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WHAT’S NEW? 

This study integrates multi-dimensional data, including physical examinations, medical history, 

electrocardiogram, echocardiograms, etc. for comprehensive analysis. Using advanced machine 

learning algorithms, such as logistic regression, extreme gradient boosting, support vector 

machines, and random forest, we constructed a predictive model. The developed risk 

assessment tool accurately predicts arrhythmias, facilitating precise forecasting. This data-

driven tool helps clinicians make informed pre- and post-operative decisions, thereby 

improving patient outcomes. Interdisciplinary collaboration ensures the model’s broad 

applicability and generalizability. 
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ABSTRACT 

Background: Arrhythmia is a frequent complication following transcatheter device closure of 

perimembranous ventricular septal defects (pmVSD). However, there is currently a lack of a 

convenient predictive tool for postoperative arrhythmia. 

Aims: This research aims to use machine learning algorithms to predict the risk of postoperative 

arrhythmia in patients with pmVSD. 

Methods: A retrospective study was conducted on 1384 children with pmVSD who underwent 

successful transcatheter device closure at a single-center hospital from March 2002 to March 

2024. Subjects were divided into a training set (n = 970) and a validation set (n = 414) in a 7:3 

ratio. Four machine learning methods — SVM, LR, RF, and XGBOOST — develop models 

for predicting postoperative arrhythmia using preoperative and intraoperative baseline 

information with clinical significance, as well as relevant content mentioned in previously 

published journals. Models performance were evaluated using area under the receiver operating 

characteristic curve (AUC), sensitivity, specificity, accuracy, negative predictive value, and 

positive predictive value. The optimal model was used to create a nomogram, further calibrated 

with calibration curves. 

Results: In the prediction of postoperative arrhythmias, the LR model outperformed the 

XGBOOST, SVM, and RF models, achieving an AUC of 0.863 (95% CI, 0.827–0.900). 

Consequently, we utilized the LR model to construct a nomogram based on 5 variables: weight, 

procedure time, defect diameter, pre-interventional arrhythmia, and the diameter difference 

between the occluder and defect exceeding 2 mm. The calibration curves illustrated a strong 

agreement between the actual and predicted outcomes. 

Conclusions: A machine learning model accurately predicts postoperative arrhythmias, aiding 

in risk stratification of patients with pmVSD and guiding clinical decisions. 

 

Key words: arrhythmia, machine learning, perimembranous ventricular septal defect, 

prediction model, transcatheter closure,  
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INTRODUCTION 

Ventricular septal defect (VSD) is a congenital cardiac condition where tissue abnormalities in 

the ventricular septum result in abnormal interventricular blood flow. About 40% of all 

congenital heart illnesses are related to this condition, which is one of the most prevalent. The 

most prevalent subtype is the perimembranous ventricular septal defects (pmVSD), accounting 

for 70% of cases [1, 2]. Transcatheter interventional occlusion for pmVSD has become a 

preferred option over traditional surgical procedures, thanks to advancements in occlusion 

devices and interventional techniques. This method is less invasive, has a quicker recovery time, 

and is more cost-effective compared to open-heart surgery [3, 4]. However, patients undergoing 

surgery are still at risk of postoperative complications, with an incidence ranging from 20% to 

30%. Among these complications, arrhythmia is a common occurrence, with conduction blocks 

such as bundle branch block and atrioventricular block being the primary types. Severe blocks 

can be life-threatening, necessitating the removal of the blocker, repair of the VSD, and 

installation of a pacemaker [2, 3]. Therefore, accurately predicting the occurrence of 

postoperative arrhythmias is crucial to assist healthcare providers in assessing the risk of 

developing arrhythmias in different scenarios and guiding clinical decision-making towards 

precision medicine. Unfortunately, existing studies lack predictive models for assessing the risk 

of early postoperative arrhythmias following transcatheter occlusion in patients with pmVSD. 

With recent advancements in artificial intelligence and the increased use of machine learning 

(ML) in the medical field, this study aims to develop and validate an interpretable clinical 

predictive model using multiple machine learning methods and visualize its outcomes [5–7].  

