
 

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 

International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as 

they credit the authors and the publisher, but without permission to change them in any way or use them 

commercially. 

 

 

Established machine learning models to predict readmission for elderly patients  

with ischemic heart disease 

 

 

Authors: Xuewu Song, Feng Xian, Changyu Zhu, Yi Luo, Yilong Liu, Qing Wen, Rongsheng 

Tong 

Article type: Original article 

Received: December 28, 2023 

Accepted: June 24, 2024 

Early publication date: June 28, 2024 

 

 

 

 

 

 

 

 

 

 

 



 

 

Established machine learning models to predict readmission for elderly patients with 

ischemic heart disease 

 

Short title: Machine learning predicts readmission for ischemic heart disease 

 

Xuewu Song1, Feng Xian2, Changyu Zhu1, Yi Luo1, Yilong Liu1, Qing Wen3, Rongsheng 

Tong1 

 
1Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic 

Science and Technology of China, Chengdu, China 

2Department of Oncology, Nanchong Central Hospital, the second Clinical Medical College, 

North Sichuan Medical College, Nanchong, China 
3Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic 

Science and Technology of China, Chengdu, China 

 

Correspondence to: 

Rongsheng Tong, PhD, 

Department of Pharmacy,  

Sichuan Provincial People’s Hospital,  

University of Electronic Science and Technology of China, 

32 West Second Section, First Ring Rd, Qingyang District,  

Chengdu 610072, Sichuan, China, 

phone: +86 028 8739 3485, 

e-mail: 318004031@qq.com 

 

WHAT’S NEW? 

Few studies evaluated the readmissions for elderly patients with ischemic heart disease. 

Therefore, we developed a predictive model based on machine learning. The results showed 



 

 

that the categorical boosting model had better predictive performance and good calibration in 

identifying 30-day and 1-year readmissions for elderly patients with ischemic heart disease. 

Meanwhile, we found that the age-adjusted Charlson comorbidity index, brain natriuretic 

peptide, heart failure, cholesterol, free thyroxine, thymidine kinase 1, osmotic pressure and red 

blood cell distribution width-standard deviation were common risk factors for readmission at 

different time. 

 

ABSTRACT 

Background: The contribution of clinical features associated with 30-day or 1-year 

readmission in elderly patients with ischemic heart disease (IHD) and whether these features 

can be used to predict the readmission risk of patients have not been studied. 

Aims: The study aimed to develop 30-day and 1-year readmission prediction models for elderly 

IHD patients using machine learning combined features routinely collected at the time of 

hospital discharge, and to investigate the contribution of features to these predictions. 

Methods: Eight machine learning algorithms were used to develop prediction models. Area 

under the receiver operating characteristic curve (AUROC) and area under the precision recall 

curve (AUPRC) were used to assess discrimination. Shapley additive explanations (SHAP) 

analysis was used to explain the contribution of features. 

Results: A total of 6687 patients were enrolled. For 30-day readmission, categorical boosting 

(CB) model had the best predictive performance with the highest AUROC (0.72), and the Brier 

score was 0.23. For 1-year readmission, CB model had the best predictive performance with 

the highest AUROC (0.66), and the Brier score was 0.14. The age-adjusted Charlson 

comorbidity index, brain natriuretic peptide, heart failure, cholesterol, free thyroxine, thymidine 

kinase 1, osmotic pressure and red blood cell distribution width-standard deviation were the 

common important features to predict 30-day and 1-year readmission of elderly IHD patients. 

Conclusions: Elderly IHD patients with high risk of 30-day or 1-year readmission can be 

identified using machine learning and features collected at the time of discharge. 
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INTRODUCTION 

Ischemic heart disease (IHD), a common chronic non-communicable cardiovascular disease 

(CVD), is one of the major contributors to CVD-related disease burden [1]. Due to poor disease 

control, many IHD patients returned to the hospital after discharge. For elderly IHD patients 

and their families, frequent readmissions may increase the financial burden, difficult experience 

and reduce the quality of life [2]. Therefore, identifying high-risk readmission patients and 

providing individualized therapeutic regimens is the key to reducing the readmission rate of 

elderly IHD patients. 

