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WHAT’S NEW?  

This study pioneered the use of cluster analysis to identify distinct cardiac phenotypes 

associated with cardiovascular risk in patients with type 2 diabetes mellitus and chronic 

coronary artery disease. Notably, patients with the “larger, thicker, faster” cardiac phenotype 

demonstrated significantly higher risks for adverse cardiovascular outcomes, independent of 

sex or hypertension status. These higher-risk patients may benefit from targeted interventions 

focusing on proper control of uric acid, cholesterol, and prevention of anemia to improve their 



 
 

cardiovascular prognosis. 

 

 

ABSTRACT 

Background: Patients with type 2 diabetes mellitus (T2DM) and chronic coronary artery 

disease (CAD) are at very high risk of major adverse cardiovascular events (MACE), but further 

risk stratification remains challenging.  

Aims: This study aimed to use cluster analysis to identify cardiac phenotypes associated with 

cardiovascular risk in T2DM and chronic CAD populations. 

Methods: Cluster analysis was performed on 12 echocardiographic variables, including aortic 

and pulmonary artery diameters, atrial and ventricular dimensions, interventricular septum and 

posterior wall thicknesses, ejection fraction, and blood flow velocities in 1633 Chinese 

individuals. Survival outcomes were analyzed using Kaplan–Meier methods, Cox proportional 

hazards models, and restricted cubic splines. 

Results: Two distinct phenotypes were identified. Patients in cluster 2 were characterized by 

larger atrial and ventricular volumes, thicker interventricular septum and posterior walls, higher 

ventricular mass index, and faster aortic blood flow velocity, summarized as “larger, thicker, 

faster”. Over a median 15-month follow-up, patients in cluster 2 exhibited higher MACE risk 

(HR, 1.35; 95% CI, 1.17–1.57), particularly for heart failure hospitalization (HR, 1.37; 95% CI, 

1.15–1.64). Consistent results were observed in sex and hypertension subgroups. Fibrinogen 

≥3.8 g/l, uric acid ≥329.2 mmol/l, high-density lipoprotein cholesterol ≤1.07 mmol/l, low-

density lipoprotein cholesterol ≥2.5 mmol/l, and hemoglobin ≤132 g/l were demonstrated 

statistically risk factors for MACE in cluster 2. 

Conclusions: Cluster analysis of echocardiographic variables may improve the identification 

of higher risk patients and highlighted the prognostic value of cardiac remodeling in T2DM and 

chronic CAD populations. 
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INTRODUCTION 

Despite the increasing awareness of targeted prevention strategies for complications correlated 

with type 2 diabetes mellitus (T2DM), the concerned morbidity and mortality still remain high 



 
 

[1], particularly cardiovascular disease and coronary artery disease (CAD) [2]. Patients with 

established cardiovascular disease, yet without recent acute events, are commonly characterized 

as having chronic CAD [3, 4], including those with stable angina, silent ischemic 

cardiomyopathy and stabilized state after previous acute coronary syndrome [5, 6], which has 

been a common complication in diabetes people. Prominent modifications in cardiac structure 

and functions can be observed in T2DM and chronic CAD patients, including but not limited 

to left ventricular hypertrophy [7, 8], diastolic dysfunction [9], and reduced left ventricular 

ejection fraction [10]. These modifications reflect the development of cardiac remodeling, 

contributing to particularly high risk of major adverse cardiovascular events (MACE), such as 

acute coronary syndrome [4], stroke [11] and heart failure [12,] significantly influencing the 

life quality of diabetes people. Therefore, there is an imperative need to early identify the 

characteristics of the higher-risk individuals to optimize the clinical management within T2DM 

and chronic CAD people. 

Indeed, in light of the considerable heterogeneity in sex [13], age [14] and the presence of 

common comorbidities like hypertension [15], obesity [16], it remains truly challenging to 

effectively determine the higher-risk patients for MACE in clinical practice. Recently, cluster 

analysis, an unsupervised machine learning approach that categorizes individuals with similar 

features, emerges as a promising approach to distinguishing heterogeneous people and shows 

great potential for risk estimation [17–20]. 

In this study, we aimed to employ cluster analysis based on echocardiographic variables to 

identify distinct cardiac phenotypes associated with cardiovascular prognosis in T2DM and 

chronic CAD patients, and further determine concerned risk factors to recognize the higher-risk 

characteristics for MACE.  

 

MATERIAL AND METHODS 

Study cohort 

The study recruited diabetes patients hospitalized in the Affiliated Zhongda Hospital of 

Southeast University between 2013 and 2018. We targeted T2DM individuals who were 

complicated with chronic CAD and these undergone echocardiogram and clinical examination. 

Here, patients with chronic CAD were defined as those experiencing stable angina, silent 

ischemic cardiomyopathy and individuals who had maintained a stable state >1 year after 

previous acute coronary syndrome or revascularization [5, 6].  