 

MATERIAL AND METHODS 

Study population and design 

This retrospective study analyzed data from 1384 patients with pmVSD who underwent 

successful transcatheter device closure at the Department of Pediatric Cardiology, Provincial 

Hospital of Shandong First Medical University between March 2002 and March 2024. Inclusion 

criteria: age ≥2 years or weight ≥10 kg, confirmed diagnosis of hemodynamically significant 
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pmVSD (e.g., cardiomegaly; left atrial enlargement; left ventricular volume overload on chest 

radiographs), defect detected by transthoracic echocardiography at the 9–12 o’clock position in 

the short-axis parasternal view, and pulmonary artery systolic blood pressure <70 mm Hg on 

transthoracic echocardiography. Exclusion criteria comprised non-membranous VSD, 

concomitant interventional closure procedures, and patients with missing crucial clinical data. 

Patient data, including vital signs and preoperative, intraoperative, and postoperative details, 

were sourced from the Platform for Epidemiological Investigation and Precision Treatment of 

Childhood Heart Disease, established by the Department of Pediatric Cardiology at the 

Provincial Hospital of the First Medical University of Shandong, China (http://www.pedhd.cn/). 

The study received approval from the local institutional ethics committee (Ethics Committee of 

Shandong First Medical University Hospital), and written informed consent was obtained from 

all patients’ guardians. Data anonymization and confidentiality were ensured, and the study 

adhered to the principles of the Declaration of Helsinki. 

The study assessed the potential factors for the model's construction based on clinical 

significance, scientific understanding, and predictors found in previously published 

publications. [8]. The variables evaluated in this study included preoperative clinical 

assessment data such as height, weight, body surface area, and age, along with risk factors 

identified from previous studies and selected based on clinical significance. These risk factors 

encompassed Pre-interventional arrhythmia (cardiac rhythm abnormalities present before the 

intervention), ventricular septal defect diameter (measured via ultrasound during intraoperative 

angiography), presence of membranous aneurysm (an abnormal bulging or aneurysmal 

structure formed due to structural abnormality or weakness in the membranous portion of the 

ventricular septum), and distance from the aortic valve to the defect (measured between the 

defect margin and the aortic valve, with a threshold of 3 mm). Additional procedural parameters 

included the type and diameter of occluder devices (comprising Amplatzer Duct Occluder II, 

eccentric occluder, symmetric occluder, and thin-waist occluder), the diameter difference 

between the occluder and ventricular septal defect (Ddov, with a threshold of 2 mm), procedure 

time, and first-attempt success (defined as successful device placement without requiring 

replacement with an occluder of a different type or diameter) [9–18]. 
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Preoperative information, including gender, age, height, weight, and body surface area, 

was measured and calculated by the preoperative nurse. Preoperative arrhythmia was 

determined by multiple cardiologists through electrocardiogram examinations. Intraoperative 

information, such as defect diameter, tumor of the membranous part of the interventricular 

septum, and the distance of the aortic valve to the defect, was observed during intraoperative 

imaging. The procedure time, diameter and type of the occluder, the diameter difference 

between the occluder and ventricular septal defect, and the success of the first attempt at 

occlusion were recorded by the operating surgeon. 

 

Machine learning algorithms 

XGBoost is an integrated learning algorithm based on decision trees, implemented through a 

gradient boosting framework, which is able to efficiently deal with non-linear relationships and 

high-dimensional data, and is particularly suitable for large-scale datasets. Its ability to handle 

missing values and unbalanced data makes it excellent in complex clinical data. Logistic 

regression is a classical statistical method for estimating the probability of an event occurring 

and is suitable for binary classification problems. Because of its computational efficiency and 

ease of interpretation, logistic regression is widely used in clinical settings where explicit 

interpretation of model outputs is required. SVM performs classification by finding the optimal 

segmentation hyperplane in a high-dimensional feature space, which is suitable for handling 

small samples and high-dimensional data. It performs well in classification tasks with high-

dimensional features such as gene expression data and can provide highly accurate 

classification results with small samples. Random forest improves model accuracy and stability 

by constructing multiple decision trees and combining their predictions. Its feature importance 

scoring function helps to identify key variables, which is particularly useful for classification 

and feature selection for complex conditions [7, 19–22]. 

 

Ethics 

Written informed consent was obtained from the individual(s), and minor(s)’ legal 

guardian/next of kin, for the publication of any potentially identifiable images or data included 
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in this article. 

