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ABSTRACT 

Micro-ribonucleic acids (miRs) are small, non-coding RNAs, which play an important 

role in atherosclerotic plaque formation, development and stability. Plaque 

destabilization and rupture lead to acute coronary syndromes (ACS). Previous studies 

have implicated several different miRs in the pathogenesis of atherosclerosis. A number 

of circulating miRs emerged as promising diagnostic and prognostic biomarkers in 

ACS. Particularly cardiac- and muscle-enriched miRs including miR-1, miR-133a, 

miR-133b, miR-208a, and miR-499 were associated with myocardial damage and thus 

proposed as potential biomarkers of ACS. In this review we summarize the role of 

circulating miRs as biomarkers for diagnosis and prognosis in patients with ACS, as 

well as recent advances and remaining challenges of miRs assessment. 
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Micro RNAs (miRs) are small, non-coding RNAs that regulate posttranscriptional gene 

expression by inhibiting translation or causing degradation of their target messenger 

RNA (mRNA) [1]. miRs bind to the 3’-untranslated region of their target mRNA 

through the so called “seed region” on nucleotides 2-8, and a single miR is able to target 

and regulate hundreds of miRs, thus possibly influencing various cellular pathways 

simultaneously [2].  

Previous studies have implicated several different miRs in pathogenesis of 

atherosclerosis. miRs are involved in regulation of crucial processes of atherogenesis 

such as endothelial cell activation, inflammation, angiogenesis, smooth muscle cell 

proliferation, migration and neointima formation, respectively [3, 4]. 

Circulating miRs are stable in the circulation and resistant to endogenous 

ribonuclease activity due to transportation within extracellular vesicles or in 

protein/lipoprotein complexes with high-density lipoprotein, argonaute2, and 

nucleophosmin [5–8], and can be quantified using polymerase chain reaction. 

Circulating miRs are not only passively released into the circulation during cellular 

death, but also actively secreted and may contribute to intercellular signaling. All major 

cell-types that play a role in formation and progression of atherosclerotic plaques, such 

as endothelial cells, monocytes, macrophages, smooth muscle cells and platelets, may 

secrete miRs into the circulation or take up miRs from the circulation as well. We could 

show previously, that platelet-related miR-21 and miR-126 are associated with 

monocyte/platelet aggregate formation in ACS patients on dual antiplatelet therapy [9]. 

Thus, both increase and decrease or loss of certain miRs could serve as a potential 

marker for atherosclerotic plaque progression, instability, myocardial damage or 

platelet activation [9, 10]. 

Several studies have proposed various miRs as biomarkers for early detection 

of acute myocardial infarction, stable coronary artery disease [CAD], in-stent 

restenosis, outcome in acute and chronic heart failure, and for cardiovascular risk 

factors such as type II diabetes and obesity [11–19]. In this review we summarize the 

clinical utility of circulating miRs as diagnostic and prognostic biomarkers in ACS. 

 

MICRORNAS AS DIAGNOSTIC BIOMARKERS IN ACS 

A number of circulating miRs emerged as promising candidates for diagnosis of ACS 

(Table 1). Particularly cardiac- and muscle-enriched miRs including miR-1, miR-133a, 

miR-133b, miR-208a, and miR-499 were associated with myocardial damage and thus 
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proposed as potential diagnostic biomarkers of ACS [11, 12, 20, 21]. Since miRs can 

be actively secreted into the circulation by living cells, it was hypothesized that cardiac-

specific miRs might be detected in the circulation prior to cardiac troponins (cTn) and 

therefore represent early biomarkers for the detection of acute myocardial infarction 

(AMI) [11, 20, 22]. Liebetrau et al. [22] demonstrated that miR-1 and miR-133a are 

increased only 15 min after transcoronary septal ablation in patients with hypertrophic 

obstructive cardiomyopathy. Widera et al. [23] could show that miR-1, miR-133a and 

miR-208b were increased in ST-segment elevation myocardial infarction (STEMI) and 

non-ST-segment elevation myocardial infarction (NSTEMI) as compared to patients 

with unstable angina and were independently associated with high-sensitivity cardiac 

troponin (hs-cTn) levels. The expression of miR-1 was not only elevated in plasma, but 

also in urine of AMI patients, and showed strong correlation with cTn [24]. Circulating 

miR-499 was elevated in STEMI patients as compared to controls and stable CAD, and 

could discriminate cases from controls independently of clinical risk factors [25]. 