The exclusion criteria were as follows: patients with the history of severe adverse 

cardiovascular events in 1 year (n = 857), other types of cardiomyopathy disease (n = 85), 



 
 

valvular heart disease (n = 34), pericardial disease (n = 32), structural congenital cardiac 

anomalies (n = 9), other severe diseases with cardiac complications (n = 23), severe renal 

insufficiency (estimated glomerular filtration rate [eGFR] <30 ml/min/1.73 m2) (n = 147), 

carcinoma (n = 531) and individuals with extreme outliers (n = 39). Following a comprehensive 

exclusion process, the final sample size comprised 1633 adults. Ethical Approvals were given 

by the Research Ethics Committee of the Affiliated Zhongda Hospital of Southeast University 

(Approved No. of the ethic committee: 2020ZDSYLL028-P01). A waiver of informed consent 

was obtained and no informed consent form was used. 

 

Clinical and biological data 

On the first day of admission, the study collected clinical data including demographics 

information (sex, age), physical measurements (weight, height, blood pressure), living habits 

(smoking and alcohol drinking), medical history (hypertension) and medication use (metformin, 

insulin, anti-platelet, and statin). Drinking or smoking history was defined as alcohol or 

cigarettes consumption for more than 3 months without abstinence separately. Body mass index 

(BMI) was calculated from height and weight. Hypertension at baseline was defined based on 

a prior diagnosis. Following an overnight fast of 8 hours, venous blood samples were obtained 

for analysis. Laboratory parameters were measured as follows: fasting blood-glucose, 

glycosylated hemoglobin (HbA1c), platelets (PLT), hemoglobin (Hb),total cholesterol, low-

density lipoprotein cholesterol (LDL cholesterol), apolipoprotein-B, high-density lipoprotein 

cholesterol (HDL cholesterol), apolipoprotein-A, lipoprotein-a, fibrinogen degradation 

products, fibrinogen, prothrombin time (PT), activated partial thromboplastin time (APTT), 

thrombin time, international normalized ratio, D-dimer, serum uric acid (UA), blood urea 

nitrogen (BUN), serum creatinine, antithrombin-Ⅲ, eGFR, alanine aminotransferase, aspartate 

aminotransferase. The eGFR was calculated by the CKD-EPI equation [21]. All blood 

parameters were measured by the professional personnel in Zhongda Hospital. The Laboratory 

Center of Zhongda Hospital abides by internal and external quality management procedures 

overseen by the Chinese Laboratory Quality Control. 

 

Echocardiogram 

Echocardiogram examinations were undertaken with commercial echocardiographic systems 

(Vivid E9; Ge-vingmed, Horten, Norway). The detailed process had been described elsewhere 

[22]. The echocardiogram measurements followed the guidelines of the American Society of 

Echocardiography or European Association of Cardiovascular Imaging and performed by 



 
 

experienced technicians. At least five cardiac cycles were recorded and stored digitally for 

further analysis by professional ultrasound physicians.  

The following indicators were measured and recorded: aortic root diameter (AO), 

ascending aorta diameter (AAO), pulmonary artery diameter (PA), left atrium diameter (LA), 

right atrium diameter (RA), left ventricular (LV) end-diastolic diameter, interventricular septum 

thickness (IVS), left ventricular posterior wall thickness (LVPW), right ventricular (RV) end-

diastolic diameter, aortic blood flow velocity (AV), pulmonary valve opening velocity (PV), 

left ventricular ejection fraction (LVEF), peak early (E) and late (A) diastolic velocities and E/A 

ratio was calculated. Based on the measurements, following values were calculated: left 

ventricular mass (g) = 0.8 × 1.04 × ([IVS + LVPW + LV]3 – LV3) + 0.6 [23]; body surface area  

(m2) = 0.0061 × height (cm) + 0.0128 × weight (kg) – 0.1529; left ventricular mass index (g/m2) 

= left ventricular mass/body surface area; relative wall thickness = (LVS + LVPW)/LV. 

 

End points  

The primary endpoint for this study was the composite of MACE, specifically defined as 

cardiovascular death, nonfatal myocardial infarction (MI), nonfatal stroke, and hospitalization 

for heart failure. The secondary endpoint was the occurrence of individual MACE event 

separately. The follow-up time was defined as the duration from the first visit to the first MACE 

occurrence. If a patient experienced multiple events of interest, the first event would be recorded 

and the follow-time was considered the time to the first one. All cardiovascular data were 

obtained from medical records of Zhongda Hospital and evaluated by professional doctors 

based on the International Classification of Diseases (ICD-10) coding system. 

 

Cluster analysis 

Initially, data preprocessing was conducted to align with the requirements of cluster analysis. 