Many features such as age [3], sex [4], length of stay (LOS) [5] and complication [6] 

associated with patient readmission have been illustrated. Some routine laboratory tests were 

also associated with rehospitalization [7, 8]. However, it has not been possible to determine the 

contribution of these features to patients’ readmission or to assess the individualized effect of 

these features on patient clinical outcomes. Moreover, it is not clear whether the elderly IHD 

patients at high risk of readmission can be accurately identified using these clinically relevant 

variables available at the time of hospital discharge. In recent years, some screening tools to 

identify heart failure or acute myocardial infarction patients who may be readmitted to the 

hospital have been established [9, 10], which showed that using machine learning to develop a 

complicated and reliable classification tool is possible. However, to our knowledge, there is no 

practical readmission evaluation tool for elderly IHD patients. 

In this study, we produced 30-day and 1-year readmission prediction models for elderly 

IHD patients combining 8 machine learning algorithms and features routinely collected at the 

time of hospital discharge. Additionally, we analyzed the contribution of features to these 

predictions. 

 

METHODS 



 

 

Participants and outcome 

The subjects were elderly IHD patients who admitted to Sichuan Provincial People's Hospital 

from August 2018 to April 2020. Inclusion criteria include: Ⅰ) age ≥60 years; Ⅱ) diagnosis with 

IHD [11]. The exclusion criteria were as follows: Ⅰ) LOS <2 days; Ⅱ) transferred to other 

hospitals; Ⅲ) died in hospital; Ⅳ) follow-up time <1 year. The primary outcomes were 30-day 

and 1-year all-cause readmission. This study was approved by the Ethics Committee of Sichuan 

Academy of Medical Sciences and Sichuan Provincial People’s Hospital (approval number: 

2023-85). Due to the retrospective nature of the study, informed consent was waived. 

 

Data collection and preprocessing 

The data were collected from the Hospital Information System, which included basic patient 

information, medications, comorbidities and laboratory tests. For multiple laboratory test 

results, we selected the last results of patients before discharge. For multiple readmissions, the 

first admission record was included. 

The data preprocessing was as follows. Firstly, according to the comorbidities at the time 

of discharge, we calculated the age-adjusted Charlson comorbidity index (ACCI) of all patients 

[12]. The calculation method of ACCI is shown in Supplementary material, Table S1. Moreover, 

we counted the number of medications (NOM) taken by each patient at the time of discharge. 

For the laboratory test results of the patients, the feature with missing data >90% was deleted. 

Then, we used the random forest (RF) to replace the missing data and the Lasso to feature 

selection. Before the modeling, the continuous variables were standardized by Z-score. 

 

Model development 

We used 8 representative machine learning algorithms including logistic regression (LR), k-

nearest neighbor (KNN), support vector machine (SVM), adaptive boosting (AdaBoost), 

gradient boosting decision tree (GBDT), RF, categorical boosting (CB), and extreme gradient 

boosting (XGB) to develop prediction models. 

In the modeling process, the patients were randomly divided into a training set and a test 



 

 

set according to 7:3. The training set was used to develop models, and 10-fold cross-validation 

on the training set was applied for parameter optimization. The test set was used to evaluate the 

predictive performance of the models. We developed the 30-day and 1-year readmission 

prediction models, respectively. Notably, compared to non-readmission, fewer patients were 

readmitted in 30 days. To improve the predictive performance of the models, we randomly 

matched the non-readmission patients to the 30-day readmission patients by a ratio of 5:1. The 

matched data were used to establish the 30-day readmission prediction model. 

