinical trials investigating therapeutic inter-
ventions aimed at decreasing CVD events. “Big Pharma” 
sponsors and independent investigators were reluctant to 
include these patients for several reasons: they were con-
sidered non-representative of an “average” population (CKD 
has only recently been recognized as a highly prevalent risk 
factor of CVD), were likely to increase heterogeneity of the 
study samples, their inclusion might have been associated 
with results less positive than expected. It resulted in the 
general rule to exclude subjects with eGFR of less than 
30 or even less than 45 ml/min/1.73 m2 from pivotal clinical 
trials in CVD, HF, and hypertension (or — at best — they 
were present but underrepresented). This, in turn, result-
ed in the lack of direct evidence considering treatment 
efficacy in these groups. For decades, there was a general 
assumption that CKD patients are too sick to be helped, 
which led to “renalism” in therapy (advanced CKD patients 
were deprived of life-saving therapies just because of their 
CKD). Guidelines covering CVD treatment in the setting of 
CKD were not developed — patients were treated based 
on extrapolation of data from the general population. In-
terestingly, when analyzing the HF literature with a focus 
on CKD patients, it seems that this pessimistic view was not 
justified. For example, in the HOPE trial, ramipril tended to 
be more effective in cardiovascular event prevention (in-
cluding death) in patients with baseline serum creatinine 
exceeding 1.4 mg/dl as compared to those with normal 
kidney function [34]. Pivotal trials showing the benefit of 

Table 1. Heart failure trials with SGLT2i — not designed for CKD but largely addressing CKD populations

Study (acronym) Investigated drug Exclusion eGFR cut-off 
(ml/min/1.73 m2)

Patients with eGFR 
<60 ml/min/1.73 m2

Mean eGFR  
(ml/min/1.73 m2)

EMPEROR-Reduced, 2020 [18] Empagliflozin <20 48% (empagliflozin); 
48.6% (placebo)

61.8 ± 21.7 (empagliflozin) 
62.2 ± 21.5 (placebo)

EMPEROR-Preserved, 2021 [19] Empagliflozin <20 50.2% (empagliflozin)
49.6% (placebo)

60.6 ± 19.8 (empagliflozin)
60.6 ± 19.9 (placebo)

DAPA-HF, 2019 [17] Dapagliflozin <30 40.6% (dapagliflozin)
40.7% (placebo)

66.0 ± 19.6 (dapagliflozin)
65.5 ± 19.3 (placebo)

DELIVER, 2022 [20] Dapagliflozin <25 61  ±  19 (identical for both groups 
–  dapagliflozin and placebo)

Abbreviations: CV, cardiovascular; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; SGLT2i, sodium-glucose cotransporter 2 inhibitors
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mineralocorticosteroid receptor antagonists, i.e. RALES 
(with spironolactone) and EMPHASIS-HF (with eplerenone), 
demonstrated no significant interaction between efficacy 
in reducing the cardiac endpoints and GFR; patients with 
eGFR <60 ml/min/1.73 m2 or in the GFR range between 
30 and 60 ml/min/1.73 m2 were doing as well as those with 
preserved renal function (although in both trials the risk of 
hyperkalemia was significantly higher in patients with CKD 
stage 3 or higher) [35–37]. The Val-HEFT trial, was generally 
negative, demonstrating no benefit of adding valsartan 
or placebo to the standard of care in patients with HF. The 
study showed some CVD benefits only in patients with 
CKD, in whom the first morbid event occurred statistically 
less frequently in subjects receiving valsartan (even though 
most patients were also treated with background ACEi) [38]. 
The efficacy of a drug combining valsartan and neprilysin 
inhibitor sacubitril was equal in patients with eGFR above 
and below 60 ml/min/1.73 m2 in terms of reducing the 
primary endpoint and CV death [39]. Finally, most pivotal 
trials with beta-blockers in HF (such as MERIT-HF with me-
toprolol or CAPRICORN and COPERNICUS with carvedilol) 
demonstrated equal efficacy of these drugs in preventing 
CV events in patients with and without CKD [40–42]. Inter-
estingly, in the MERIT trial, there was an interaction with 
eGFR — the benefit in terms of reduced total mortality, all- 
-cause mortality plus all-cause hospitalization, or all-cause 
mortality plus HF hospitalization rose with decreasing GFR 
and was most pronounced in patients with eGFR of less than 
45 ml/min/1.73 m2 as compared to those with eGFR in the 
range of 45–60 and >60 ml/min/1.73 m2 [42]. Finally, one 
of the key trials that paved the way to contemporary CVD 
prevention (though not directly HF), namely the HOT trial, 
has demonstrated that acetylsalicylic acid in secondary CVD 
prevention provides the greatest benefit in reducing major 
CV events, myocardial infarction, stroke, and CV mortality in 
patients with eGFR less than 45 ml/min/1.73 m2 [43]. 