Serum miR-499 could also discriminate unstable angina and NSTEMI from non-

cardiac chest pain in patients presenting within 3 h of symptom onset [26]. Furthermore, 

miR-499 was proposed as an early marker of perioperative AMI in patients undergoing 

coronary artery bypass surgery [27].  

In a meta-analysis including 2136 participants from 15 studies, sensitivity and 

specificity of cardiac- and muscle-enriched miRs in ACS were evaluated (miR-1, miR-

133a, miR-208a, and miR-499). miR-133a and miR-499 were identified as promising 

diagnostic biomarkers for both STEMI and NSTEMI with an excellent discriminative 

power (miR-133a: sensitivity: 0.89 [95% CI, 0.83–0.94]; specificity: 0.87 [95% CI, 

0.79–0.92]; miR-499: sensitivity: 0.88 [95% CI, 0.86–0.90]; specificity: 0.87 [95% CI, 

0.84–0.90]) [28]. Other meta-analyses came to similar promising results [29–31]. 

However, the results obtained from those meta-analyses have to be interpreted with 

caution, since the included studies exhibited substantial methodological discrepancies 

regarding sample preparation, normalization method and miRs quantification. 

Beside cardiac- and muscle enriched miRs, several other miRs were proposed 

as diagnostic biomarkers for ACS as well. The expression of miR-22 was higher in 

ACS as compared to stable coronary artery disease [32]. Circulating levels of miR-122, 

miR-2861 and miR-3149 could discriminate ACS from non-ACS patients with an area 

under the curve (AUC) of 0.925 [33]. The same group also demonstrated that these 

miRs are released by peripheral blood mononuclear cell during the early stage of ACS 
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[34]. Moreover, it was shown that patients with ACS have lower expression of miR-

145 when compared to stable CAD [35]. The pro-atherogenic miR-19a was upregulated 

in ACS patients as compared to controls, and could discriminate cases from controls 

with high sensitivity and specificity [36]. Other high-density lipoprotein-associated 

members of the miR-17/92 cluster showed an inverse trans-coronary gradient in ACS 

as compared to stable CAD and healthy controls [37]. Higher level of plasma miR‐4286 

was associated with an increased risk of ACS and with higher triglyceride levels, which 

may mediate the effect of triglyceride on incident ACS [38]. Plasma levels of miR-125b 

and miR-30d were higher in patients with ACS compared to healthy controls and had 

similar sensitivity and specificity as hs-cTn [39]. The combination of circulating miR-

150 and miR-486 could discriminate NSTEMI patients from controls, but not between 

STEMI and NSTEMI patients [40]. Using a novel self-learning pattern recognition 

algorithm, Meder et al. identified a signature of 20 dysregulated miRs in total peripheral 

blood of AMI patients, which were able to discriminate cases from controls with 90% 

sensitivity and 96% specificity [41]. 

Despite initial promising results from the studies using conventional troponin 

assays, none of the studies could demonstrate the benefit of assessing circulating miRs 

in addition to hs-cTn for diagnosis of ACS [33, 42–44]. miR-208b and miR-499 were 

elevated in STEMI and NSTEMI patients as compared to controls, and both miRs could 

discriminate cases from controls with an AUC comparable or lower to hs-cTn [43, 45, 

46]. Assessment of miR-208b or miR-499 could not improve the diagnostic accuracy 

of hs-cTn [43, 45, 46]. Similarly, the expression of miR-1, miR-133a, miR-208b, miR-

499 was increased in STEMI and NSTEMI patients as compared to controls, but the 

sensitivity and specificity to detect ACS was lower as compared to hs-cTn [47]. 

