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commonly the right ventricular apex can be ob‑
served.3 At the cellular level, alteration of des‑
mosomes is hypothesized to be associated with 
myocyte apoptosis and inflammation.4‑6 It has 
been suggested that these changes lead to fibro‑
fatty replacement and result in impaired me‑
chanical and electrical coupling producing con‑
duction delay and associated arrhythmias.

ARVC was originally considered as a familial 
progressive degenerative or dysplastic desmo‑
somal cardiomyopathy with autosomal domi‑
nant inheritance and variable penetrance.7 How‑
ever, only approximately 50% of patients who 

Introduction  Arrhythmogenic right ventricu‑
lar cardiomyopathy (ARVC) appears in most pa‑
tients to be an inherited disease involving pre‑
dominantly the right ventricle (RV). The dis‑
ease is characterized by fibrofatty replacement 
of myocytes involving the epicardium and ex‑
tending to the endocardium and resulting in 
ventricular arrhythmias (VAs) and ventricular 
dysfunction.1,2 Right ventricular free wall scar‑
ring and thinning with aneurysm formation 
situated at the vertexes of the triangle of dys‑
plasia at basal infundibular and diaphragmat‑
ic areas adjacent to the tricuspid valve and less 
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Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) appears in most patients to be an inherited 
disease characterized by fibrofatty replacement of myocytes extending from the  epicardium to 
the endocardium in the right ventricle. The disease process results in life‑threatening ventricular arrhythmias 
and ventricular dysfunction. In the absence of a gold-standard diagnostic test and despite the progress 
in imaging techniques, ARVC is often misdiagnosed and earlier detection of the disease is challenging. 
Preprocedural identification and localization of the substrate can be determined from the analysis of 
surface electrocardiography and cardiac magnetic resonance imaging. Typically, perivalvular arrhythmogenic 
substrate, defined by electroanatomic mapping, is present and can be isolated to the epicardium. Ablation 
targets are further identified with activation, entrainment, and local electrogram abnormalities based 
on detailed electroanatomic mapping. Extensive combined endo / epicardial ablation performed in 
experienced centers is frequently required to prevent ventricular tachycardia (VT). Catheter ablation 
significantly reduces recurrences of VT, appropriate implantable cardioverter‑defibrillator shocks, and 
the use of antiarrhythmic drugs and cardiac transplant as a management strategy for refractory arrhythmias 
is rarely required. Progression of the disease is poorly understood and may require a distinct triggering 
mechanism. Biventricular involvement is more common than previously recognized. However, left 
ventricular involvement leading to significant terminal heart failure is fortunately uncommon and left 
ventricular tachycardias are also infrequent. Many questions remain regarding prevention and management 
of coexisting tricuspid valve regurgitation, atrial arrhythmias, and intracardiac thrombosis. Although 
data on genotype‑phenotype correlations is growing, long‑term follow‑up studies of families with ARVC 
are still lacking. Ongoing research will contribute to better understanding of this pathological condition.
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the disease manifestations and that unique in‑
flammatory triggering or disease‑causing mech‑
anisms may occur even in the absence of a ge‑
netic predisposition. If this is an accurate reflec‑
tion of the ARVC pathogenesis, it would have im‑
portant implications regarding disease progres‑
sion and recommendations regarding exercise 
restrictions. Excessive exercise may only precip‑
itate disease progression in a genetically deter‑
mined degenerative or dysplastic process. Clear‑
ly, we must keep an open mind on this subject.

The prevalence of ARVC is estimated at 1:5000 
in the general population. ARVC accounts for 5% 
to 10% of sudden cardiac deaths in the popula‑
tion younger than 35 years.8,9 The main goal of 
the management strategy in ARVC is the pre‑
vention of sudden cardiac death. Therefore, ear‑
ly detection of the disease and proper evaluation 
of the risk of lethal VA in order to institute pre‑
ventive strategies are fundamental. However, 
despite undeniable improvements in diagnostic 
tools and therapies, sensitive diagnostic crite‑
ria are still lacking and many questions remain 
regarding optimizing and instituting treatment. 
We aim to review the current evidence and iden‑
tify gaps in knowledge and challenges in ARVC 
diagnosis, localization of the arrhythmogenic 
substrate, and catheter ablation (CA) in ARVC. 
We will also discuss important considerations 
regarding disease progression and management 
of nonventricular arrhythmic events.