Taking into account these retrospective data, one could 
conclude that therapeutic nihilism in relation to CKD (and 
more specifically HF/CVD treatment in CKD patients) is not 
justified. Unfortunately, such a conclusion cannot be fully 
supported. First, retrospective analyses are not equivalent 
to trials with pre-specified analyses of outcomes in patients 
with low GFR. Second, in most of the trials, patients with 
eGFR in the range between 30 and 60 ml/min/1.73 m2 were 
underrepresented, and subjects with CKD 4 (eGFR of less 
than 30 ml/min/1.73 m2) were virtually absent. Third, in 
most of these reports, an independent impact of GFR and 
albuminuria on outcomes, as well as their possible syner-
gism, could not be analyzed. 

TREATMENT OF CARDIOVASCULAR  
DISEASE USING SGLT2i  

— ARE THEY EFFECTIVE IN CKD?
SGLT2i seem to be the true game-changers in cardio- 
-nephro-metabolic medicine. The nephroprotective effects 
of this class of drugs are not the main scope of this review 

— nevertheless, it must be emphasized that there is a class 
effect on nephroprotection (at least for three agents in 
the class — canagliflozin, dapagliflozin, and empagliflozin 
and somewhat less convincingly — for sotagliflozin). The 
three mentioned drugs showed their efficacy regardless of 
baseline eGFR (in the range between normal to as low as 
20 ml/min/1.73 m2), albuminuria (from low grade, i.e., below 
microalbuminuria to the nephrotic range), cardiovascular 
risk profile, and definitions of the renal endpoints. In addi-
tion, two of them (dapagliflozin and empagliflozin) have 
shown their efficacy both in diabetic and non-diabetic 
kidney disease. The universally observed nephroprotective 
effect was demonstrated in cardiovascular outcome trials 
(CVOT) performed in diabetic patients with high CV risk but 
otherwise well-preserved renal function (EMPAREG-Out-
come, DECLARE-TIMI, CANVAS), in patients with diabetic 
and non-diabetic CKD (CREDENCE, DAPA-CKD, EMPA-KID-
NEY), and in studies performed in HF patients (the most 
pronounced and statistically significant renal benefit was 
achieved in the EMPEROR-Reduced trial, whereas in other 
HF trials, trends towards better kidney protection were 
observed, with no signal towards renal function worsening 
in any trial) [17–20, 46–55]. For this review, it is important to 
take a closer look at the cardio-vascular endpoints in some 
of the mentioned studies in the context of the presence 
and severity of CKD (as measured by both eGFR and urine 
albumin-creatinine ratio [UACR]). 