 

Model assessment 

Model performance was mainly assessed using area under the receiver operating characteristic 

curve (AUROC) and area under the precision recall curve (AUPRC). Meanwhile, we calculated 

the accuracy, precision, positive predictive value (PPV) and negative predictive value (NPV) to 

evaluate the predictive performance of the machine learning models [13]. Calibration of model 

was assessed by brier score, which is an index to evaluate both discrimination and calibration 

performance [14]. And the model was considered to have favorable calibration when the Brier 

score ≤0.25 [15]. Shapley additive explanations (SHAP) algorithm was used to measure the 

contribution of each feature to the best model. 

 

Statistical analysis 

All statistical analyses were performed using SPSS software version 25. Models building was 

implemented in Python (Version 3.7.0). The Shapiro-Wilk test was used to assess whether 

continuous variables followed a normal distribution. Normally distributed variables and skewed 

distributional data are described as the mean and standard deviation (SD) and median and 

interquartile range, respectively. The t-test or Mann–Whitney test was used to analyze 

significant differences, respectively. The χ2 test was chosen for the analysis of categorical 

variables, which were expressed as counts and percentages. A two-sided P-value of <0.05 was 

considered statistically significant. 

 



 

 

RESULTS 

Baseline characteristics 

The patient data selection process is shown in Figure 1. This study included 6687 patients, of 

whom 904 (13.52%) underwent 1-year readmission and 325 (4.86%) underwent 30-day 

readmission. There were 3673 (54.93%) male patients and 3014 (45.07%) female patients. The 

average age was 73.5 (8.1) years. All patients were used to develop machine learning models 

to predict 1-year readmission, and 1950 patients were used to predict 30-day readmission. Table 

1 shows the general information of the patients. The characteristics of 30-day readmission and 

non-readmission patients before matching are shown in Supplementary material, Table S2. 

 

Features selection 

A total of 174 features were collected, 85 features with missing data >90% were deleted 

(Supplementary material, Table S3). Then, Lasso regression analysis was performed on the 

remaining 89 features as independent variables with 30-day and 1-year readmissions as 

dependent variables, respectively (Figure 2). The results showed that when lambda with 

minimum mean square error, 10 features were selected with 30-day readmission 

(Supplementary material, Table S4). Similarly, for 1-year readmission, the 89 features were 

reduced to 36 when the lambda with minimum mean square error (Supplementary material, 

Table S4). 

 

Model performance and calibration 

Eight machine learning algorithms combined with 10 features selected by Lasso were used to 

develop prediction models for 30-day readmission. On the training set, RF model had the 

highest AUROC [0.95 (0.01), standard error = 0.003] (Figure 3A). On the test set, CB model 

had the highest AUROC (0.72) (Figure 3B). GBDT and XGB model had the highest AUPRC 

(0.31) on the test set (Figure 3C). And the AUPRC of CB model was 0.30 on the test set (Figure 

3C). The accuracy, precision, PPV and NPV of CB model to 30-day readmission on the test set 

were 0.77, 0.28, 0.28 and 0.87 (Table 2), respectively. 



 

 

The 8 machine learning algorithms combined with 36 features selected by Lasso were used 

to develop prediction models for 1-year readmission. On the training set, RF model had the 

highest AUROC [0.98 (0.01), standard error = 0.002] (Figure 3D). On the test set, CB model 

had the highest AUROC (0.66) (Figure 3E). Moreover, LR, CB and XGB model had the highest 

AUPRC (0.20) on the test set (Figure 3F). The accuracy, precision, PPV and NPV of CB model 

to 30-day readmission on the test set were 0.86, 0.17, 0.17 and 0.88 (Table 2), respectively. 

We used the Brier score to assess the calibration of the machine learning models. For 30-

day readmission, the XGB model had the optimal brier score (0.19). The Brier score of the CB 

model was 0.23 (Table 2). For 1-year readmission, the Brier score of the CB model was 0.14 

(Table 2). 

 

Features contribution 

The contributions of features to predictions of best-performing models by different periods of 

readmission are presented in Figure 4. For 30-day readmission, the most important features 

were ACCI, B-type natriuretic peptide (BNP), heart failure, cholesterol and thymidine kinase 1 

(TK1) (Figure 4A). For 1-year readmission, most important features were sex, hypertension, 

nephropathy, NOM, BNP (Figure 4B). 