We first performed missing value analysis in all patients, and remained the variables with 

missing data lower than 20%. The Expectation Maximization method was employed for 

interpolating missing data, thereby maintaining an appropriate sample size without destroying 

the original data characteristics [24]. Then, all continuous echocardiogram values were 

standardized to a mean value of 0 and a standard deviation (SD) of 1. Extreme outliers (>5 SDs 

from the mean, n = 39) were excluded. Given the sample size of the study, the K-means 

clustering algorithm was adopted for the analysis of 1633 T2DM and chronic CAD patients 

based on twelve standardized echocardiogram values (AO, AAO, LA, RV, IVS, LV, LVPW, PA, 

RA, AV, PV, LVEF). K-means clustering algorithm belongs to unsupervised machine learning 



 
 

method, which can manage clustering tasks on large continuous data at fast speed and high 

quality [25]. The main process of the K-means algorithm is divided into following parts. Firstly, 

select K points randomly as initial cluster centers. Secondly, calculate the Euclidean distance 

for continuous data between the centers, with assigning remaining points to the closest cluster 

centers. Finally, re-identify the new cluster center by calculating the mean distance of all 

samples in each cluster. As long as the cluster membership becomes stable, the algorithm will 

stop.  

To determine the optimal cluster numbers, a combination of 30 different tests was 

conducted using NbClust package in R [26]. This package provides 30 indices to assess the 

optimal number of clusters through various combinations of cluster numbers, clustering 

methods, and distance measures. Based on the recommended indices, the unsupervised 

clustering algorithm identified two clusters as the optimal number, and 1,633 individuals were 

divided into two clusters automatically (cluster 1: n = 921, cluster 2: n = 712). A heat map was 

employed to represent the cluster results, with dendrograms displaying the combination process 

of 2 clusters in different colors. The specific cut-off points for the echocardiographic parameters 

in cluster 2 were determined using Receiver Operating Characteristic (ROC) Curve. To validate 

the stability of cluster results, principal component analysis based on the first three principal 

components was adopted and the dynamic plot was generated for better visualizing the 

distribution by clusters. In addition, we further evaluated the effectiveness of the unsupervised 

clustering algorithm with Silhouette coefficient, Calinski–Harabasz (CH) index, and Davies-

Bouldin (DB) index. Radar plots were diagramed to exhibit the echocardiographic and clinical 

characteristics between clusters. 

 

Statistical analysis 

Clinical and echocardiogram characteristics were described by clusters. Data was presented as 

n (percentage %) for categorical data, and mean (SD) or median (interquartile range) for 

continuous data according to the results from normality test. Comparisons between clusters 

were conducted by the χ2 test or Fisher exact test for categorical data and Student’s t-test, or 

Mann–Whitney U test for continuous values. Survival analyses were performed to evaluate the 

prognostic value of cardiovascular phenotypes identified by cluster analysis. Unadjusted 

cumulative incidence curves and adjusted (sex, age, diabetes duration) survival curves were 

plotted by the Kaplan–Meier method for the composite MACE and individual MACE separately. 

The significance of cluster comparison was assessed by employing log-rank tests. Crude and 

adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated by cox 



 
 

proportional hazards regression models. Additionally, we performed subgroup analysis to re-

demonstrate survival results by stratifying patients based on sex and the presence of 

hypertension. 

To further determine higher-risk characteristics for MACE, the study conducted the risk 

factor analysis in multivariable cox regression models by cluster. Variables for multivariable 

Cox regression models were selected through following steps: (1) examining baseline 

information and univariable analysis results, excluding variables showing neither significant 

difference; (2) performing collinearity diagnostics and selecting representative variables; (3) 

optimizing variable combinations based on model efficiency. The final model included sex, age, 

diabetes duration, BMI, hypertension, smoking, drinking, Hb, PLT, HbA1c, HDL cholesterol, 

LDL cholesterol, BUN, eGFR, UA, PT, APTT, FIB, D-dimer. To amplify the effect, the 

continuous variables were standardized. Based on multivariable Cox regression analyses, 

hazard ratios were showed in forest plots stratified by cluster. Restricted cubic spline analyses 

were employed to elucidate the continuous relationships between risk factors and MACE 

incidence, with specific points identified at HR = 1 to facilitate practical risk assessment. Two-

sided P values <0.05 were considered significant statistically. The analyses and visualizations 

were performed using SPSS version 27.0, R version 4.2.1 and Python version 3.7. 