The story begins with three major CVOT trials per-
formed in patients with diabetes mellitus type 2 (T2DM) 
and high or very high cardiovascular risk profiles. In these 
trials, the impact of SGLT2i on cardiovascular outcomes in 
the context of eGFR and UACR was defined as a pre-spec-
ified analysis. CVOT results with regard to renal function 
and/or injury are summarized in Table 2 [46, 48, 49, 56–60]. 
As in the case of later trials, performed in HF and CKD 
patients, there was no interaction between the effect of 
SGLT2i on CV outcome and baseline eGFR and/or UACR. 
Data from studies performed in the HF patients are also 
presented in Table 2 and the same conclusion could be 
drawn — SGLT2i were equally effective in different eGFR 
ranges (the most detailed data are available for the EM-
PEROR-Reduced trial) [17–20]. Overall, in the CVOT trials, 
there was a general trend towards a greater CV benefit with 
increasing UACR and increasing eGFR. The same holds true 
for HF trials, in which, unfortunately, the impact of UACR on 
CV endpoints was not adequately addressed (again, except 
for the EMPEROR-Reduced trial). Studies in CKD patients 
recruiting patients with diabetes only (CREDENCE) and 
with or without diabetes (DAPA-CKD and EMPA-KIDNEY) 
defined several secondary cardiovascular endpoints, ana-
lyzed death of any cause and incorporated CV death into 
the primary composite endpoint identifying progression 
of CKD (primary composite outcome in these trials was de-
fined as the first occurrence of the following: a permanent 
decline in eGFR of ≥50%, ≥40%, end-stage kidney disease 
(ESKD) [commencement of dialysis, renal transplantation, 
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Table 2. Efficacy of SGLT2i on primary or key secondary cardiovascular endpoints in cardiovascular outcome trials in type 2 diabetes mellitus, 
heart failure trials, and chronic kidney disease (CKD) trials depending on CKD (GFR and/or UACR)

Study (acronym) Investigated 
drug

Key eligibility criteria CVD outcome defi-
nitiona

CV outcome depending 
on eGFR (ml/min/1.73 m2) 

at baseline (HR, 95% CI)

CV outcome depending 
on UACR (mg/g) at baseli-

ne (HR, 95% CI)

Cardiovascular outcome trials in diabetes

EMPAREG-Outcome, 
2015 [46, 47, 56]

Empagliflozin T2DM, established CV 
risk, eGFR ≥30 ml/ 
/min/1.73 m2

Primary endpoint: 
3-point MACE and its 
components (MI, stroke, 
and CV death)

Primary endpoint
≥90: 1.1 (0.77–1.57)
60–90: 0.67 (0.71–0.94)
<60: 0.88 (0.69–1.13)
CV death
≥90: 0.7 (0.39–1.25)
60–90: 0.49 (0.35–0.68)
<60: 0.78 (0.54–1.12)

Primary endpoint
<30: 0.89 (0.72–1.1)
30–300: 0.89 (0.69–1.16)
>300: 0.69 (0.49– 0.96)
CV death 
<30: 0.77 (0.55–1.10)
30–300: 0.49 (0.33–0.74)
>300: 0.55 (95 CI, 0.35–0.86)

CANVAS, 2017 [49, 57] Canagliflozin T2DM, established CV 
risk, eGFR ≥30 ml/ 
/min/1.73 m2

Primary endpoint: com-
posite of death from 
cardiovascular causes, 
nonfatal myocardial 
infarction, or nonfatal 
stroke

≥90: 0.84 (0.62–1.12)
60–90: 0.95 (0.80–1.13)
<60: 0.70 (0.55–0.90)

Primary CV outcome
<30: 0.83 (0.71–0.96)
30–300: 0.76 (0.76–1.25)
>300: 0.75 (0.53–1.06)

DECLARE-TIMI, 2019 
[48, 58]

Dapagliflozin T2DM, established CV 
risk, eGFR ≥60 ml/ 
/min/1.73 m2

Primary endpoint: Com-
posite of cardiovascular 
death, myocardial 
infarction, or ischemic 
stroke

≥90: 0.94 (0.80–1.10)
60–90: 0.95 (0.82–1.09)
<60: 0.92 (0.69–1.23)

Heart failure trials 

EMPEROR-Reduced, 
2019 [18, 54]

Empagliflozin Chronic HF (NYHA class 
II, III, or IV) with LVEF of 
40% or less

Primary outcome: adju-
dicated hospitalized HF 
or CV death

≥60: 0.67 (0.55–0.83)
<60: 0.83 (0.69–1.00)
≥90: 0.51 (0.33–0.80)
60–90: (0.73 (0.58–0.92)
45–60: 0.76 (0.57–1.02)	
30–45: 0.92 (0.69–1.23)
<30: 0.68 (0.68–1.09)

<30: 0.84 (0.68–1.03)
30–300: 0.69 (0.56–0.86)
>300: 0.71 (0.50–1.00) 

EMPEROR-Preserved, 
2021 [23]