The relationship between SHAP value and feature value is illustrated in more detail for the 

features of patient BNP and NOM in Figure 4C (30-day readmission) and Figure 4D (1-year 

readmission), respectively. The results showed that if the patients with high BNP, they may have 

a high risk of 30-day readmission. Similarly, the patients with ≥8 NOM were more likely to be 

readmitted in 1 year after discharge. 

Furthermore, SHAP can provide the contribution of every feature to the predicted outcome 

of each patient. An example of 30-day readmission is illustrated in Figure 4E. Total 

triiodothyronine (TT3), BNP, osmotic pressure (OSM), free thyroxine (FT4), TK1 and red 

blood cell distribution width-standard deviation (RDW-SD) provided a positive contribution, 

while heart failure, ACCI and cholesterol provided a negative contribution. Another example 

of 1-year readmission is illustrated in Figure 4F. High-sensitivity cardiac troponin Ⅰ, LOS, total 



 

 

bilirubin, TK1 and procalcitonin provided a positive contribution, while sex, nephropathy, 

hypertension and heart failure provided a negative contribution. 

 

DISCUSSION 

In this study, we reported the development and validation of machine learning models to 

identify elderly IHD patients at high risk for 30-day or 1-year readmission. We used 8 

representative machine learning algorithms including LR, KNN, SVM, AdaBoost, GBDT, RF, 

CB, and XGB, combined with the features selected by Lasso to develop prediction models. For 

30-day or 1-year readmission, CB model had the best predictive performance. 

Several studies have assessed 30-day or 1-year all-cause readmissions after acute 

myocardial infarction, but few are specific to IHD, especially for elderly patients. Dodson et al 

[16] established a risk model by backward selection and Bayesian to predict all-cause 

readmission at 30 days for 3006 elderly acute myocardial infarction patients (≥75 years). The 

C statistic of the model was 0.63 in validation cohort. Another study established RF was the 

best predictive model with an AUROC of 0.66 [17]. The model developed by Dreyer et al [18] 

to predict 1-year readmission among younger acute myocardial infarction adults had good 

calibration, and the C statistic of the model was 0.69. Compared to other studies, the best model 

in predicting 30-day or 1-year readmissions in our study had a consistent predictive 

performance. Meanwhile, the Brier score of the CB model was 0.23 on 30-day readmission and 

0.14 on 1-year readmission, which showed the model had a good calibration ability. 

An important challenge in optimizing the clinical utility of machine learning models 

resides in balancing the PPV and NPV in specific clinical settings [13]. As the proportion of 

patients at high risk of readmission is low, benefit from machine learning models should ensure 

those patients with high risk of readmission can be identified before discharge. In our study, all 

machine learning models had good NPV, which suggested that our model can accurately 

identify those patients at low risk for readmissions. However, the PPV values of all models 

were unsatisfactory, and we need to optimize the models to improve the identification of high-

risk readmission patients in further studies. 



 

 

Many of the top predictors contributing to identified readmission of elderly IHD patients 

in this study have been previously reported, such as BNP, LOS, sex and ACCI [19–23]. Heart 

failure is one of the significant risk factors for 30-day readmission in cardiovascular patients 

[24]. Our results also clarify that elderly IHD patients with heart failure were more likely to be 

readmitted within 30 days or 1 year. Poly-comorbidity often means polypharmacy. Care for the 

hospitalized elderly patients is made more complex by polypharmacy, which may increase the 

risks of adverse drug events [25]. Our study was unable to trace the cause of readmission. And 

this is one of the limitations of the study. However, those polypharmacy elderly IHD patients 

should receive more attention to reduce readmissions. Furthermore, a new finding is that OSM 

is also a common important feature for the prediction of 30-day or 1-year readmission of elderly 

IHD patients. Severe reduction of OSM predicts adverse outcomes in patients with 

cardiopulmonary failure. Taniguchi and colleagues recommended using OSM measurement to 

monitor patients with unstable angina pectoris [26]. One interesting finding was that TK1 was 

a common important feature in predicting 30-day and 1-year readmission of elderly IHD 

patients. However, TK1 is not routinely tested in patients with cardiovascular disease, which 

limits the clinical utility of the model. 