Diagnostic challenges and ARVC Task Force 
Criteria  A definitive diagnosis of ARVC can 
be made based on histologic evidence of fibro‑
fatty replacement of RV myocardium.1,10 Howev‑
er, despite optimized electrogram guided tech‑
niques developed to overcome limitations due 
to the occasional patchy nature of the disease, 
biopsy of the RV free wall is not routinely per‑
formed. Clinical symptoms including syncope 
and palpitations are not systematically pres‑
ent and not specific. For this reason, the clini‑
cal diagnosis can often be missed. Consequent‑
ly, the diagnosis of ARVC is currently based on 
information obtained from several objective 
diagnostic clues brought together in the ARVC 
Task Force Criteria.11 Diagnosis can only be es‑
tablished if the standardized criteria from dif‑
ferent diagnostic categories are fulfilled. The cat‑
egories include depolarization and repolariza‑
tion electrocardiography (ECG) abnormalities in 
V1–V3 and characteristic VA, abnormal signal
‑averaged ECG, RV function and morphology 
changes on imaging, characteristic histopathol‑
ogy, and family history.11 The diagnostic value of 
each single criterion is required to be assessed 
in the context of combined criteria. Diagno‑
sis is based on the presence of 2 major, 1 major 
and 2 minor, or 4 minor criteria. Emerging diag‑
nostic modalities and advances in the genetics 
of ARVC lead to the revision of the initial TFC 

present with ARVC Task Force Diagnostic Cri‑
teria (TFC) have the defined desmosomal gene 
abnormalities. Furthermore, the desmosomal 
gene abnormalities occur in approximately 15% 
of the general population with no apparent phe‑
notypic expression. These observations should 
force us to question the exact role that genetic 
abnormalities play in many patients with the di‑
agnostic phenotype. It is possible that the genet‑
ic abnormality, rather than causing a dysplastic 
or progressively degenerative process, is actual‑
ly playing a primary role enabling or enhancing 

ECG depolarization criteria

QRSd <120 ms
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Figure 1  Electrocardiographic (ECG) depolarization abnormality criteria and right 
ventricular electroanatomic substrate; top: ECG depolarization abnormality criteria; bottom: 
baseline 12-lead ECG with anterior, inferior, and superior depolarization abnormalities (red 
arrows) and RV endocardial (ENDO) (0.5 to 1.5 mV) and epicardial (EPI) (0.5 to 1.0 mV) voltage 
maps in the right anterior oblique (RAO) projection in the same patient. There are extensive 
ENDO and EPI signal abnormalities including low voltage and late potentials (black tags) in the 
inferior free wall, 7 mid-free wall, and right ventricular outflow tract anatomic locations 
consistent with ECG regional abnormalities. 
�Abbreviations: PV, pulmonic valve; QRSd, QRS duration; RBBB, right bundle branch block ; TV, 
tricuspid valve (adapted with permission from Tschabrunn et al)15 
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RV peri‑tricuspid scar and changes in lead aVR 
and lead 1 identified peri‑pulmonic valve scar in‑
dicating the value of assessing all 12 ECG leads.

Multilead surface ECG repolarization chang‑
es are also associated with larger endocardial 
and epicardial electroanatomic substrate ab‑
normalities (Figure 2).16 Negative T waves, typi‑
cally observed in leads V1 and aVR, may involve 
other ECG leads and represent a marker of not 
only greater endocardial but also epicardial ex‑
tent of disease. Moreover, down‑sloping elevat‑
ed ST‑segment pattern in V1 and V2 occurs with 
more unipolar endocardial voltage abnormali‑
ty and identifies an epicardial VT substrate in 
the right ventricular outflow tract or RV mid
‑free wall region and can mimic changes noted 
in Brugada syndrome.