 

RESULTS 

Clustered cardiac phenotypes and baseline characteristics 

A total of 1,633 T2DM and chronic CAD patients participated in the study, of which 55.8% 

(911/1633) were male, with an average age of 71.6 (9.5) years. Cluster analysis was conducted 

based on twelve echocardiographic parameters (AO, AAO, LA, RV, IVS, LV, LVPW, PA, RA, 

AV, PV, LVEF), and two distinct clusters were successfully determined, exhibiting notable 

disparities in cardiac and clinical attributes (Figure 1; Supplementary material, Figure S1, Video 

S1). Clustering effectiveness was validated with the following metrics: Silhouette coefficient of 

0.72, Calinski–Harabasz index of 592.34, and Davies–Bouldin index of 0.68. These results 

indicated robust internal homogeneity within clusters and distinct separation between them, 

affirming the reliability of the K-means clustering approach in identifying distinct cardiac 

phenotypes.  

Comprehensive baseline characteristics for each cluster were shown in Table 1 and Table 

2. Patients in cluster 2 exhibited a cardiac phenotype described as “larger, thicker, faster”, 

specifically characterized by increased atrial and ventricular volumes, thicker interventricular 

septum, higher left ventricular mass index, elevated AO and PA diameters, accelerated aortic 



 
 

blood flow velocity, as well as lower ejection fraction. Conversely, cluster 1 showed 

significantly opposite trends to cluster 2. Patients in cluster 1 had decreased atrial and 

ventricular volumes, thinner interventricular septum, lower left ventricular mass index, 

decreased AO and PA diameters, slower aortic blood flow velocity, and lower ejection fraction.  

In terms of clinical parameters, patients in cluster 1, with a mean age of 71.1 years, had a 

higher percentage of female (51.9%), showing elevated levels of eGFR, PLT, HDL cholesterol 

and antithrombin-Ⅲ, and lower levels of D-dimer, fibrinogen degradation products, fibrinogen 

and UA. Patients in cluster 2 had the mean age of 71.8 years and comprised mainly male 

(65.7%), and were more likely to have higher incidence of hypertension, worse renal and 

coagulation function, and a lower proportion of insulin use. The lipid indicators between the 

two clusters did not show statistically significant differences.  

 

Clinical outcomes by cluster 

Over a median follow-up of 15 months (interquartile range: 7–30 months), 712 individuals 

(43.6%) experienced MACE, including 1 cardiac death (0.1%), 203 non-fatal MI (12.4%), 30 

non-fatal stroke (1.8%), 478 cases of progressive heart failure (29.3%) (Table 3). The incidence 

of both composite and individual MACE was notably higher in cluster 2 compared to cluster 1 

(Figure 2; Supplementary material, Figure S2). 

Kaplan–Meier survival analyses indicated prominent differences among clusters for 

composite MACE risk, with cluster 2 consistently demonstrating poorer prognostic values 

(Log-rank P <0.001). With Cox proportional hazards modeling, the risk of the primary outcome 

significantly increased 35% in cluster 2 (HR, 1.35; 95% CI, 1.17–1.57; P <0.001). Upon 

evaluated individual MACE, patients from cluster 2 were consistently at higher risk in 

comparison to cluster 1, particularly for heart failure hospitalization (HR, 1.37; 95% CI, 1.15–

1.64; P <0.001). For nonfatal MI and stroke, cluster 2 also demonstrated a tendency toward 

increased risk with HR 1.30 (95% CI, 0.98–1.71; P = 0.066) and 1.28 (95% CI, 0.62–2.63; P = 

0.100) respectively. After adjustments for sex, age, and duration of diabetes, similar results were 

observed, and the trends appeared to become more pronounced (Supplementary material, 

Figure S3). 

In cluster 2, echocardiographic parameters, particularly those characterizing left heart 

structure, demonstrated significant predictive value of MACE risk (Supplementary material, 

Table S1, Figure S4). The optimal cut-off values for left ventricular size and wall thickness were 

identified as LV ≥5.20 cm (area under the curve [AUC] = 0.58, P <0.001), IVS ≥1.21 cm (AUC 

= 0.54, P = 0.04), and LVPW ≥1.18 cm (AUC = 0.55, P = 0.03). Notably, left atrial enlargement 



 
 

(LA ≥4.31 cm; AUC = 0.54, P = 0.02) also suggested predictive value. These results emphasize 

the importance of cardiac hypertrophy and atrial remodeling in cardiovascular risk stratification. 

To evaluate whether the difference of sex or the coexistence of hypertension between 

clusters influenced the survival results, we stratified 1,633 patients by sex and hypertension 

status for further validation. The results of the subgroup analysis for the composite MACE are 

depicted in Supplementary material, Figure S5. In line with previous findings, patients from 

cluster 2 consistently demonstrated higher risk for MACE (all P-values <0.05). 