Moreover, although in one study the miRs-signature consisting of miR-1, miR-134, 

miR-186, miR-208, miR-223 and miR-499 had a slightly higher AUC for 

discriminating ACS from angina and controls than hs-cTn, the investigators did not test 

for statistical significance between the ROC curves and did not assess whether these 

miRs provide added diagnostic values on top of hs-cTn [48]. In a large prospective, 

multi-center study Devaux et al. [42] measured levels of 6 miRs in 1155 unselected 

patients with acute chest pain: miR-133a, miR-208b, miR-223, miR-320a, miR-451 and 

miR-499. Although miR-208b, miR-499 and miR-320 could discriminate patients with 

ACS from other diagnosis, none of these miRs was superior to hs-cTn [42].  
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Increased sensitivity of new hs-cTn comes at the price of reduced specificity, 

and accurate discrimination of patients with NSTEMI and unstable angina from other 

causes of chest pain with rapid “rule-in” and “rule-out” remaining an unmet clinical 

need [49–51]. miR-499 was superior to hs-cTn in discriminating NSTEMI and acute 

heart failure in elderly patients with modest hs-cTn increase at presentation [52]. 

Oerlemans and co-workers showed in a prospective study that miR-1, miR-21, miR-

146a, miR-208a and miR-499 were increased in ACS patients [53]. More importantly, 

combination of miR-1, miR-21 and miR-499 showed better diagnostic performance 

than hs-cTn alone, and increased diagnostic accuracy of hs-cTn and clinical risk factors 

[53]. This effect was especially pronounced in early presenters and in patients with 

initially negative troponin. Zeller et al. proposed a panel of 3 miRs consisting of miR-

132, miR-150 and miR-186 for discrimination of patients with unstable angina from 

other causes of chest pain with high discriminatory power (AUC 0.91; 95% CI, 0.84–

0.98). The diagnostic accuracy of the 3-miRs signature was superior to the combination 

of hs-cTn, B-type natriuretic peptide (BNP), C-reactive protein and cystatin C, 

respectively [54]. All of the patients had negative hs-cTn at baseline and STEMI 

patients were excluded [54]. Jaguszewski et al. [55] identified miRs-signature 

consisting of differentially expressed stress- and ischemia-related miRs (miR-1, miR-

16, miR-26a and miR-133a) that could distinguish takotsubo cardiomyopathy and 

STEMI patients with 96.77% sensitivity and 70.37% specificity (AUC 0.88; 95% CI, 

0.79–0.97). 

 

MICRORNAS AS PROGNOSTIC BIOMARKERS IN ACS 

Several studies proposed the role of cardiac-enriched miRs as prognostic biomarkers 

after ACS (Table 2) [23, 46, 56–58]. Widera et al. [23] could show that miR-133a and 

miR-208b were independent predictors of all-cause mortality after adjusting for age and 

sex. However, when adjusted for hs-cTn levels, both miRNAs lost their predictive value 

for death. Similar results were obtained by Gidlöf et al [46]: miR-208b and miR-499 

were strongly correlated with hs-cTn and predicted 30-days mortality after ACS, but in 

an adjusted analysis for hs-cTn their independent association with outcome was lost. In 

elderly patients, miR-499 independently predicted cardiovascular mortality 1 year after 

NSTEMI (59). In contrast, Goretti et al. showed that miR-208b and miR-499 were not 

associated with 6-year mortality after ACS [60]. In a recent study by De Rosa et al. 

[56], a lower transcoronary concentration gradient of miR-133a was associated with 



 7 

increased mortality and major adverse cardiovascular events in patients with ACS and 

stable CAD, demonstrating not only that miR-133a is a potential prognostic marker in 

ACS, but also identifying myocardial tissue as the source of miR-133a. However, again, 

after adjustment for hs-cTn, this significant association was lost [56]. In a cohort of 

unselected acute chest pain patients none of the analyzed cardiac- and platelet- enriched 

miRs (miR-133a, miR-208b, miR-223, miR-320a, miR-451 and miR-499) predicted 

long-term outcome [42]. 