The electroanatomic substrate can also be ap‑
proximated with the analysis of ventricular re‑
polarization using local catheter-based unipo‑
lar recordings.17 Areas of local inverted T waves 
are closely associated with depolarization low

‑voltage abnormalities on the epicardium. Re‑
polarization abnormalities observed in local 
unipolar recordings correlate and better define 
the complex scar architecture than that defined 
by the analysis of local electrogram depolariza‑
tion abnormalities alone. Of note, repolarization 
changes are not always observed in parallel with 
depolarization abnormalities. Accordingly, de‑
polarization and repolarization abnormalities 
beyond V1 to V3 on 12-lead ECG and local elec‑
trogram T wave inversion have a complementa‑
ry diagnostic value and potential to provide add‑
ed value to define the location and extent of an‑
ticipated substrate abnormalities. Of note, de‑
spite the enthusiasm regarding the added infor‑
mation available from all 12 ECG leads, lack of 
depolarization and repolarization abnormalities 
on surface ECG should be interpreted cautiously 
because significant local voltage abnormalities 
can be still observed without any ECG changes 
in a significant minority of patients. Other elec‑
trocardiographic markers like a wider premature 
ventricular contraction QRS width, RV paced 
QRS width, or longer total endocardial activa‑
tion time may also identify cellular uncoupling 
particularly with stress and may also be useful 
to suggest the presence of structural abnormal‑
ities in ARVC and facilitate diagnosis.18,19 Final‑
ly, despite losing favor with some clinicians and 
investigators,20 the signal‑averaged ECG is still 
used at our institution as a valuable diagnostic 
test particularly when combined with other di‑
agnostic standard 12-lead ECG clues.21

Improving diagnostic imaging clues   It can 
be difficult to properly quantify RV morpholog‑
ical and functional abnormalities. Echocardiog‑
raphy is a first‑line diagnostic test and is sys‑
tematically used to assess the RV size and glob‑
al function. Although improved image quality 

in 2010 resulting in a more sensitive modified 
TFC.12 In probands, these criteria are currently 
applied to establish a diagnosis and are partic‑
ularly useful to differentiate ARVC from dilated 
cardiomyopathy and idiopathic RV outflow tract 
tachycardia. In first‑degree relatives who have 
a 50% probability of inheriting the gene defect, 
an isolated ECG, arrhythmic or echocardiograph‑
ic features may be diagnostic without a need to 
fulfill complete TFC.13,14 Although the modified 
TFC represent the most commonly used diag‑
nostic approach, the diagnosis in the early stag‑
es of ARVC remains challenging and addition‑
al information is available from the ECG, imag‑
ing, and direct catheter-based electroanatomic 
recordings that warrant review.

Additional information from 12‑lead electro‑
cardiography and local unipolar recordings  
The TFC focus on depolarization and repolariza‑
tion changes in the anterior precordial leads V1–
V3. Other ECG leads are typically ignored when 
searching for diagnostic clues. Described diag‑
nostic surface ECG depolarization abnormali‑
ties include epsilon waves, and terminal QRS 
activation delay longer than 55 ms, measured 
from the nadir of the S wave to the end of QRS 
in V1, V2, or V3. Detection and proper localiza‑
tion of arrhythmogenic endocardial and epicar‑
dial electroanatomic substrate before the abla‑
tion procedure is of major importance and clues 
can be provided from 12‑lead ECG. More recent‑
ly, we described QRS fragmentation in patients 
with ARVC and noted that such fragmentation 
could identify the extent and distribution of 
endocardial and epicardial voltage abnormal‑
ities (Figure 1).15 Surface ECG fragmentation in 
the inferior leads was associated with inferior 