Empagliflozin NYHA class II–IV chronic 
heart failure and LVEF 
>40% and NT-proBNP 
>300 pg/ml (>900 pg/ml 
in patients with AF)b

Primary outcome: adju-
dicated cardiovascular 
death or hospitalization 
for heart failure

≥60: 0.81 (0.65–1.00)
<60: 0.78 (0.66–0.92)

DAPA-HF, 2019 [17, 62] Dapagliflozin HF with ejection fraction 
of 40% or less, and NYHA 
class II, III, or IV symptoms 
(eGFR >30 ml/ 
/min/1.73 m2); no UACR 
criterionb

Primary outcome: 
composite of worsening 
heart failure or death 
from cardiovascular 
causes

>60: 0.72 (0.59–0.86)
≤ 60: 0.76 (0.63–0.92)

DELIVER, 2022 [20] Dapagliflozin Stabilized HF with LVEF 
>40% and evidence of 
structural heart disease 
and an elevated natriu-
retic peptide levelb

Primary outcome: 
worsening heart 
failure, defined as either 
unplanned hospitali-
zation for heart failure, 
an urgent visit for heart 
failure, or cardiovascu-
lar death

>60: 0.81 (0.69–0.94)
≤ 60: 0.84 (0.70–1.00)

CKD Trials 

CREDENCE, 2019 [50, 
69, 60]

Canagliflozin T2DM, CKD with eGFR 30 
to <90 ml/min/1.73 m2 

and albuminuria 300 to 
5000 mg/g

Secondary endpoint: 
composite of CV death, 
nonfatal MI, or nonfatal 
stroke 

≥60: 0.90 (0.66– 1.23)
45–60: 0.83 (0.59–1.17)
<45: 0.70 (0.52–0.93) 

≤1000: 0.82 (0.63– 1.03)
>1000: 0.78 (0.61– 0.99)

DAPA-CKD, 2020 [51] Dapagliflozin T2DM (67.5%), CKD 
without diabetes (32.5%); 
eGFR 25–75 ml/ 
/min/1.73 m2 and UACR 
200–5000 mg/g 

Secondary outcome: 
hospitalization for heart 
failure or death from 
cardiovascular causes

Results not provided in 
the core publication and 
following publications with 
regard to baseline eGFR 
(please refer to the text)

Results not provided in 
the core publication and 
following publications with 
regard to baseline UACR 
(please refer to the text) EMPA-KIDNEY, 2022 

[52]
Empagliflozin T2DM (46%), CKD with

out diabetes (54%); eGFR 
20–45 ml/min/1.73 m2 

regardless albuminuria or 
eGFR 45–90 and UACR at 
least 200 mg/g 

Secondary outcome: 
composite of hospital-
ization for heart failure 
or death from cardio-
vascular causes

aFor clarity of presentation, we have chosen the most representative secondary CV outcomes, in our opinion (where applicable); beGFR data for HF trials provided in Table 1
Abbreviations: HF, heart failure; LVEF, left ventricular ejection fraction; MACE, major adverse cardiovascular event; NYHA New York Heart Association; T2DM, diabetes mellitus 
type 2; UACR, urine albumin-creatinine ratio; other — see Table 1
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or permanent reduction in eGFR <15 ml/min/1.73 m2], or 
death from the renal or cardiovascular causes) [50–52, 
59, 60]. Despite efforts, we failed to identify publications 
presenting secondary CV outcomes with regard to baseline 
eGFR or UACR values for the DAPA-CKD and EMPA-KIDNEY 
trials (even after reviewing supplementary appendixes to 
respective core publications). Such data were available 
for the CREDENCE trial and are presented in Table 2. The 
rates of hospitalization for HF or death from cardiovascular 
causes, the key secondary CV endpoints, were reduced by 
29% and all-cause mortality by 31% in the DAPA-CKD study 
[50]. Describing the spectacular effect of slowing down CKD 
progression in both diabetic and non-diabetic patients 
(and in the latter group — especially in patients with IgA 
nephropathy) is beyond the scope of this review. Dapagli-
flozin was equally effective in diabetic and non-diabetic 
patients included in the study, regarding the primary com-
posite, renal, composite cardiovascular outcomes as well 
as all-cause death, though all benefits listed for patients 
without diabetes tended to be greater for non-diabetic 
patients [51, 61]. However, a separate analysis performed 
in patients with CKD stage 4 demonstrated no benefit of 
dapagliflozin for any of the analyzed outcomes [62]. 