Not only cardiac- and muscle-enriched miRs have the potential as prognostic 

biomarkers in ACS: A relative increase of circulating liver-specific miR-122 predicted 

adverse outcome almost 2 years after STEMI independently of left ventricular function 

[61]. However, the authors did not compare miR-122 to established risk markers such 

as hs-cTn, BNP or N-terminal pro-B-type natriuretic peptide (NT-proBNP). Thus, 

although miR-122 might be an interesting biomarker in ACS, further studies are needed 

[34, 61]. Increased miR-145 on day 5 after STEMI and primary PCI predicted adverse 

outcome after 1 year follow-up independently of cTn and BNP [62]. Several miRs 

involved in the regulation of the innate immune response are associated with left 

ventricular remodeling and ventricular rupture following ACS [63, 64]. 

Downregulation of miR-150 in the failing human heart is detectable in the circulation 

[64, 65]. Decreased levels of circulating miR-150 predicted adverse ventricular 

remodeling after STEMI and were superior to clinical and laboratory risk factors 

including BNP [65]. Whole blood sequencing in patients with NSTEMI identified five 

circulating miRs, namely miR-28, miR-126, miR-142, miR-144 and miR-3135 that 

were associated with chronic heart failure and GRACE-Score [66]. miR-150 together 

with miR-16, miR-27a and miR-101 predicted left ventricular dysfunction 6 months 

after ACS independently of BNP and clinical risk factors, thus improving identification 

of patients at risk of adverse left ventricular remodeling [67]. Furthermore, p53-

responsive miR-34a, miR-192 and miR-194 were increased in patients who developed 

ischemic heart failure within one year after AMI, and were associated with adverse 

ventricular remodeling [68]. In contrast, miR-133a and miR-423 were not associated 

with left ventricular remodeling after ACS [69]. Although miR-1 and miR-29b 

correlated with infarct size and change in left ventricular end diastolic volume, they did 

not predict adverse clinical outcome [70]. Low circulating miR-652 was independently 

associated with readmission for heart failure after 5 years follow-up, but not with 

cardiovascular mortality [71]. 
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Karakas et al. [72] identified circulating miR-132, miR-140 and miR-210 as 

independent predictors of cardiovascular death after 4 years follow-up in a large cohort 

of over 1000 patients with documented CAD including both ACS as well as patients 

with stable angina. The predictive power was more pronounced in the subgroup of 

patients with ACS. A combination of several circulating miRs did not provide 

additional prognostic information when compared to single miRs [72]. In another 

prospective, case-control study, miR-26b, miR-320a and miR-660 were identified as 

prognostic biomarkers for major adverse cardiovascular events after STEMI. All 3 

miRs were superior to hs-cTn in risk stratification of STEMI patients and added 

prognostic information on top of GRACE-Score and hs-cTn [73]. miR-26b and 

miR320a were previously shown to play a role in ventricular remodeling in heart 

failure, whereas miR-660 may have a prothrombotic effect by increasing platelet 

activation [74–76].  

In a population-based study, Zampetaki et al. [77] proposed a signature of 3 

circulating miRs, namely miR-126, miR-197 and miR-223 as prognostic marker for 

occurrence of ACS within 10 years of follow-up. Assessment of these 3 platelet-related 

miRs improved risk stratification when added to the Framingham risk score [77]. 

Moreover, miR-197 and miR-223 predicted cardiovascular death in patients with 

documented coronary artery disease [78]. In another smaller population study in 

apparently healthy subjects, a combination of let-7g, miR-106a, miR-424, miR-144 and 

miR-660 was associated with increased risk of AMI after 10 years follow up, and 

improved the AUC when added to the Framingham risk score [79]. Thus, circulating 

miRs as stand-alone markers or as part of miRs-signatures might be used for risk 

stratification in both primary and secondary prevention. 