Figure 2  Twelve-lead surface electrocardiography (ECG) and representative of endocardial 
(ENDO) low-voltage abnormalities in right anterior oblique view for bipolar (<1.5 mV; on the top) 
and unipolar (<5.5 mV; on the bottom) recordings. A – a patient with no T-wave inversion. The 
abnormal area for ENDO bipolar recordings was 8% of total surface vs 28% for unipolar 
recordings. B – a patient with negative T waves in V1 through V6 and inferior leads. The 
abnormal area for ENDO bipolar recordings was 20% of total surface vs 82% for unipolar 
recordings (reproduced from Kubala et al)16
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consistent with disrupted myocardium. The use 
of unipolar endocardial recordings from the en‑
docardium reflect epicardial bipolar abnormal‑
ities and can be helpful to identify transmural 
or epicardial substrate without requiring access 
to the epicardium and direct mapping.34 Epicar‑
dial areas of abnormal electrograms are consis‑
tently more extensive than endocardial electro‑
gram abnormality.31,35 The presence of fat and 
large‑vessel coronary vasculature may impact 
analysis of epicardial bipolar signals and more 
rigorous methods are required for appropriate 
detection of areas affected by ARVC.31 To be de‑
fined as abnormal and a potential arrhythmo‑
genic substrate, epicardial electrograms have to 
demonstrate more rigid low voltage cut‑off de‑
fined as less than 1.0 mV. They are additional‑
ly required to be 1) wide (≥80 ms duration); 2) 
split (≥2 distinct components with 20 ms iso‑
electric segment between peaks of individual 
components); 3) multicomponent or fragment‑
ed; or 4) late (distinct electrograms with onset 
after the end of the QRS complex).31,36,37

Catheter‑based electroanatomic mapping can 
identify endocardial and epicardial abnormal ar‑
eas even in the absence of classic surface ECG 
changes consistent with the ARVC diagnosis.16 
Moreover, electrophysiological changes have 
been confirmed to precede detectable morpho‑
logical changes using conventional cardiac im‑
aging in patients with mutations in desmopla‑
kin.38 Isolated EAM abnormalities recorded from 
multiple adjacent sites extending over a 2 cm2 
are consistent with a truly early‑stage clinical 
disease and should be utilized as an important 
diagnostic tool.

In a recent guideline document, despite the ac‑
knowledgment that RV endocardial voltage map‑
ping (EVM) may be of added value for the diag‑
nosis of ARVC since it has the potential to iden‑
tify and quantify RV regions of electroanatomic 
scar with low‑amplitude electrical signals, typ‑
ically showing fractionation, double potentials, 
or conduction delay, the use of right ventricu‑
lar EAM was not recommended as an appropri‑
ate tool to facilitate diagnosis of ARVC.20 A ra‑
tionale was provided that indicated “RV EAM is 
invasive, expensive, and highly operator depen‑
dent with a significant risk of inaccurate inter‑
pretation of low‑voltage recordings in areas of 
normal myocardium due to suboptimal cathe‑
ter contact. Moreover, a complete EAM should 
be also obtained from the epicardial side of RV, 
which implies a pericardial puncture which is 
not justifiable solely for diagnostic purposes.’’ 
Also, it was emphasized in the same document 
that endocardial voltage map‑guided endomyo‑
cardial biopsy of the RV free wall is not per‑
formed in the majority of interventional labs and 
cannot be proposed for routine diagnosis. We 
found those arguments unfounded and equiv‑
alent to suggesting that MRI should not be used 

provided by recent ultrasound techniques fa‑
cilitates accurate diagnosis of ARVC, the com‑
plex RV geometry makes the volumetric assess‑
ment by transthoracic echocardiography chal‑
lenging. Quantitative evaluation of RV func‑
tion using regional strain analyses can be use‑
ful in early stages of ARVC and also appears to 
identify arrhythmic risk.22 Typically, decreased 
function of RV basal segments and an abnormal 
strain pattern have been observed in the pres‑
ence of early RV involvement.22 Subclinical lo‑
calized abnormal substrate can also be identi‑
fied using RV deformation imaging.23 The detec‑
tion of these regional localized morphological 
changes can improve the ability to differentiate 
true ARVC from adaptation changes observed in 
endurance athletes with physiological ventric‑
ular enlargement.24 However, ultrasound diag‑
nostic tools remain limited by visually unde‑
tectable mild functional abnormalities and lo‑
calized scarring. Cardiac MR is currently used 
in most patients when serious concerns about 
the ARVC diagnosis are present to best identify 
regional fibrosis and diastolic dysfunction.25‑28 
Use of standardized late gadolinium enhance‑
ment (LGE)-cardiac magnetic resonance imaging 
(MRI) to identify nonconductive areas in the RV 
and enable noninvasive localization of impor‑
tant VT substrate has been proposed.27,29 It has 
been demonstrated that the presence of LGE in 
the RV was associated with histologic fibrosis 
when regions with LGE were targeted for biop‑
sy.27 The regions of the RV epicardium which ex‑
hibit increased gadolinium uptake or slow wash‑
out onslow washout on late gadolinium enhance
ment–cardiac magnetic resonance imaging are 
consistent with lower regional bipolar and un‑
ipolar voltage amplitude on epicardial electro‑
anatomic mapping.29 Despite the progress in im‑
age analysis, cardiac MRI is limited by its lower 
sensitivity in the presence of mild or thinly lay‑
ered regional pathological involvement and di‑
rect electrical recording with endocardial, and 
in selected cases epicardial catheter‑based elec‑
troanatomic mapping appears to be the best di‑
agnostic tool when ARVC is suspected.