 

Statistical analysis 

To evaluate the normality of continuous variables, the Shapiro–Wilk test was employed. The 

test results indicate that the continuous variables in this study deviate from a normal distribution, 

thus we provided the median and interquartile range (IQR) for continuous variables, and we 

used the Mann-Whitney U test for comparisons between groups. Frequencies and percentages 

were used to summarize categorical variables. The chi-square test or Fisher exact test, if 

applicable, was used to compare categorical variables between groups. A two-tailed P-value of 

less than 0.05 was deemed statistically significant. 

In order to prevent multicollinearity, stepwise regression was carried out by root Akaike 

information criterion and evaluated by Variance Inflation Factor. All samples were randomly 

selected, with 70% serving as the training set and the remaining 30% as the validation set. 

Logistic regression was performed using the glm function to fit the data. Family parameters 

were set as binomial. Since the tune.svm function in the e1071 package allows for cross-

validation optimization of tuning parameters and kernel functions, we utilize it to construct 

linear SVM models. builds a linear SVM model using the e1071 package. operates by means 

of cross-validation. The random forest model was constructed using the random forest function 

found in the random forest package. There are 292 trees built, and the least mean of the squared 

residuals is used to identify the particular ideal tree. The xgboost package was used to build the 

model, and cross-validation was used to fine-tune the parameters. Make use of 10-fold cross-

validation optimization to validate every model. The pROC and caret packages may be 

employed to calculate the area under the receiver operating characteristic (ROC) curve (AUC), 

as well as accuracy, sensitivity, specificity, negative predictive value, and positive predictive 

value in order to evaluate predictive performance. The effectiveness of a classification model 

can be determined by comparing its AUC, which indicates how near the model is to 1. Using 

the rms software, a nomogram was created for the best model based on the findings of the 

multivariable analysis. Each regression coefficient in the multivariable logistic regression is 

scaled and converted into a scale ranging from 0 to 100 to create the nomogram. A score of 100 
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is given to the variable whose effect has the highest beta coefficient (in absolute value). A total 

score is obtained by adding the scores of the independent variables, and this value is 

subsequently translated into a projected probability. The calibration curve was used to evaluate 

the relationship between the probability of actual observations and the predicted probability, 

which in a well-calibrated model should fall on a 45-degree diagonal. The consistency index 

was used to evaluate the nomograms' ability to discriminate. Internal validation was carried out 

utilizing bootstrapping (1000 resamplings) to prevent possible overfitting [23]. The flowchart 

is shown in Figure 1, In all analyses, P <0.05 was considered statistically significant. All data 

analyses R version 4.33 were performed. 

 

RESULTS 

Patient characteristics 

In this study, 1550 patients underwent transcatheter closure of VSD, with 111 patients having 

non-pmVSD. Additionally, 39 patients had other transcatheter device closures, and 16 patients 

had severely incomplete clinical data. Ultimately, 1384 patients met the inclusion criteria, with 

475 experiencing postoperative arrhythmias. The median age of the patients was 3.75 years, 

and 50.3% were female. The data were divided into a training set (n = 970) and a validation set 

(n = 414) in a 7:3 ratio for the modeling process. There were no significant baseline 

characteristic differences between the training and validation sets. Table 1 presents the 

univariate analysis of the total patient dataset and the baseline characteristics of the training and 

validation sets. 

 

Machine learning algorithms and comparison prediction model performance 

Four machine learning algorithms were used to construct our prediction models: XGBOOST, 

LR, SVM, and RF. We then plotted the ROC curves and assessed each model's predictive 

performance in terms of AUC, sensitivity, specificity, precision, positive predictive value, and 

negative predictive value (Table 2 and Figure 2A–B). Five variables were ultimately chosen to 

be included in the logistic regression model . On multivariable analysis, weight, procedure time, 

defect diameter, pre-interventional arrhythmia, and the diameter difference between the 
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occluder and defect exceeding 2 mm were independently associated with postoperative 

arrhythmia (Table 3), with Figure 3 displaying the relevance ratings of the variables obtained 

from the random forest regressor. Weight, procedure time, defect diameter, The diameter 

difference between the occluder and ventricular septal defect >2 mm (Ddov2), and Pre-

interventional arrhythmia (pre-ARR) were the factors included in the model. The training set’s 

AUC values for XGBOOST, LR, SVM, and RF were 0.955, 0.822, 0.920, and 1, respectively; 

the validation set’s AUC values for the same variables were 0.849, 0.863, 0.859, and 0.848. In 

the end, the order of AUC values indicated that the LR model was the best model. 