Key secondary endpoints of the EMPA-Kidney trial 
included a composite of hospitalization or death from 
cardiovascular causes, hospitalization for any reason, 
or death from any cause. The mean baseline eGFR of 
37.5 ± 14.8 ml/min/1.73 m2 in the EMPA-KIDNEY trial was the 
lowest value ever among all large SGLT2i trials performed 
to date; the median UACR equaled 412 mg/g (interquartile 
range: 94–1190 mg/g). It is worth emphasizing that 34.2% 
of patients randomized to empagliflozin and 34.8% of those 
receiving placebo had eGFR< 30 ml/min/1.73 m2 [52]. The 
primary composite outcome (i.e. “renal” plus CV death) in 
EMPA-KIDNEY was reduced by 28% in the empagliflozin 
group vs. placebo (hazard ratio [HR], 0.72; 95% confidence 
interval [CI], 0.64–0.82; P <0.001). Significant risk reduction 
was also achieved in empagliflozin-treated patients for the 
following outcomes: hospitalization for any cause, progres-
sion of kidney disease, and ESKD or death from cardiovas-
cular causes. In contrast to DAPA-CKD, all-cause mortality 
was not reduced in the EMPA-KIDNEY trial; such a reduction 
was also not observed in cases of hospitalization for HF or 
death from cardiovascular causes and death from cardio-
vascular causes. As mentioned above, CV outcomes with 
regard to baseline eGFR/UCAR could not be extracted from 
the available publications. As in the case of the DAPA-CKD 
trial, the effect of empagliflozin was independent of the 
presence/absence of diabetes, although numerically, the 
impact of the drug on primary composite outcome was 
more significant in diabetic patients (HR, 0.64; 95% CI, 
0.54–0.77) as compared to those without T2DM (HR, 0.82; 
95% CI, 0.68–0.99). The risk reduction was independent of 
baseline eGFR, and patients in the subgroups with eGFR 
<30, ≥30 to <45, and ≥45 ml/min/1.73 m2 experienced 
similar benefits. This was, however, not true for baseline 

UACR ranges: the benefit of empagliflozin was noted only 
in subjects with UACR >300 mg/g (traditionally defined 
as “macroalbuminuria” or “overt proteinuria”) but not in 
the two remaining UACR ranges (<30, ≥30 to ≤300 mg/g). 
Separate analyses of secondary CV outcomes have not yet 
been published [52]. 

It is worth mentioning that a meta-analysis of DAPA- 
-CKD and EMPA-KIDNEY has demonstrated no benefit of 
SGLT2i on cardiovascular death or hospitalization for heart 
failure, cardiovascular death, non-cardiovascular death, 
or all-cause death in advanced CKD. However, as already 
mentioned, DAPA-CKD has demonstrated a significant risk 
reduction in the composite of death from cardiovascular 
reasons or hospitalization for HF non-cardiovascular death, 
and all-cause death. These results were essentially the 
same in patients with and without diabetes, with a trend 
towards more benefit in non-diabetic patients [55]. At the 
moment, the DAPA-CKD trial remains the only CKD trial 
demonstrating lower all-cause mortality in CKD patients 
using SGLT2i [63]. 