 

Risk factor analysis for MACE  

To further elucidate the clinical characteristics associated with worse cardiovascular 

prognosis, the study conducted the risk factor analysis by clusters. After univariate Cox 

regression analysis and collinearity analysis, sex, age, diabetes duration, BMI, hypertension 

state, smoking, alcohol drinking, Hb, PLT, HbA1c, HDL cholesterol, LDL cholesterol, BUN, 

eGFR, UA, PT, APTT, FIB, D-dimer were selected into the multivariable Cox regression 

models (Supplementary material, Table S2, Table S3). As shown in the forest plots, in cluster 1, 

prolonged APTT (HR, 1.11; 95% CI, 1.03–1.20) and elevated FIB levels (HR, 1.17; 95% CI, 

1.05–1.30) were significant risk factors for MACE. In cluster 2, LDL cholesterol (HR, 1.13; 

95% CI, 1.01–1.27), UA (HR, 1.17; 95% CI, 1.02–1.35), FIB (HR, 1.12; 95% CI), Hb (HR, 

0.86; 95% CI, 0.76–0.97) and HDL cholesterol (HR, 0.83; 95% CI, 0.72–0.95) were positively 

correlated with the incidence of MACE (Figure 3). 

Restricted cubic splines had visualized the relationships between individual risk factors and 

MACE risks and determined the concrete points for each phenotype. In cluster 1, APTT ≥37.1s 

and fibrinogen ≥3.7g/l were associated with higher risk of MACE (P <0.05) (Figure 4). For 

cluster 2, fibrinogen ≥3.8 g/l, UA ≥329.2 µmol/l, HDL cholesterol ≤1.07 mmol/l, LDL 

cholesterol ≥2.5 mmol/l, Hb ≤132 g/l were responsible for elevated MACE risk (all P values 

<0.05) (Figure 5).  

 

DISCUSSION 

In a retrospective cohort of T2DM and chronic CAD people, we assessed the cardiovascular 

prognosis in clustered cardiac phenotypes and determined risk factors for MACE respectively. 

The study made following observations. First, cluster analysis had effectively distinguished two 

phenotypes significantly differentiated by echocardiographic and clinical features. Second, 

patients characterized with “larger, thicker, faster” cardiac phenotype exhibited markedly 

higher risks for MACE, irrespective of sex or the presence of hypertension. Third, these higher-



 
 

risk patients may benefit from careful control of uric acid, cholesterol and the prevention of 

anemia to improve future cardiovascular prognosis. 

Although cardiovascular risk management in T2DM patients has become a widely 

discussed topic, the incidence of MACE still remains high, with an even more pronounced rate 

among those with pre-existing chronic CAD [27]. However, on account of the substantial 

heterogeneity and the limits of traditional approaches, no intuitive assessment method had yet 

been developed to effectively identify the higher-risk individuals [28].  

As an unsupervised machine learning method, cluster analysis provides a data-driven 

framework that captures latent structures, enhancing the accuracy and clinical relevance [29, 

30]. Unlike traditional methods that rely on predefined hypotheses, the unsupervised nature of 

cluster analysis could identify given population into distinct clusters which share similar 

characteristics, enabling better risk stratification of heterogeneous populations, which is 

particularly relevant for diseases like diabetes [31]. Previous studies tried to compare 

conventional analysis and cluster analysis to discriminate cardiovascular risks, with results 

demonstrating the superiority of cluster analysis for prognosis values [32–34]. 

The study was the first to conduct cluster analysis of echocardiogram parameters in T2DM 

and chronic CAD patients. Two cardiac phenotypes were determined: an enlarged and 

hypertrophic phenotype (cluster 2) and the other phenotype (cluster 1). Cluster 2 characterized 

with the worse alteration in cardiac structure-function, showed higher risk of composite and 

individual MACE. These findings aligned with prior research emphasizing the role of cardiac 

structural remodeling in cardiovascular events [32, 33]. It is noteworthy that these studies might 

ignore the imbalanced distribution of sex and hypertension morbidity at baseline, which are 

both associated with cardiac remodeling and cardiovascular events. To enhance the robustness 

of results, additional subgroup analyses were conducted. The results did strengthen our findings. 

Interestingly, in cluster 2, we discovered that LV ≥5.20 cm, IVS ≥1.21 cm, LVPW ≥1.18 cm, 

and LA ≥4.31 cm had better predictive values for MACE than other indicators, indicating that 

even within cardiac-remodeling patients, individuals with larger cardiac volumes and thicker 

left ventricular structures consistently exhibited higher risk of MACE. 

The study also determined various risk factors for MACE by clustered phenotypes among 

T2DM and chronic CAD people. Especially in cluster 2, high LDL cholesterol, low HDL 

cholesterol, high fibrinogen, anemia and hyperuricemia were reported to have strong relevance 

to cardiovascular events, reflecting the severe metabolism disorders in vivo and their promoting 

effects on worsen cardiovascular prognosis, which is consistent with previous studies [35–39]. 