 

Development and validation of an ARR-predicting nomogram 

The following variables were identified as independent risk factors for the development of ARR 

in patients with pmVSD following interventional occlusion: body weight, procedure time, 

defect diameter, diameter difference between the occluder and ventricular septal defect >2 mm, 

and pre-interventional arrhythmia. The aforementioned five variables were incorporated into 

the predictive model and utilized to construct the nomogram (Figure 4). In comparison to 

complex logistic regression formulas, nomograms are relatively straightforward to comprehend 

and offer greater clinical utility. Based on the score of each independent variable, a score can 

be derived by projecting vertically to the top score axis. The corresponding total score is then 

located below, and the sum of the scores of each variable is projected onto the risk axis of 

postoperative ARR to predict the incidence of ARR in patients after pmVSD. The higher the 

total score, the higher the risk of ARR. The nomogram was calibrated using calibration curves. 

The calibration curve's findings demonstrated that there was little deviation between the ideal 

and real curves. The prediction model has good accuracy because the actual prediction curves 

(B = 1000 resamples, mean absolute error of training set [A] = 0.012, mean absolute error of 

validation set [B] = 0.02) were consistent with the ideal curves. The prediction model has some 

predictive value following internal validation (Figure 5A–B). The nomogram’s C-statistic is 

0.822, indicating a high predictive value. 

 

DISCUSSION 
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Technology advancements have made transcatheter device closure the more popular treatment 

option for patients with pmVSD, but postoperative arrhythmias remain the most common and 

serious side effect. Atrioventricular block and complete left bundle branch block, in particular, 

can be extremely dangerous and even life-threatening, necessitating the installation of a 

pacemaker. According to past research, recovery from transcatheter blocker arrhythmias is 

more challenging the earlier they occur [24]. Consequently, a straightforward and intelligible 

instrument for gauging the probability of postoperative arrhythmia occurrences is of paramount 

importance for clinicians’ surgical decision-making and early prompt intervention in 

postoperative high-risk children. By providing a more accurate assessment of the patient’s 

overall condition prior to operation, it helps guide the selection of appropriate surgical 

techniques and optimal occluder size and type, thereby reducing the risk of postoperative 

arrhythmias. It also facilitates tailored post-operative monitoring plans, lifestyle adjustments 

and psychological interventions for high-risk patients. Early detection and management of 

arrhythmias based on predictive models can prevent disease progression and improve patient 

recovery and long-term outcomes. Therefore, emphasizing the importance of postoperative 

arrhythmia prediction in clinical practice is critical to optimizing treatment strategies, 

improving patient care, and improving overall prognosis. 

In this study, four machine learning algorithms were employed and validated to construct 

a prediction model to predict the probability of postoperative arrhythmia in patients with 

pmVSD who underwent transcatheter device closure. The performance of the ML algorithms 

was evaluated, and the prediction model built by logistic regression was determined to be the 

optimal model. This model can assist clinicians in their decision-making. 

The model we developed incorporated several preoperative intraoperative risk factors as 

the most important predictors of postoperative ARR, including pre-interventional arrhythmia, 

body weight, defect diameter, The diameter difference between the occluder and ventricular 

septal defect, and procedure time. Our study found that pre-interventional arrhythmia plays a 

crucial predictive role. It has been shown that pre-interventional arrhythmia accounts for over 

70% of postoperative arrhythmia cases in children after VSD transcatheter device closure. Pre-

interventional arrhythmia is associated with hemodynamic abnormalities that lead to cardiac 
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conduction block. If these hemodynamic abnormalities are not corrected after the procedure, 

the combination of surgical stimulation and increased conduction bundle compression can 

easily trigger arrhythmias [18]. The cardiovascular system of children with lower body weight 

is immature, making them more sensitive to surgical stress and increasing the probability of 

postoperative arrhythmia [25, 26]. The size of the defect is also a crucial factor; a larger VSD 

significantly impacts the heart's anatomy and electrical activity. Studies show that larger defect 

sealing may lead to a more significant local inflammatory response and scar tissue formation, 

affecting the stability of the heart’s electrical activity [27, 28]. In pmVSD, the anatomic 

alignment of the atrioventricular (AV) conduction system varies. Typically, the His bundle 

travels along the posterior-inferior border of the defect, with its perforating branches only 2–4 