Although our results provided overall risk estimates for the population, they are of limited 

clinical assistance. Because significant individual differences existed in readmission risk 

features. The same features may have different clinical significance for different patients. A 

major advantage of the model developed in our study is that it provides individual risk estimates, 

which may assist clinicians in providing optimal care and appropriate interventions for patients. 

 

Limitations 

There are several limitations to this study. First, although the complications of the elderly IHD 

patients were enrolled, relevant information, such as the duration of the complications and 

disease severity were not included in our study. Second, this was a single-center study, and it 

would need to be tested in other medical institutions to assess the predictive performance of the 

model. Third, the inclusion of some unconventional laboratory test features such as TK1 in the 



 

 

final model may limit its clinical utility. Finally, the inclusion of additional features, such as 

health literacy, frailty and socioeconomic status, could improve the readmission risk assessment 

and should be validated in further studies. 

 

CONCLUSIONS 

In this study, we used clinically relevant features available at the time of hospital discharge 

combined with 8 machine learning algorithms to predict 30-day and 1-year readmission in 

elderly IHD patients, and investigated features contributing to these predictions. The CB model 

had better predictive performance and good calibration which showed that machine learning 

models had potential clinical application value. 
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Table 1. Patient characteristics 

Characteristic

s 

30–day 1–year 

Readmissio

n 

(n = 325) 

Non-

readmissio

n  

(n = 1625) 

P Readmissio

n 

(n = 904) 

Non-

readmissio

n 

(n = 5783) 

P-

value 

Sex   0.208   <0.00

1 

 Males 185 (56.9) 863 (53.1)  557 (61.6) 3116 (53.9)  

 Females 140 (43.1) 762 (46.9)  347 (38.4) 2667 (46.1)  

Age, years   <0.01   <0.00

1 

 60–69 87 (26.8) 602 (37.0)  267 (29.5) 2150 (37.2)  

 70–79 143 (44.0) 648 (39.9)  371 (41.0) 2296 (39.7)  

 ≥80 95 (29.2) 375 (23.1)  266 (29.4) 1337 (23.1)  

ACCI   <0.00

1 

  <0.00

1 

 2–5 204 (62.8) 1198 (73.7)  559 (61.8) 4214 (72.9)  

 6–10 115 (35.4) 411 (25.3)  331 (36.6) 1508 (26.1)  

 ≥11 6 (1.8) 16 (1.0)  14 (1.5) 61 (1.1)  

NOM   <0.00

1 

  <0.00

1 

 1–5 66 (20.3) 335 (20.6)  129 (14.3) 1182 (20.4)  

 6–10 143 (44.0) 900 (55.4)  474 (52.4) 3233 (55.9)  

 ≥11 116 (35.7) 390 (24.0)  301 (33.3) 1368 (23.7)  

Total protein, 

g/l 

66.8 (61.0–

72.0) 

67.8 (62.7–

72.8) 

<0.01 66.7 (61.0–

71.8) 

68.0 (62.8–

72.7) 

<0.00

1 

Total bilirubin, 13.3 (9.3– 13.3 (10.3– 0.333 12.8 (9.2– 13.4 (10.1– <0.01 



 

 

µmol/l 18.1) 18.0) 17.3) 17.9) 

Cholesterol, 

mmol/l 

3.78 (2.94–

4.43) 

4.07 (3.29–

4.92) 

<0.00

1 

3.84 (3.13–

4.63) 

4.06 (3.32–

4.88) 

<0.00

1 

AST, U/l 28 (22–37) 28 (22–36) 0.516 27 (22–35) 28 (22–36) <0.05 

Osmotic 

pressure, 

mOsm/l 

283 (278–

287) 