 

CURRENT CHALLENGES 

Assessment of circulating miRs as diagnostic and prognostic biomarkers is after almost 

two decades of intensive research still in its infancy. Due to discrepancies in sample 

handling, preparation and quantification, the results of the different studies are not 

comparable. Furthermore, routine use in clinical practice is limited by time consuming 

and expensive analysis, requiring specific laboratory resources and highly trained 

personal. The development of fast and reproducible RNA assays for fast and reliable 

quantification of miRs is of paramount importance. Finally, a consensus on minimal 

standards regarding sample collection, RNA preparation, quantification, data 
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normalization and analysis is necessary. Once these requirements are met, larger, well-

powered multi-center trials can be performed, which could deliver valuable data and 

possibly lead to translation of miRs assessment into clinical practice. 

 

CONCLUSION 

Circulating miRs hold potential as promising diagnostic and prognostic biomarkers in 

ACS. Specific miRs-signatures might improve diagnostic accuracy in patients with 

suspected ACS, as well as risk stratification following ACS by providing valuable 

prognostic information on top of clinical judgement and cardiovascular risk factors. As 

of yet, some circulating miRs such as the cardiac- and muscle-enriched miRs miR-1, 

miR-133a, miR-133b, miR-208a, and miR-499 offer promise as potential diagnostic 

and prognostic biomarkers in ACS as they associated with myocardial damage. 

However, before the implementation of miRs in daily clinical routine, a better 

understanding of miRs regulation/dysregulation in different pathophysiological 

settings as well as the development of faster, reproducible and standardized analytical 

procedures are warranted. 
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Table 1. MicroRNAs as diagnostic biomarkers in acute coronary syndrome (ACS) 
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Study 
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controls 

cel-miR-39 Plasma 

D’Allesandra 

et al. [12]  

miR-1  

miR-122  

miR-133a  

miR-133b  

miR-375  

miR-499  

33 STEMI vs. 17 

controls 

miR-17 Plasma 

Kuwabara et 

al. [20]  

miR-1  

miR-133a  

29 ACS vs. 42 

non-ACS 

Not specified Serum 
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Corsten et al. 

(21) 

miR-133a  

miR-208b  

miR-499  

miR-223  

32 AMI vs. 36 

non-cardiac chest 

pain 

3 C. elegans 

spike-ins 

Plasma 

citrate 

Widera et al. 

[23]  

miR-1  

miR-133a  

miR-208b  

444 ACS patients 

(196 STEMI and 

131 NSTEMI vs. 

117 unstable 

angina 

cel-miR-54 Plasma 

Cheng et al. 

[24]  

miR-1  20 AMI vs. 20 

controls 

Not specified Urine 

O’Sullivan et 

al. [25]  

miR-499   50 STEMI vs. 50 

stable CAD vs. 

50 controls 

Average Ct of the 

normalizer assays 

detected in all 

samples 

Plasma 

Shalaby et al. 

[26]  

miR-210  

miR-499  

37 unstable 

angina and 48 

NSTEMI vs. 25 

non-cardiac chest 

pain 

U6 Serum 

Yao et al. 

[27]  

miR-499  117 CABG 

patients (28 

perioperative 

AMI vs. 89 

without 

perioperative 

AMI) 

Median Ct of all 

samples 

Plasma 

Darabi et al. 

[32]  

miR-21  50 ACS vs. 50 

stable CAD 

U6 Serum 

Li et al. [33]  miR-122  

miR-140  

miR-720  

miR-3149  

402 ACS vs. 169 

non-ACS 

miR-1228 Plasma 
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Gao et al. 

[35]  

miR-145  141 ACS vs. 54 

non-ACS 

cel-miR-39 Plasma 

Zhong et al. 

[36]  

miR-1  

miR-19a  

156 AMI vs. 145 

controls 

5S Plasma 
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Choteau et al. 

[37]  

Inverse 

transcoronary 

gradient for 

miR-16 

miR-92a 

miR-223 
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controls 

cel-miR-39 HDL 

from 
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Jia et al. [39]  miR-30d  
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Zhang et al. 
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110 AMI vs. 110 

controls 

U6 Plasma 

Devaux et al. 

[42]  

miR-208b  

miR-320  

miR-499  

224 AMI vs. 931 

non-AMI 

3 C. elegans 

spike-ins 

Plasma 

Devaux et al. 