mm from the edge. The left and right bundle branches, along with other branches, are sometimes 

wrapped in residual fibrous tissue at the edge of the defect [29]. Therefore, when the diameter 

difference between the occluder and the ventricular septal defect is greater than 2 mm, meaning 

the occluder is too large relative to the defect, it compresses the AV junction area. This leads 

to oedema of the surrounding myocardial tissue, causing arrhythmias. This phenomenon is 

understandable from both clinical practice and anatomical perspectives. The longer the 

procedure, the more cardiac tissue manipulation is involved, which may increase local 

inflammation and affect the heart’s electrical conduction system. Prolonged exposure to 

catheters and occlusion devices can mechanically irritate cardiac tissues, especially conduction 

pathways, thereby increasing the likelihood of arrhythmic events. This is consistent with many 

studies’ findings [2, 30]. 

More than 3 decades have passed since the introduction of transcatheter ventricular septal 

defect sealing, and many studies on postoperative arrhythmias have been conducted. However, 

various biases have arisen, likely due to inconsistent or overly detailed classifications of 

arrhythmias, small sample sizes, incomplete data, and confounding non-independent risk 

factors. Consequently, many mixed results have been obtained. Moreover, the research 

literature on applying ML algorithms to predict arrhythmias after pmVSD is sparse. To our 

knowledge, this is the first study to develop a predictive model using ML algorithms to guide 

postoperative arrhythmia risk assessment from general clinical information. Utilizing advances 
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in computer science to incorporate clinical parameters may be more beneficial for risk 

prediction than relying on a single clinical parameter. The prediction model in this study 

establishes a visual nomogram that can intuitively predict the risk of developing postoperative 

arrhythmias. Clinical staff can use the nomogram to calculate postoperative risk probabilities, 

aiding in intervention and clinical decision-making. Calibration curves showed the model has 

good accuracy. Therefore, developing a clinical predictive modeling tool would facilitate timely 

interventions to prevent or mitigate postoperative arrhythmias. However, there are limitations 

to this study. First, the nature of retrospective studies may lead to selection bias. Second, our 

ML algorithmic model is somewhat limited to specific mechanisms, which may restrict its 

generalization. This aspect needs further validation in real scenarios. Additionally, our current 

clinical database is a single-center database only for Chinese patients, limiting its predictive 

value. Finally, since our database includes only pediatric patients, the predictive validity for 

adult patients with post-pmVSD arrhythmias is unknown. Therefore, our next step is to 

establish a large, heterogeneous, multicenter, multinational, multi-age cohort to improve, 

homogenize, and validate the current clinical risk prediction models. 

 

CONCLUSION 

By analyzing clinical data from our database, we developed and evaluated machine learning 

algorithms to predict postoperative ARR risk in pmVSD patients using available preoperative 

and intraoperative variables. The logistic regression model performed the best. We also 

constructed an easy-to-use and internally validated nomogram. Clinicians can use this 

nomogram to predict the risk of postoperative ARR in pmVSD patients, enabling accurate 

surgical decisions and effective risk communication for better prognoses. The nomogram 

requires a larger sample size for further external validation. 
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Table 1. Perioperative statistical data of participants 

Characteri

stic 

Total  

(n = 1384) 

Training  

(n = 970) 

Validation  

(n = 414) 

 

 NO-ARR ARR NO-

ARR 

A

RR 

 NO-

ARR 

ARR P-

valu

e 

 n = 909 n = 

475 

n = 

637 

n = 333 n = 

272 

n = 

142 

  

Sex, n (%)          0.13

0  

F 471  

(51.8%) 

225  

(47.4

%) 

329  

(51.6

%) 

161  

(48.3%

) 

142  

(52.2

%) 

64  

(45.1

%) 
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M 438  

(48.2%) 

250  

(52.6

%) 

308  

(48.4

%) 

172  

(51.7%

) 

130 

(47.8

%) 

78  

(54.9

%) 

  

Weight, kg, 

median 

(IQR) 

16.0  

(14.0–

21.0) 

15.0 

(13.0–

19.0) 

16.0 

(14.0–

20.5) 

15.0 

(13.5–

19.0) 

16.5 

(14.0

–

22.0) 

15.0 

(13.0

–

18.0) 

<0.0

01  

Height, cm, 

median 

(IQR) 

103  

(96.5–

114) 

100  

(95.0–

110) 