SGLT2i — HOW DO THEY INFLUENCE  
THE CARDIO-RENAL AXIS

The adjective “pleiotropic” became one of the most fa
shionable words to describe successful drugs. This word 
is probably the most suitable one to describe the SGLT2i 
mode of action. In patients with T2DM, both cardiac and 
renal protection are related to better control of diabetes 
(although these drugs virtually lose this function in patients 
with eGFR below 30 or even below 45 ml/min/1.73 m2) 
[64–66]. SGLT2i are not considered antihypertensive agents, 
but 2–3 mm Hg of blood pressure reduction achieved 
with their use is not negligible for preventing renal and 
CV events; the same holds true for their natriuretic effect 
[67, 68]. Another classical risk factor modified by these 
drugs is serum uric acid — SGLT2i are potent uricosuric 
agents, although the extent of their protective effect on 
the heart and kidneys is difficult to assess [69–71]. SGLT2i 
were demonstrated to act as immunomodulatory drugs 
— they inhibit synthesis of several proinflammatory cy-
tokines, inhibit activation of T cells, antigen-presenting 
cells, macrophages, and promote M1-to-M2 phenotype 
shift in the macrophage population (among many other 
anti-inflammatory effects) [72–75]. Flozins protect viability 
of specialized interstitial renal fibroblasts that synthesize 
erythropoietin and upregulate several genes controlled 
by the hypoxia-inducible factor system beyond the eryth-
ropoietin gene (which leads to protection of cardiomyo- 
cytes) [76, 77]. SGLT2i improve the metabolism of cardio
myocytes promoting ketone utilization; they improve 
mitochondrial function, promote autophagy (including 
mitophagy and pexophagy, i.e. “recycling” of damaged 
mitochondria and peroxysomes), and decrease oxidative 
stress. These drugs decrease availability of calcium ions in 
cardiomyocyte cytosol during diastole — this mechanism 
may markedly improve myocardial relaxation and may 
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explain the unique effectiveness of SGLT2i in the treatment 
of heart failure with preserved ejection fraction (HFpEF) 
[78, 79]. SGLT2i have also been demonstrated to decrease 
sympathetic tone — it may be one of several mechanisms 
of protection against atrial fibrillation with this drug group 
[80, 81]. Recently it has been demonstrated that dapagli-
flozin can lower plasminogen activator inhibitor 1 (PAI1), 
the potent inhibitor of fibrinolysis playing an important role 
in the development and progression of atherosclerosis and 
cardiovascular disease [82]. This short paragraph touches 
only on some of the mechanisms that may explain cardio-
protection exerted by SGLT2i — proposed mechanisms of 
SGLT2i influence on the reno-cardiac axis are summarized 
in Figure 1. 

CONCLUSIONS 
To conclude, SGLT2i have undoubtedly become a corner-
stone in the treatment of heart failure [83, 84]. The very 
recent European Society of Cardiology (ESC) guidelines 
on the management of CVD in diabetes contain special 
sections covering treatment of HF and CKD in patients 
with this metabolic disorder. SGLT2i are recommended 
in the treatment of HF with reduced EF with the level of 
evidence IA (the strength of evidence shared with sacubi-
tril/valsartan, beta-blockers, and mineralocorticosteroid 
receptor antagonists). It is worth mentioning that three 
agents are recommended in this indication: dapagliflozin, 
empagliflozin, and sotagliflozin (sotaglilflozin is replaced 
by canagliflozin as the drug that prevents CVD and CKD in 

T2DM; see below) [85]. In this regard, the ESC guidelines for 
diabetics repeat guidelines on diagnosis and treatment of 
acute and chronic HF released by the ESC in 2021 [86]. The 
ESC document dedicated to patients with diabetes, along 
with the recent 2023 update of the ESC 2021 guidelines on 
diagnosis and treatment of HF, take a step forward: both 
documents state (based on hard data originating from 
SGLT2i trials in patients with HFpEF) that SGLT2i should 
also be used in patients with HF with mildly reduced EF and 
with preserved EF (with the same, highest level of evidence 
IA) [85, 87]. Expanding indications for SGLT2i to patients 
with HFmEF and HFpEF (regardless of diabetic status) is 
of paramount importance since SGLT2i and diuretics (in 
patients with symptomatic fluid retention) remain the only 
drug groups with such a high level of evidence in these 
two conditions. In fact, in HFpEF, no other drugs could 
be recommended based on evidence based medicine; in 
HFmEF, ACEi, sacubitril/valsartan, ARB, mineralocorticoster-
oid-receptor antagonists, and beta-blockers can be used 
based on the level of evidence IIB [85, 87]. 