But few studies have identified specific cut points in these populations. Our study demonstrated 



 
 

that fibrinogen ≥3.8 g/l, UA ≥329.2 µmol/l, Hb ≤132 g/l were correlated with elevated MACE 

risk. It seemed to be inconsistent with normal control target, suggesting the normal purpose 

may not be suitable for these particular group, calling for more accurate management goals of 

those clinical indicators. Above all, the study suggested that T2DM and chronic CAD people, 

especially in undergone cardiac-remodeling individuals, could benefit from proper control of 

uric acid, cholesterol and prevention of anemia for future cardiovascular prognosis. 

Overall, this study demonstrated the clinical utility of cluster analysis as an effective tool 

for risk stratification in heterogeneous populations, particularly highlighting the prognostic 

significance of cardiac remodeling. These results underscored the necessity of routine 

monitoring of echocardiographic and clinical parameters to enable early detection and 

prevention strategies. Furthermore, the study emphasized the importance of initiating 

cardioprotective therapies, such as GLP-1 receptor agonists [40] or SGLT-2 inhibitors [41], at 

an early stage to reduce the risk of MACE and improve long-term outcomes. 

This study has several limitations. First, its single-center retrospective design may 

introduce selection and reporting biases, potentially limiting the generalizability of findings. 

Future multi-center prospective studies are necessary to validate these results across diverse 

populations. Second, the lack of detailed data on coronary artery stenosis severity and 

medication usage (e.g., ACEI/ARB) may have influenced the observed associations. 

Incorporating these variables into future analyses could refine risk prediction models. Finally, 

while the clustering algorithm demonstrated robust internal consistency, external validation 

using independent datasets is crucial to confirm the reproducibility of the identified phenotypes. 

 

CONCLUSION 

The study illustrated the potential of cluster analysis for risk stratification in heterogeneous 

population, emphasizing the importance of cardiac remodeling and metabolic disorders in 

worse prognosis, providing new insight for early identification of higher-risk patients and 

emphasizing the significance of regular echocardiography assessments in T2DM people. 

 

Supplementary material  

Supplementary material is available at https://journals.viamedica.pl/polish_heart_journal 
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Table 1. Clinical phenotypes according to patient clusters 

  

  
N 
 

Overall 
 

Cluster 1 

n = 921 

Cluster 2 

n = 712 

P-

value 

Clinical 

characteristics 
     

Male, n (%) 

163

3 911 (55.8) 443 (48.1) 468 (65.7) 

<0.00

1 

Age, years 

163

3 71.6 (9.5) 71.1 (9.7) 71.8 (9.2) 0.108 
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BMI (kg/m2) 

163

3 25.2 (3.9) 25.1 (3.9) 25.2 (3.9) 0.534 

Smoking, n (%) 

162

3 458 (28.2) 261 (28.5) 197 (27.9) 0.823 

Drinking, n (%) 

162

3 183 (11.3) 101 (11.0) 82 (11.6) 0.778 

Hypertension, n 

(%) 

163

3 1350 (82.7) 710 (77.1) 640 (89.9) 

<0.00

1 

Diabetes duration, 

years 

138

8 10.0 (8.0–11.0) 9.5 (8.0–11.0) 10.0 (8.0–11.0) 0.069 

Biochemistry 
     

FBG, mmol/l 

163

3 8.7 (6.7–12.1) 8.7 (6.7–12.2) 8.7 (6.7–12.3) 0.431 

HbA1c, % 

161

4 7.9 (1.8) 8.0 (1.8) 8.0 (1.9) 0.87 

CHOL, mmol/l 

162

3 4.3 (3.4–5.1) 4.3 (3.5–5.2) 4.2 (3.4–5.0) 0.005 

HDL cholesterol, 

mmol/l 

162

3 1.1 (0.3) 1.2 (0.3) 1.1 (0.3) 

<0.00

1 

LDL cholesterol, 

mmol/l 

162

3 2.6 (0.9) 2.6 (0.9) 2.5 (0.9) 0.204 

Apolipoprotein 

A1, g/l 

161

5 1.0 (0.2) 1.1 (0.2) 1.0 (0.2) 

<0.00

1 

Apolipoprotein B, 

g/l 

161

5 0.8 (0.2) 0.8 (0.2) 0.8 (0.2) 0.187 

Triglyceride 

mmol/l 

162

3 1.6 (1.1–2.2) 1.6 (1.1–2.3) 1.5 (1.1–2.2) 0.116 

Lipoprotein-a mg/l 

162

3 

212.0 (123.0–

374.0) 

219.0 (131.0–

375.0) 

204.0 (117.8–

371.3) 0.115 

PT, s 

161

0 

10.8 (10.1–

11.6) 

10.7 (10.0–

11.4) 

11.0 (10.3–

11.8) 

<0.00

1 

TT, s 

161

3 

14.3 (13.4–

15.4) 

14.3 (13.5–

15.4) 

