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conditions, to maintaining nuclear factor κB 
(NF‑κB) / iNOS not activated.3 Recent evidence 
demonstrates that nM concentrations of NO re‑
leased by eNOS counteract the binding of NF

‑κB to its promoter response element, thereby 
modulating the activation and translocation of 
NF‑κB.4 On the other hand, NO generated by 

“healthy” eNOS inhibits NF‑κB DNA binding 
through S‑nitrosylation of the Cys 62 residue 
of p50 subunit, thereby maintaining NF‑κB un‑
der subtoxic concentrations.4 The maintenance 
of this equilibrium between Cav‑1 / eNOS at one 
side and NF‑κB / iNOS on the opposite side rep‑
resents the basis for the physiological regulation 
of vascular functionality. Yet, the disruption of 
this relationship leads to endothelial dysfunc‑
tion and vascular inflammation. This is con‑
firmed in the model used by Mierke et al,1 ob‑
tained by means of Cav‑1 / eNOS knockout mice.

Beside the above-mentioned evidence, sever‑
al aspects on the shift occurring at the level of 
NF‑κB / iNOS system from the inactive “healthy” 
state into the inflammatory (activated) condi‑
tion is still to be clarified. However, the involve‑
ment of Cav‑1 in the regulation of eNOS / iNOS 
activation states seems to play a relevant role in 
vascular inflammation.

Compelling evidence shows that caveolae 
(which are 50–100 nm vesicular invaginations 
of the endothelial cell membrane) play a cru‑
cial role in vesicular trafficking and modula‑
tion of signal transduction including eNOS reg‑
ulation.5,6 This occurs via Cav‑1, a 21‑to‑24‑kDa 

The recent study by Mierke et al,1 published 
in Kardiologia Polska (Kardiol Pol, Polish Heart 
Journal), highlights the role of caveolin 1 (Cav‑1) 
/ constitutive endothelial nitric oxide synthase 
(eNOS) in adventitial inflammation and, subse‑
quently, in the progression of vascular smooth 
muscle cell (VSMC) proliferation. This was as‑
sessed in a model of the denuded aorta from 
C57Bl6n (wild‑type), Cav‑1-/-, eNOS-/-, as well as 
Cav‑1-/- and eNOS-/- (C/e–/–) mice transplanted 
into common carotid arteries of wild‑type mice.

This confirms previous background data which 
showed that the Cav‑1 / eNOS system plays a pro‑
tective role against VSMC proliferation, which 
is associated with several disease states, includ‑
ing diabetes, hyperlipemia, arterial hyperten‑
sion, etc, leading to atherosclerotic plaque pro‑
gression and atherothrombosis.2 The activity 
of Cav‑1 / eNOS protective mechanisms is at‑
tenuated by inflammatory stimuli associated 
with an overproduction of inflammatory cyto‑
kines which, in turn, reduce eNOS release and, 
via activation of inducible NOS (iNOS) and cy‑
clooxygenase 2, generate large quantities of NO 
and prostanoids.3 This effect, alongside oxida‑
tive stress, leads to apoptotic cell death of en‑
dothelial cells and VSMC proliferation, though 
the mechanisms still remains to be elucidated.

Evidence clearly showed that a continuous 
cross‑modulation exists between eNOS and 
iNOS under basal conditions as well as in the de‑
velopment of vascular inflammation. Moreover, 
it is known that eNOS contributes, under basal 
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mechanisms should provide useful information 
for a better management of atherothrombosis.
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protein, which works as a scaffolding protein and 
negatively modulates phosphorylation of eNOS 
by interacting with multiple molecules. This ef‑
fect of Cav‑1 on eNOS activation is also regulat‑
ed by Ca2+-calmodulin.7

In particular, it has been shown that the bind‑
ing of Cav‑1 to eNOS is a crucial negative regu‑
lator of eNOS activity and that inflammation

‑related decrease of NO production in endothe‑
lial cells is partially due to an increased interac‑
tion of Cav‑1 and eNOS.8 Thus, the mechanism 
is involved in inflammation‑induced endothe‑
lial dysfunction and atherosclerosis, though it 
is still unclear.

Toll-like receptor (TLR) 4 is the major player 
in the regulation of the activity of Cav‑1.9 This 
receptor has been found to play a crucial role in 
inflammatory response occurring in vascular 
and nonvascular tissues. Its function requires 
Tyr14 phosphorylation of Cav‑1 to exert its in‑
flammatory role.10 On the other hand, TLR4 
starts early recruitment of the adaptor protein 
MyD88 leading to the activation of IκB kinase, 
which is involved in phosphorylation and deg‑
radation of IκB, leading, in turn, to the release 
and translocation of NF‑κB to the nucleus.2 Thus 
TLR4, once activated, leads to Cav‑1 phosphory‑
lation, thereby inhibiting a constitutive NO re‑
lease by eNOS. Moreover, TLR4 activates NF

‑κB, which leads to activation of iNOS, there‑
by initiating vascular inflammation and VSMC 
proliferation. This fits very well with data pro‑
vided by Mierke et al.1 Indeed, they found that 
Cav‑1 and eNOS knockout was accompanied by 
inhibition of vascular endothelial growth factor 
A expression and VSMC proliferation. It is like‑
ly that derepression of iNOS and NF‑κB activa‑
tion, in Cav‑1 and eNOS knockout mice may con‑
tribute to this response. On the other hand, it 
is likely that other mechanisms may contribute 
in the consequences of imbalanced Cav‑1 / eNOS 
regulation occurring in vascular inflammation. 
Indeed, evidence exists that metabolic disorders 
accompanied by enhanced formation of oxidized 
low‑density lipoprotein lead to the upregulation 
of Cav‑1.2 This is associated with an overexpres‑
sion of the lectin-like oxidized low-density lipo‑
protein receptor-1, which contributes to trans‑
location of NF‑κB with subsequent activation 
of iNOS and cyclooxygenase 2.

In conclusion, physiological regulation 
of eNOS and Cav‑1 contributes to the mainte‑
nance of blood vessels into a noninflammatory 
state, which is characterized by low tissue con‑
centrations of inducible enzymes, inflamma‑
tory mediators, and growth factors. An imbal‑
anced regulation of these mechanisms produces 
overexpression of TLR4 / NF‑κB which, in turn, 
is accompanied by larger concentrations of in‑
flammatory mediators, mostly from the adven‑
titia, which promote VSMC proliferation and 
vascular stenosis. Further exploration of these 
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