Use of electroanatomic mapping to help es‑
tablish diagnosis and define arrhythmogen‑
ic substrate  There is now more than 20‑year 
experience with electroanatomic endocardial 
and 12‑year experience with epicardial electro‑
anatomic mapping in the setting of ARVC.30‑32 
An electroanatomic (EAM) endocardial area is 
considered abnormal in the presence of contig‑
uous low‑voltage electrograms at an amplitude 
less than 1.5 mV for bipolar or less than 5.5 mV 
for unipolar signal.33 To avoid overstating abnor‑
malities, the immediate 1‑cm region adjacent to 
the valve is typically not included in the voltage 
assessment although electrograms can be di‑
rectly assessed for late, and split characteristics 
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selected patients persistent inducible left bun‑
dle branch VT coupled with a unipolar voltage 
abnormality marks the presence of an epicardi‑
al substrate with a very high probability and ap‑
pears more sensitive than MRI for identifying 
an epicardial layered scar (Figure 3).

Once the diagnosis is established, risk strati‑
fication can be performed at the time of voltage 
mapping to identify candidates with inducible 
monomorphic VT who would benefit from im‑
plantable cardioverter‑defibrillator (ICD). High‑
er arrhythmic risk has been reported in patients 
with a greater number of inverted T waves, more 
extensive abnormalities on a signal‑averaged 
ECG, and more extensive area of abnormal elec‑
trograms on electroanatomic mapping.18,19,39,40

Challenges in substrate localization and over‑
coming ablation challenges  There are funda‑
mental differences between ischemic scar typi‑
cally spreading in an endocardial‑to‑epicardial 
direction and the fibrofatty tissue replacement 
that typically extends from the epicardium to 
the endocardium seen in ARVC.41 In most ARVC 
patients, the endocardial bipolar voltage abnor‑
malities are typically perivalvular and affect 
predominantly the RV free wall with minor ex‑
tension to involve the septum.30 Right ventric‑
ular apical scar and VT substrate is uncommon‑
ly (<2%) identified suggesting that there is not 
a true triangle of dysplasia but predominantly 
perivalvular scar extending toward but typically 
sparing the apex (27). Left ventricular (LV) in‑
volvement is observed in one‑third of patients 
with ARVC but as indicated VT originating from 
the LV is uncommon.42 Epicardial areas of ab‑
normal electrograms are consistently more ex‑
tensive than endocardial electrogram abnor‑
mality.31,35 The presence of fat and large‑vessel 
coronary vasculature may impact the analysis 
of epicardial bipolar signals and more rigorous 
signal analysis is required for appropriate de‑
tection of dysplastic areas.31 Careful analysis 
of both surface ECG manifestations and car‑
diac MRI findings can provide preprocedural 
information about the extent and location of 
the RV substrate. Direct catheter‑based voltage 
mapping and electrogram analysis helps define 
the substrate‑based ablation targets when VT is 
not tolerated hemodynamically and cannot be 
mapped. Inducible VTs are frequently poorly 
tolerated and the majority of patients referred 
for CA present with unstable VTs preventing 
accurate definition of critical sites for ablation. 
The approximate site of origin of spontaneous 
and induced VTs is first determined by analyz‑
ing the 12‑lead ECG VT morphology.33,43 For un‑
mappable VTs, the site of origin is also approx‑
imated by the site of pace mapping that gener‑
ates QRS complexes similar to those of VTs.30,33,44 
In these cases, a limited activation and entrain‑
ment mapping information, when available, can 