283 (279–

287) 

<0.05 283 (278–

287) 

283 (279–

287) 

<0.05 

Urea, mmol/l 6.75 (5.00–

8.99) 

6.13 (4.95–

7.72) 

<0.01 6.47 (4.95–

8.53) 

6.08 (4.86–

7.78) 

<0.00

1 

Creatine 

kinase, U/l 

83 (51–119) 92 (64–

142) 

<0.00

1 

88 (59–129) 90 (63–

138) 

<0.05 

Myoglobin, 

ng/ml 

57.2 (39.2–

100.8) 

47.2 (33.8–

75.0) 

<0.00

1 

55.2 (37.4–

91.1) 

48.0 (34.2–

76.2) 

<0.00

1 

Creatinine, 

µmol/l 

78.4 (64.1–

103.6) 

72.0 (59.9–

89.8) 

<0.00

1 

78.7 (63.0–

101.0) 

72.2 (59.7–

90.5) 

<0.00

1 

AST/ALT 1.30 (1.00–

1.80) 

1.28 (0.95–

1.71) 

0.167 1.28 (0.96–

1.70) 

1.28 (0.96–

1.70) 

0.511 

eGFR, ml/min 79.0 (56.4–

90.0) 

84.1 (66.6–

93.0) 

<0.00

1 

79.7 (57.7–

90.5) 

83.9 (65.3–

93.1) 

<0.00

1 

HDL-C, 

mmol/l 

1.14 (0.97–

1.39) 

1.18 (0.99–

1.43) 

0.084 1.16 (0.98–

1.37) 

1.19 (1.00–

1.44) 

<0.01 

Triglyceride, 

mmol/l 

1.24 (0.83–

1.90) 

1.40 (0.98–

2.05) 

<0.01 1.32 (0.91–

1.96) 

1.37 (0.97–

1.99) 

0.062 

LDL-C, 

mmol/l 

1.90 (1.36–

2.61) 

2.18 (1.58–

2.86) 

<0.00

1 

1.98 (1.46–

2.69) 

2.18 (1.61–

2.81) 

<0.00

1 

ALT, U/l 20 (15–30) 22 (16–34) <0.01 21 (15–32) 22 (15–33) 0.098 

GGT, U/l 28 (19–46) 26 (17–44) 0.088 27 (18–48) 25 (17–44) <0.01 

BNP, pg/ml 193.6 (58.6– 66.6 (26.2– <0.00 112.5 (45.9– 72.7 (28.3– <0.00



 

 

511) 214.1) 1 349.4) 219.7) 1 

D–dimer, mg/l 0.65 (0.35–

1.43) 

0.46 (0.24–

1.08) 

<0.00

1 

0.54 (0.28–

1.19) 

0.47 (0.25–

1.13) 

<0.01 

Hemoglobin, 

g/l 

124 (109–

138) 

130 (118–

142) 

<0.00

1 

126 (112–

139) 

130 (117–

141) 

<0.00

1 

Hematocrit 0.37 (0.31–

0.42) 

0.39 (0.33–

0.42) 

<0.01 0.38 (0.32–

0.42) 

0.39 (0.32–

0.42) 

<0.05 

RDW–SD, fl 45.3 (43.0–

48.1) 

44.6 (42.5–

47.0) 

<0.01 45.1 (42.8–

47.9) 

44.7 (42.6–

47.3) 

<0.05 

TK1, pmol/l 0.61 (0.30–

1.31) 

0.54 (0.23–

1.24) 

0.198 0.61 (0.33–

1.32) 

0.53 (0.23–

1.23) 

<0.01 

Data presented as number (%) or median (Q1–Q3) 

Abbreviations: ACCI, age-adjusted Charlson comorbidity index; ALT, alanine aminotransferase; AST, 

aspartate aminotransferase; BNP, brain natriuretic peptide; eGFR, estimated glomerular filtration rate; 