14.4 (13.4–

15.5) 0.637 



 
 

APTT, s 

161

3 

30.5 (28.4–

32.9) 

30.4 (28.4–

32.7) 

30.7 (28.3–

33.0) 0.435 

ATIII, % 

161

3 

96.0 (86.0–

107.0) 

98.0 (87.0–

109.0) 

94.6 (84.0–

105.0) 

<0.00

1 

DD, µg/l 

159

6 

149.0 (79.0–

290.0) 

129.0 (70.0–

246.0) 

174.5 (98.8–

330.0) 

<0.00

1 

FDP, mg/l 

160

8 1.7 (1.0–2.7) 1.6 (0.9–2.4) 1.9 (1.1–2.9) 

<0.00

1 

Fibrinogen, g/l 

160

2 3.8 (3.2–4.3) 3.7 (3.2–4.2) 3.8 (3.3–4.4) 0.011 

INR 

161

3 1.0 (0.9–1.1) 1.0 (0.9–1.1) 1.0 (0.9–1.2) 

<0.00

1 

BUN, mmol/l 

163

2 5.9 (4.7–7.5) 5.6 (4.6–7.1) 6.1 (4.9–8.1) 

<0.00

1 

Cr, µmol/l 

163

2 

79.0 (64.0–

100.0) 

75.0 (62.0–

91.0) 

86.0 (69.0–

111.0) 

<0.00

1 

UA, µmol/l 

163

3 

309.0 (246.0–

382.0) 

290.0 (234.0–

356.0) 

329.0 (264.0–

411.3) 

<0.00

1 

eGFR, 

ml/min/1.73m2 

163

2 80.4 (34.7) 84.8 (34.9) 74.6 (33.6) 

<0.00

1 

Hb, g/l 

156

2 132.2 (18.6) 132.3 (17.6) 131.9 (19.8) 0.713 

PLT, *109/l 

156

2 192.6 (59.0) 195.5 (57.2) 188.8 (60.9) 0.026 

AST, U/l 

159

1 

19.0 (15.0–

27.0) 

19.0 (15.0–

26.0) 

20.0 (15.0–

28.0) 0.187 

ALT, U/l 

159

1 

20.0 (13.0–

30.0) 

19.0 (13.0–

29.1) 

21.0 (13.0–

30.0) 0.208 

Medications 
     

Antiplatelet, n (%) 

145

1 1196 (82.4) 672 (81.1) 524 (84.2) 0.132 

Statin, n (%) 

145

0 854 (58.9) 478 (57.6) 376 (60.6) 0.265 



 
 

Insulin, n (%) 

145

5 563 (38.7) 345 (41.4) 218 (35.0) 0.016 

Metformin, n (%) 

145

5 217 (14.9) 130 (15.6) 87 (14.0) 0.433 

Data was presented as mean (SD) for normally distributed data, or median (interquartile range) for non-

normally distributed data, and n (%) for categorical data 

*P-values were calculated by Student’s t-test or Mann–Whitney U test for continuous variables and the 

χ2 test or Fisher exact test for categorical data 

Abbreviations: ALT, alanine aminotransferase; APTT, activated partial thromboplastin time; AST, 

aspartate aminotransferase; ATIII, antithrombin-III; BMI, body mass index; BUN, blood urea nitrogen; 

CHOL, total cholesterol; Cr, serum creatinine; DD, D-dimer; eGFR, estimated glomerular filtration rate; 

FBG, fasting blood-glucose; FDP, fibrinogen degradation products; Hb, hemoglobin; HbA1c, 

glycosylated hemoglobin; HDL cholesterol, high-density lipoprotein cholesterol; INR, international 

normalized ratio; LDL cholesterol, low-density lipoprotein cholesterol; PLT, platelets; PT, prothrombin 

time; TT, thrombin time; UA, serum uric acid 

 

 

Table 2. Echocardiographic characteristics according to patient clusters 

  