as an imaging standard in diagnosing ARVC sim‑
ply because not everyone is skilled in accurately 
imaging and interpreting RV MR images. Elec‑
trogram information is, in fact, a very reliable 
reflection of tissue characteristics. It is incum‑
bent on the electrophysiology community who 
routinely performs EAM to develop the skill to 
perform detailed and accurate RV maps. Rec‑
ognition of the common perivalvular nature of 
the early or more limited forms of the disease 
is critical. Developing the ability to loop a cath‑
eter to best map the perivalvular region is es‑
sential. Contact force information and pacing 
to confirm contact can be part of the standard 
mapping technique particularly when techni‑
cal skillsets are more limited. Attending to elec‑
trogram signal characteristics and not just am‑
plitude can provide reassurance that abnormal 
electrograms are not just caused by poor contact.

It is also important to note that abnormal en‑
docardial unipolar recordings (<5.5mV for the RV 
free wall), particularly in the setting of normal 
endocardial bipolar recording, accurately predict 
a high likelihood of epicardial bipolar electro‑
gram abnormalities. Thus, definition of a high 
probability of an arrhythmia substrate can be 
provided by unipolar endocardial recordings 
without the need for direct epicardial recordings. 
In equivocal cases, the upper limit of the unipo‑
lar slider bar can be reduced to 4.5 mV to con‑
firm an even higher probability that a confluent 
area of low endocardial unipolar voltage truly 
reflects an abnormality on the epicardium. In 

Normal bipolar ENDO Inducible LBBB VTs Unipolar ENDO
>1.5 mV

<0.5 mV

No enhancement on MRI Bipolar EPI

>5.5 mV

<0.5 mV

Figure 3  Unipolar endocardial electrograms appear to be more sensitive than magnetic 
resonance imaging for identifying layered epicardial scar. In the example shown, a normal bipolar 
endocardial voltage map (top left) is present in a patient with right ventricular dilatation but no 
gadolinium enhancement and no aneurysm formation. The patient had 3 inducible left bundle 
branch block (LBBB)-type ventricular tachycardias (VTs). The unipolar endocardial voltage map 
(top right) shows large areas of low voltage that predicted the presence of a layered epicardial 
scar with dramatic electrogram abnormalities that served as the substrate for all the VTs.
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epicardial from endocardial ablation need to 
be considered. The presence of coronary vessels 
end epicardial fat measuring >5 mm can dimin‑
ish the signal and pacing capture.47,48 It has also 
been demonstrated that epicardial ablation over 
the sites with >10 mm of epicardial fat can be in‑
effective.49 The integration of contrast‑enhanced 
multidetector computed tomography allowing 
for imaging myocardial fat with 3 dimensional 
electroanatomic mapping provides valuable in‑
formation on VT substrate localization and al‑
lows for direct visualization of the coronary ar‑
teries preventing coronary injury during abla‑
tion.50 Moreover, epicardial ablation with differ‑
ent orientation of the catheter and lower contact 
force than on the endocardium can result in less 
effective lesions. Reduction of rates of irrigation 
flow and of the osmolarity of the irrigation so‑
lution during epicardial ablation may enhance 
ablation efficacy.51,52 Of note, detailed analysis 
of endo and epicardial standard depolarization 
abnormalities display sampling density limita‑
tions. Recent mapping innovations, including 
ripple analysis, can be useful for better delinea‑
tion of the arrhythmogenic substrate targeted 
with CA. Ripple mapping displays every deflec‑
tion of a bipolar electrogram and enables the vi‑
sualization of slow conduction channels. In pa‑
tients with ARVC, ripple mapping conduction 
channels have been shown to be related to RV 
regions displaying LGE on preprocedural cardi‑
ac MRI and to the critical isthmus sites during 
entrainment.53