102 

(96.3–

113) 

100 

(95.3–

110) 

104 

(96.9

–115) 

99.0  

(95.0

–106) 

<0.0

01  

Bsa, m2, 

median 

(IQR) 

0.68  

(0.60–

0.81) 

0.63  

(0.59–

0.76) 

0.67 

(0.60–

0.80) 

0.64 

(0.59–

0.77) 

0.69 

(0.60

–

0.83) 

0.63  

(0.58

–

0.72) 

<0.0

01  

Age, years, 

median 

(IQR) 

3.83  

(2.92–

5.50) 

3.50  

(2.75–

5.00) 

3.83 

(2.92–

5.42) 

3.50 

(2.75–

5.25) 

3.96 

(3.00

–

5.71) 

3.42  

(2.75

–

4.42) 

0.00

1  

Tom, n (%)  0.05

1  

NO 240 

(26.4%) 

102  

(21.5

%) 

179  

(28.1

%) 

72  

(21.6%

) 

61  

(22.4

%) 

30  

(21.1

%) 

 

YES 669(73.6

%) 

373 

(78.5

%) 

458 

(71.9

%) 

261 

(78.4%

) 

211 

(77.6

%) 

112 

(78.9

%) 

 

Procedure 

time, min, 

median 

60.0  

(55.0–

80.0) 

70.0  

(60.0

–110) 

60.0 

(55.0–

80.0) 

70.0 

(60.0–

110) 

60.0 

(55.0

–

77.5  

(60.0

–110) 

<0.0

01  



18 
 

(IQR) 85.0) 

Type, n (%)  0.02

3  

Ado2 135 

(14.9%) 

63  

(13.3

%) 

99 

(15.5

%) 

47  

(14.1%

) 

36  

(13.2

%) 

16  

(11.3

%) 

  

Ecc 83  

(9.13%) 

52  

(10.9

%) 

58  

(9.11

%) 

38  

(11.4%

) 

25  

(9.19

%) 

14  

(9.86

%) 

  

Sym 641  

(70.5%)  

315  

(66.3

%)  

447  

(70.2

%) 

218  

(65.5%

) 

194  

(71.3

%) 

97  

(68.3

%)  

  

Tw 50  

(5.50%)  

45  

(9.47

%)  

33  

(5.18

%) 

30 

(9.01%

) 

17  

(6.25

%) 

15 

(10.6

%)  

  

Dev, mm, 

median 

(IQR) 

6.00  

(5.00–

7.00) 

6.00  

(5.00–

8.00) 

6.00 

(5.00–

7.00) 

6.00 

(5.00–

8.00) 

6.00 

(5.00

–

7.00) 

7.00  

(6.00

–

8.00) 

<0.0

01  

Fs, n (%)          <0.0

01  

NO 97  

(10.7%)  

100  

(21.1

%)  

71  

(11.1

%) 

69  

(20.7%

) 

26  

(9.56

%) 

31  

(21.8

%)  

  

YES 812  

(89.3%)  

375  

(78.9

%)  

566  

(88.9

%) 

264  

(79.3%

) 

246  

(90.4

%) 

111  

(78.2

%)  

  

Dd, mm, 

median 

3.10  

(2.30–

4.00  

(2.90–

3.10 

(2.30–

4.00 

(2.80–

3.05 

(2.46

4.45  

(3.00

 

<0.0
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(IQR) 4.23) 5.90) 4.25) 5.80) –

4.14) 

–

6.00) 

01  

Davd, n 

(%) 

 1.00

0  

>3 mm 432 

(47.5%) 

226 

(47.6

%) 

296 

(46.5

%) 

156 

(46.8%

) 

136 

(50.0

%) 

70 

(49.3

%) 

  

≤3 mm 477 

(52.5%) 

249 

(52.4

%) 

341 

(53.5

%) 

177 

(53.2%

) 

136 

(50.0

%) 

72 

(50.7

%) 

  

Ddov, n 

(%) 

          <0.0

01  

≤2 mm 366 

(40.3%) 

102 

(21.5

%) 

263 

(41.3

%) 

74 

(22.2%

) 

103  

(37.9

%) 

 28  

(19.7

%)  

  

>2 mm 543 

(59.7%) 

373 

(78.5

%) 

374 

(58.7

%) 

259 

(77.8%

) 

169  

(62.1

%) 