  
N 
 

Overall 
 

Cluster 1 

n = 921 

Cluster 2 

n = 712 
P-value 

Aorta, cm 1432 2.6 (0.4) 2.5 (0.4) 2.8 (0.4) <0.001 

Aorta ascendens, cm  1418 3.4 (0.3) 3.3 (0.3) 3.6 (0.3) <0.001 

Left atrium, cm  1433 3.9 (0.5) 3.7 (0.4) 4.3 (0.5) <0.001 

Right ventricle, cm 1392 2.4 (0.3) 2.3 (0.2) 2.5 (0.2) <0.001 

IVS, cm  1450 1.1 (0.2) 1.0 (0.1) 1.2 (0.1) <0.001 

Left ventricle, cm 1421 4.8 (0.6) 4.5 (0.4) 5.1 (0.6) <0.001 

LVPW, cm 1490 1.0 (0.1) 1.0 (0.1) 1.1 (0.1) <0.001 

Pulmonary artery, cm 1311 2.4 (0.3) 2.3 (0.2) 2.6 (0.3) <0.001 

Right atrium, cm 1379 3.9 (0.5) 3.7 (0.3) 4.1 (0.5) <0.001 

AV, m/s  1488 1.2 (0.3) 1.2 (0.2) 1.3 (0.3) 0.04 

PV, m/s 1402 0.9 (0.2) 0.9 (0.2) 0.9 (0.1) 0.911 

E/A ≤1, n (%)  1324 1137 (92.9) 667 (93.7) 470 (91.8) 0.249 

EF, % 1312 70 (10) 70 (10) 60 (10) <0.001 

RWT, cm 1421 0.5 (0.1) 0.4 (0.1) 0.5 (0.1) 0.023 



 
 

LVMi, g/m2 1421 108.9 (31.2) 92.4 (19.6) 130.2 (30.4) <0.001 

Data was presented as mean (SD) for continuous data, and n (%) for categorical data 

*P-values were calculated by Student’s t-test or the χ2 test 

Abbreviations: A, peak late diastolic velocity; AV, aortic blood flow velocity; E, peak early diastolic 

velocity; E/A, ratio between peak early and late diastolic velocities; EF, ejection fraction; IVS, 

interventricular septum; LVMi, left ventricular mass index; LVPW, left ventricular posterior wall; PV, 

pulmonary valve opening velocity; RWT, relative wall thickness 

 

 

Table 3. Rates of MACEs, cardiovascular death, nonfatal-MI, nonfatal-stroke and progressive 

heart failure for each cluster 

Cardiovascular 

events 

Number of events Cluster 2 vs. Cluster 1 

Cluster 1 Cluster 2 
Unadjusted 

HR 
P-

value 

Adjusted 

HRa 
P-

value 
n = 921 n = 712 (95% CI) (95% CI) 

Total MACE 

367 

(39.8%) 

345 

(48.5%) 

1.35 (1.17–

1.57) 

<0.00

1 

1.32 (1.14–

1.54) 

<0.00

1 

Cardiovascular 

death 0 (0%) 1 (0.1%) . . . . 

Nonfatal MI 

105 

(11.4%) 

98 

(13.8%) 

1.30 (0.98–

1.71) 0.066 

1.13 (0.85–

1.50) 0.390 

Nonfatal stroke  16 (1.7%) 14 (2.0%) 

1.28 (0.62–

2.63) 0.100 

1.39 (0.66–

2.90) 0.386 

Heart failure 

246 

(26.7%) 

232 

(32.6%) 

1.37 (1.15–

1.64) 

<0.00

1 

1.41 (1.17–

1.69) 

<0.00

1 
aModels adjusted for sex, age, diabetes duration 

Abbreviations: MACE, major adverse cardiovascular events; MI, myocardial infarction 



 
 

Figure 1. A. Heat map showing two clusters of patients based on echocardiographic variables. 

Red denotes elevated standardized values and green represents decreased standardized values. 

The identification of the two clusters is highlighted by distinct colors: cluster 1 (green) and 

cluster 2 (red). B. The principal component diagram visualizes two clusters. Each dot on the 

diagram symbolizes an individual patient characterized by their unique echocardiographic 

features. The obtained results are projected onto the initial three dimensions derived from 

principal component analysis. The representation aligns with the 2-group solution derived from 

cluster analysis, effectively demonstrating prominent differences among patients by clusters 

based on the echocardiographic characteristics (Supplementary material, Online video S1). C. 



 
 

Left and right radar charts respectively visualize the echocardiographic and clinical values of 

two clusters, with cluster 1 in blue and cluster 2 in red. All values are standardized and 

expressed as z-scores (SD) from average values 
Abbreviations: see Table 1 

 

 

 
Figure 2. Cumulative incidence of total major adverse cardiovascular events (MACE) by two 

clusters 
Abbreviations: MACE, major adverse cardiovascular events 

 

 



 
 

 
Figure 3. Forest plots in two clusters 

Hazard ratios and 95% CI for MACE derived from Cox proportional hazards models. Blue dots showed 

HR <1, red dots showed HR >1 

Abbreviations: see Table 1 

 



 
 

 

 
Figure 4. Restricted cubic splines for the association between each risk factor and composite 

MACE risk in cluster 1. The red solid line shows the HR value and the black dotted lines 

represents the 95% CI. The red dot represents the value when HR = 1 

Abbreviations: see Table 1  

 

 



 
 

 
Figure 5. Restricted cubic splines for the association between each risk factor and composite 

MACE risk in cluster 2. The red solid line shows the HR value and the black dotted lines 

represents the 95% CI. The red dot represents the value when HR = 1  
Abbreviations: see Table 1  

 