It has been demonstrated that a simultane‑
ous epicardial and endocardial approach for VT 
mapping and extensive ablation was feasible and 
resulted in elimination of recurrent VT and im‑
provement in long‑term outcomes and the need 
for antiarrhythmic drug therapy (Figure 4).31,35,54 Of 
note, in a multicenter study including patients 
treated with CA without ICD implantation, free‑
dom from recurrent VT in a 46‑month follow‑up 
was 81%.55 Hence, CA of VT in ARVC cannot be 
considered as only a palliative procedure to re‑
duce the frequency of VT episodes but potential‑
ly a “curative” or at least long‑term beneficial pro‑
cedure in most patients. A combined endo / epi 
strategy significantly reduces the need for antiar‑
rhythmic therapy.54 In order to reduce VT recur‑
rences, CA should be systematically preceded by 
a detailed electro‑anatomic mapping and exten‑
sively target the endo and epicardial substrate us‑
ing irrigated catheters to optimize success.31,35,56‑58

By minimizing the risk of recurrent VT with 
CA, a question arises whether the indication for 
intravascular ICD implantation is still required 
and whether a subcutaneous ICD device can be 
used to minimize lead‑related complications in 
young patients and further studies are warrant‑
ed to determine the respective roles of device 
and ablative therapy. Current ablation guide‑
lines recommend CA for sustained VT in ARVC 

be complementary. Targets for CA will be identi‑
fied on the basis of low voltage, the presence of 
late potentials and pace‑mapping matches asso‑
ciated with a long stimulus to QRS interval. Le‑
sions sets can be clustered around targets and 
extend as lines to the valve annuli and cross 
through abnormal substrate. Identification of 
critical sites for VT circuit can be further defined 
using the VT mapping techniques including ac‑
tivation, entrainment, and pace mapping using 
standard criteria.33,44,45 Typically, the isthmus 
sites of mappable VT, which are appropriate abla‑
tion targets, demonstrate entrainment with con‑
cealed fusion (QRS during entrainment matches 
exactly that of the VT) with return cycle length 
within 30 ms of VT cycle length. Characteristi‑
cally, VT circuits and successful ablation sites 
cluster around the tricuspid valve and the pul‑
monic outflow tract and are situated within ab‑
normal voltage areas.30,46 Therefore, an appropri‑
ate identification of abnormal myocardium (<1.5 
mV) differentiated from the valve anulus is need‑
ed and detailed perivalvular voltage mapping is 
the first step to optimizing substrate definition 
and endocardial ablation success.

For many patients, the VT circuit appears to 
be compartmentalized to epicardial substrate 
and, despite a thin walled RV endocardial abla‑
tion, is ineffective. Even in experienced centers, 
the effectiveness of endocardial only ablation is 
40% to 50%. This compartmentalized substrate 
includes a subepicardial scar which constitutes 
a barrier to radiofrequency energy delivery and 
conduction, resulting in delayed and independent 
epicardial activation and need for epicardial ac‑
cess and direct mapping and ablation.32 Access 
to the epicardium is typically gained by a percu‑
taneous subxiphoid route. A posterior approach 
to gain intrapericardial access is typically used 
because of the frequently encountered RV dila‑
tation. Several unique features differentiating 
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Figure 4  A Kaplan–Meier survival curve showing multiple procedure freedom from any 
sustained ventricular arrhythmia. Total number of patients followed from the last procedure is 
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not only for patients in whom antiarrhythmic 
drug therapy is ineffective or not tolerated (class 
I recommendation) but also if not desired or pre‑
ferred (class IIa recommendation).59 In patients 
with ARVC who failed 1 or more attempts of en‑
docardial VT CA, an epicardial approach add‑
ed to the endocardial ablation is considered as 
a class I recommendation.

Scar progression in arrhythmogenic right 
ventricular cardiomyopathy  It had been ini‑
tially reported that VT recurrence after CA is 
common and is due to the progression of dis‑
ease and fibrofatty replacement that should be 
manifest by a greater extent of bipolar and uni‑
polar electrograms abnormalities.60 Knowledge 
about the progression of the RV pathological 
process and the arrhythmogenic risk in ARVC 
are of major importance for optimal manage‑
ment and timing of interventional treatment. 
The growing available body of evidence shows 
lack of uniform progression of endocardial scar 
in patients with ARVC presenting for VT abla‑
tion and document that an increase in scar size 
greater than 10% defined by progression of low

‑voltage abnormalities over a 3 to 5 year peri‑
od is uncommon (Figure 5).61,62 Progression of ab‑
normal endocardial voltage mapping is limited 
to a minority of patients meeting TFC at initial 
presentation. Furthermore, most of the recur‑
rent VAs (72%) originate from regions of pri‑
or scar based on detailed mapping.61‑63 In addi‑
tion, arrhythmogenic substrate responsible for 
recurrent VT remained confined to the origi‑
nally defined area of bipolar voltage abnormal‑
ity.61 Hence, it should not be surprising that giv‑
en the absence of rapid disease progression that 
extensive substrate‑based electroanatomic guid‑
ed and entrainment mapping guided VT CA pro‑
duced long‑term efficacy in the control of VAs.