 114  

(80.3

%)  

  

Pre-Arr, n 

(%) 

   <0.0

01  

NO 903 

(99.3%) 

305 

(64.2

%) 

635 

(99.7

%) 

220 

(66.1%

) 

268  

(98.5

%) 

 85  

(59.9

%)  

  

YES 6 

(0.66%) 

170 

(35.8

%) 

2 

(0.31

%) 

113 

(33.9%

) 

4  

(1.47

%) 

 57  

(40.1

%)  

  

Abbreviations: ado2, Amplatzer Duct Occluder II; Davd, the distance of the aortic valve to defect; Dd, 

defect diameter; Ddov, the diameter difference between the occluder and ventricular septal defect; Ecc, 

eccentric occlude; Fs, success of the first attempt; NO-ARR, no postoperative arrhythmia; Pre-Arr, pre-
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interventional arrhythmia; Sym, symmetric occlude; Tom, Tumor of membranous part of 

interventricular septum;Tw, thin-waist occlude 

 

 

Table 2. Predictive performance of four machine learning models in the training and validation 

cohorts 

TRAINING SET 

Model AUC Sen Spe Acc PPV NPV 

XGB 0.955 0.925 0.834 0.865 0.743 0.955 

LR 0.822 0.619 0.885 0.794 0.738 0.816 

SVM 0.92 0.822 0.903 0.875 0.815 0.907 

RF 1 1 1 1 1 1 

       
VALIDATION SET 

Model AUC Sen Spe Acc PPV NPV 

XGB 0.849 0.734 0.816 0.788 0.677 0.854 

LR 0.863 0.683 0.868 0.804 0.729 0.84 

SVM 0.859 0.776 0.827 0.81 0.703 0.875 

RF 0.848 0.685 0.857 0.798 0.715 0.838 

Abbreviations: NPV, negative predictive value; PPV, positive predictive value 

 

 

Table 3. Multivariable logistic regression analysis on the training set 

  [ALL]   NO-ARR   ARR  P-value 

  n = 970   n = 637   n = 333    

Weight, kg 16.0 (14.0–20.0) 16.0 (14.0–20.5) 15.0 (13.5–19.0)  0.009  

Procedure time, 70.0 (60.0–90.0) 60.0 (55.0–80.0) 70.0 (60.0–110)   <0.001  



21 
 

min 

Dd, mm 3.50 (2.50–4.90) 3.10 (2.30–4.25) 4.00 (2.80–5.80)  <0.001  

Ddov:        <0.001  

 ≤2mm  337 (34.7%)   263 (41.3%)   74 (22.2%)    

 >2mm  633 (65.3%)   374 (58.7%)   259 (77.8%)    

Pre-Arr:        <0.001  

 NO  855 (88.1%)   635 (99.7%)   220 (66.1%)    

 YES  115 (11.9%)   2 (0.31%)   113 (33.9%)    

Abbreviations: NO-ARR, no postoperative arrhythmia; Dd, defect diameter; Ddov, the diameter 

difference between the occluder and ventricular septal defect; Pre-Arr, pre-interventional arrhythmia 
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Figure 1. The flowchart of the study 
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Figure 2. The ROC curves and AUC values with 95% CI for the four machine learning 

prediction models on the training and validation sets 
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Abbreviations: AUC, area under the curve; CI, confidence interval; ROC, receiver operating 

characteristic 

 

  

Figure 3.The important features derived from the random forest regressor 

Abbreviations: Pre-Arr, pre-interventional arrhythmia; Dd, defect diameter; Dev, device diameter; 

Ddov, the diameter difference between the occluder and ventricular septal defect; Davd, the distance of 

the aortic valve to defect; Tom, tumor of membranous part of interventricular septum; Fs, success of the 

first attempt 
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Figure 4. Nomogram used for predicting ARR after interventional occlusion in pmVSD 

patients. Logistic regression algorithm was used to establish nomogram. The total points is 

calculated as the sum of the individual scores of each of the five variables included in the 

nomogram 
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Figure 5. Calibration curve of the nomogram for the training set (A) and the validation set (B). 

The logistic regression algorithm was used to establish a nomogram. The X-axis represents the 

overall predicted probability of ARR after transcatheter device closure in pmVSD patients. and 

the Y-axis represents the actual probability. Model calibration is indicated by the degree of 

fitting of the curve and the diagonal 