Both documents contain also kidney sections. The 
2023 ESC update on management and treatment of HF 
states that SGLT2i should also be used for HF prevention 
in patients with CKD and T2DM (more specifically — to 
reduce the risk of hospitalization for HF and CV death; level 
of evidence IA) [87]. The renal section of the ESC guidelines 
on the management of CVD in diabetes states that CKD 
patients with T2DM should receive statins and renin–angio
tensin–aldosterone blocking agents (first-line treatment) 

Figure 1. A. Mechanisms contributing to the development of CVD are influenced by renal dysfunction and may be ameliorated by SGLT2i 
actions in the kidneys. B. Intermediate effects of renal failure contributing to the development of CVD that may be influenced by SGLT2i.  
C. Direct CV benefits of SGLT2i depending on their renal actions
Abbreviations: see Table 1
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to reduce CVD and renal risks, respectively, and SGLT2i, 
effective blood pressure control, and finerenone to further 
reduce CV risk (notably, although SGLT2i are acknowledged 
as anti-hyperglycemic drugs, they should be used regard-
less of metabolic control of disease). SGLT2i recommended 
to reduce CV and renal risks in CKD patients with T2DM 
include canagliflozin, dapagliflozin, and empagliflozin [85].

The outstanding safety of SGLT2i, with very few side 
effects and virtually no risk of hyperkalemia or acute 
kidney injury (acute-on-chronic renal injury), should be 
emphasized —using SGLT2i may add not only addition-
al benefits but also enhance safety of other drugs by 
interacting with the renin-angiotensin-aldosterone axis 
[88–90]. A critical appraisal of the presented data leads, 
however, to some moderation of enthusiasm with regard 
to CKD patients with CV disease and/or HF. Indeed, SGLT2i 
are cardioprotective in a wide spectrum of eGFR, but the 
data for HF patients with respect to UACR are limited and 
for those with significantly reduced eGFR are still not 
available or not convincing. It seems that patients with 
moderately reduced eGFR (30–60 ml/min/1.73 m2) and 
proteinuria/albuminuria of any value, regardless of their 
diabetes status are best suited to benefit from SGLT2i use 
both in terms of nephroprotection and cardioprotection. 
Renal benefits would apparently be limited in patients with 
eGFR of less than 30 ml/min/1.73 m2 — due to markedly 
reduced nephron number exerting nephroprotective effect 
is rather theoretically below this eGFR value. According to 
the regulatory documents, empagliflozin can be prescribed 
when eGFR is ≥20, dapagliflozin — ≥25, and canagliflozin 
— ≥30 ml/min/1.73 m2, and CV benefits can still be expect-
ed below respective GFR thresholds. 

SGLT2i, though well-established in the treatment of 
diabetes, CVD, and CKD (and any combination of these 
diseases) and included in many national and international 
guidelines are still the subject of clinical research — new 
trials are planned or ongoing to make indications to SGLT2i 
even broader. The key directions of such research include 
use of SGLT2i in heart transplant and kidney transplant 
recipients, acute heart failure, coronary artery disease 
and acute myocardial infarction, or treatment of diseases 
contributing to increased risk of CVD and CKD, such as 
sleep apnea syndrome [91–96]. Randomized trials are also 
planned or ongoing that assess the efficacy of SGLT2i com-
bined with another drug with confirmed cardiovascular and 
renal benefits in T2DM patients, namely finerenone, a one-
in-the-class non-steroidal mineral corticosteroid receptor 
antagonist [97]. The efficacy of dapagliflozin in combination 
with zibotentan, a novel endothelin receptor antagonist, is 
also evaluated in nephroprotection in prospective clinical 
trials [98]. Nephrologists are extremely interested in the 
efficacy of SGLT2i in preventing the development of kidney 
stones and the effect hypothesized based on observational 
data although probably this indication would not be the 
priority for cardiologists [99]. Several observational or regis-
try-based “real-life” trials are also run worldwide to confirm 

findings from randomized controlled trials in everyday 
practice and different clinical settings. 

Another group of drugs developed for the treatment 
of diabetes, i.e. glucagon-like peptide 1 (GLP1) receptor 
agonists, despite their promise of nephro- and cardiopro-
tection, are only used in the diabetic setting due to the lack 
of data beyond diabetes and advanced CKD [100]. 
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