[43]  

miR-208b  

miR-499  

510 AMI vs. 87 

controls; 397 

STEMI vs. 113 

NSTEMI 

3 C. elegans 

spike-ins 

Plasma 

Zhang et al. 

[45]  

miR-499  142 AMI vs. 85 

non-AMI vs. 100 

controls 

U6 Plasma 

citrate 

Gidlöf et al. 

[46]  

miR-1  

miR-208b  

miR-499  

319 AMI vs. 88 

non-AMI 

miR-17 Plasma 

Li et al. [47]  miR-1  

miR-133a  

miR-208b  

67 AMI vs. 39 

controls 

cel-miR-39 Plasma 

Olivieri et al. 

[52] 

miR-21  

miR-499  

miR-423  

92 NSTEMI vs. 

81 acute CHF 

miR-17 

cel-miR-39 

Plasma 
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Oerlemans et 

al. [53]  

miR-1  

miR-21  

miR-146a  

miR-208b  

miR-499  

106 ACS vs. 226 

non-ACS 

U6 Serum 

Zeller et al. 

[54]  

miR-19a 

miR-19b 

miR-132 

miR-140 

miR-142 

miR-150 

miR-186 

miR-210 

48 unstable 

angina vs. 47 

non-cardiac chest 

pain 

cel-miR-39 Plasma 

Jaguszewski 

et al. [55]  

miR-16  

miR-26a  

let-7f  

miR-133a  

36 Takotsubo vs. 

27 STEMI 

cel-miR-39 Plasma 

*MiRs with reproducible changes in 3 or more independent studies are 

highlighted in bold 

 

 

Table 2. MicroRNAs as prognostic biomarkers in acute coronary syndrome (ACS) 

Study Major findings Study 

population 

Follow-

up 

Normalization Sample 

Widera 

et al. 

[23]  

miR-133a and 

miR-208b predict 

all-cause 

mortality, 

significance lost 

after adjustment 

for hs-cTn 

444 ACS 

patients 

6 

months 

cel-miR-54 Plasma 
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Devaux 

et al. 

[42]  

miR-133a, miR-

208b, miR-223, 

miR-320a, miR-

451 and miR-499 

were not 

associated with 

patients’ outcome 

1155 acute 

chest pain 

2 years 3 C. elegans 

spike-ins 

Plasma 

Gidlöf 

et al. 

[46]  

miR-208b and 

miR-499 predict 

30-days mortality; 

association lost 

after adjustment 

for hs-cTn  

319 AMI 1 

month 

miR-17 Plasma 

De 

Rossa et 

al. [56]  

Transcoronary 

gradient of miR-

133a predicts 

mortality and 

MACE in ACS 

and stable CAD; 

association lost 

after adjustment 

for hs-cTn 

82 stable 

CAD and 

29 ACS 

32 

months 

cel-miR-39 Not 

specified 

Olivieri 

et al. 

[59]  

miR-499 predicts 

cardiovascular 

mortality in 

elderly NSTEMI 

patients  

155 

NSTEMI 

1 year miR-17 

cel-miR-39 

Plasma 

Goretti 

et al. 

[60]  

miR-208b and 

miR-499 did not 

predict long-term 

mortality after 

AMI 

510 AMI 6 years Not specified Not 

specified 
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Cortez-

Dias et 

al. [61]  

higher miR-122-

5p/133b ratio 

predicts MACE 

after STEMI 

independently of 

LVEF 

142 STEMI 20 

months 

UniSp6 Serum 

Dong et 

al. [62]  

miR-145 predicts 

MACE after 

STEMI 

246 STEMI 1 year Not specified Serum 

Karakas 

et al. 

[72]  

miR-132, miR-

140 and miR-210 

independent 

predictors of 

cardiovascular 

death 

1112 CAD 4 years cel-miR-39 Serum 

Jakob et 

al. [73]  

miR-26b, miR-

320a and miR-660 

predict MACE 

after STEMI 

1002 

STEMI 

1 year UniSp6 Plasma 

 