GGT, γ-glutamyl transpeptidase; HDL-C, high density lipoprotein cholesterol; LDL-C, low density 

lipoprotein cholesterol; NOM, number of medications; RDW-SD, red blood cell distribution width-

standard deviation; TK1, thymidine kinase 1 



 

 

Table 2. Models performance 

Prediction Model Accuracy Precision PPV NPV Brier 

score 

30-day 

readmission 

LR 0.63 0.26 0.26 0.92 0.37 

KNN 0.57 0.23 0.23 0.90 0.43 

SVM 0.59 0.25 0.25 0.93 0.41 

AdaBoost 0.71 0.28 0.28 0.89 0.29 

GBDT 0.68 0.26 0.26 0.89 0.31 

RF 0.78 0.30 0.29 0.87 0.22 

CB 0.77 0.28 0.28 0.87 0.23 

XGB 0.81 0.37 0.37 0.88 0.19 

1-year 

readmission 

LR 0.62 0.18 0.18 0.91 0.38 

KNN 0.41 0.15 0.15 0.93 0.59 

SVM 0.69 0.19 0.19 0.91 0.31 

AdaBoost 0.83 0.22 0.22 0.88 0.17 

GBDT 0.87 0.21 0.21 0.88 0.13 

RF 0.87 0.30 0.30 0.88 0.13 

CB 0.86 0.17 0.17 0.88 0.14 

XGB 0.86 0.26 0.26 0.88 0.14 

Abbreviations: AdaBoost, adaptive boosting; CB, categorical boosting; GBDT, gradient boosting 

decision tree; KNN, k-nearest neighbor; LR, logistic regression; NPV, negative predictive value; PPV, 

positive predictive value; RF, random forest; SVM, support vector machine; XGB, extreme gradient 

boosting 

 

 



 

 

 

Figure 1. Patient data selection process 

Abbreviations: IHD, ischemic heart disease; LOS, length of stay 

 

 

 



 

 

Figure 2. A. and B. Lasso regression analysis for 30-day readmission. C. and D. Lasso 

regression analysis for 1-year readmission. A. and C. Vertical lines are drawn at selected values 

by applying 10-fold cross-validation. B. and D. In the Lasso model, the coefficient profiles of 

89 texture features were draw from the log (λ) sequence. Vertical dotted lines are drawn at the 

minimum mean square error and the standard error of the minimum distance 

 

 

 



 

 

Figure 3. Models predictive performance. A., B. and C. 30-day readmission. A. The AUROC 

on the training set. B. The AUROC on the test set. C. The AUPRC on the test set. D., E. and F. 

1-year readmission. D. The AUROC on the training set. E. The AUROC on the test set. F The 

AUPRC on the test set 

Abbreviations: AUPRC, area under the precision recall curve; AUROC, area under the receiver 

operating characteristic curve; other — see Table 2 

 

 

 



 

 

Figure 4. Contributions of input features to readmission predictions. The SHAP summary plot 

of the 10 most important variables of the CB model for 30-day readmission (A) and 1-year 

readmission (B). In the plots, the x-axis indicates the SHAP value; and the y-axis indicates the 

relationship between features and SHAP values. The color of the dot represents the value of the 

features. Red represents higher feature values, and blue represents lower feature values (C). D. 

Scatter plot shows the relationship between the feature value and SHAP value. C. BNP for 30-



 

 

day readmission. D. NOM for 1-year readmission. In the plots, the distributions of the SHAP 

value and feature values are shown as histograms on the right and top of the scatter graph. E. 

and F. Contribution of every feature to the predicted outcome of one sample. Red represents 

positive contribution, and blue represents negative contribution. E. 30-day readmission. F. 1-

year readmission 

Abbreviations: ADA, adenosine deaminase; FT4, free thyroxine; HS-TNTI, high-sensitivity cardiac 

troponin Ⅰ; OSM, osmotic pressure; SHAP, Shapley additive explanations; TT3, total triiodothyronine; 

other — see Table 1 and Figure 1 
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