Although scar progression is uncommon, pro‑
gressive dilation of the RV is typically observed 
and has been demonstrated in several stud‑
ies.14,61,62,64 An increase greater than 20 ml in RV 
volume was seen in 77% of patients between ini‑
tial and redo ablation procedures.62 Voltage in‑
dexed scar area at baseline, but not changes in scar 
size over time, was associated with progressive in‑
crease in RV volume consistent with continuous 
adverse remodeling being associated with larger 
baseline scar area (Figures 5 and 6).61 More research 
is needed to better understand and define mea‑
sures to prevent adverse RV remodeling in ARVC.

Managing arrhythmogenic right ventricular 
cardiomyopathy after ventricular tachycardia 
is controlled  Atrial arrhythmias are common‑
ly observed in patients with ARVC with the fre‑
quency estimated at 34%.65 Given an average ob‑
served age of 38 years, this represents an extreme‑
ly high incidence. Cavotricuspid isthmus–depen‑
dent atrial flutter, rapid focal atrial tachycardias, 

Figure 5  Comparison of bipolar voltage maps over time. Patient with arrhythmogenic right 
ventricular cardiomyopathy who underwent 2 detailed sinus rhythm electroanatomic endocardial 
voltage maps (31 months between maps; [A] baseline; [B] follow-up). Normal-voltage regions 
are shown in purple. Very low–voltage areas are shown in red. Border zones are multicolored. 
No significant progression of bipolar voltage scar was observed (bipolar: 25 vs 19 cm2) 
(reproduced from Briceno et al)61 
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Figure 6  Spearman rank correlations between change in right ventricular (RV) volume and 
baseline scar. Larger bipolar and unipolar voltage indicated scars at baseline were associated 
with a significant increase in RV volume (Spearman correlation coefficient, 0.6965; P = 0.006; 
Spearman correlation coefficient, 0.5743; P = 0.03, respectively) (modified from Briceno et al)61 
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discuss this therapeutic option.71,72 In reported 
registries, patients with ARVC who underwent 
HT were younger and were predominantly re‑
ferred for HT due to heart failure.73 Survival in 
patients with ARVC after HT was similar to re‑
strictive, hypertrophic, and dilated cardiomyop‑
athies and significantly better than ischemic car‑
diomyopathy.74 Accurate risk stratification and 
appropriate selection of patients with the most 
severe form of the disease for HT is challenging. 
Prognostic assessment of functional RV param‑
eters showed that the dilation of right‑sided car‑
diac chambers and tricuspid annulus plane sys‑
tolic excursion were highly predictive of major 
adverse cardiovascular events including HT.64 
However, sufficient data on optimal timing of 
HT in advanced ARVC is still lacking.

Conclusions  ARVC diagnostic and therapeutic 
challenges have been overcome particularly as 
it relates to the management of VAs. Rapid RV 
scar progression is uncommon. Combined and 
detailed endo- and epicardial catheter mapping 
and ablation produces good long‑term outcomes 
and reduces the need for drug therapy.

Despite the progress, many questions remain 
regarding ARVC. What triggers the initial scar 
formation and uncommon progression? How to 
prevent and manage adverse RV remodeling? 
How to better predict and treat atrial arrhyth‑
mias and best prevent intracardiac and device 
lead thrombosis related to low flow states? How 
to manage progressive RV and LV dysfunction 
and delay or prevent the need for transplant? 
These are just a few of the questions indicating 
that although many challenges have been over‑
come, more remain to be addressed. Ongoing re‑
search will continue to allow for better under‑
standing of this pathological condition and fur‑
ther improve outcome.
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