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A B S T R A C T
Background: The contribution of clinical features associated with 30-day or 1-year readmission in 
elderly patients with ischemic heart disease (IHD) and whether these features can be used to predict 
the readmission risk of patients has not been studied.

Aims: The study aimed to develop 30-day and 1-year readmission prediction models for elderly 
IHD patients using combined machine learning features routinely collected at the time of hospital 
discharge, and to investigate their prognostic impact.

Methods: Eight machine learning algorithms were used to develop prediction models. Area un-
der the receiver operating characteristic curve (AUROC) and area under the precision-recall curve 
(AUPRC) were used to assess discrimination. SHapley Additive exPlanations (SHAP) analysis was 
used to explain the contribution of features.

Results: A total of 6687 patients were enrolled. For 30-day readmissions, the categorical boosting (CB) 
model had the best predictive performance with the highest AUROC (0.72), and the Brier score was 
0.23. For 1-year readmissions, the CB model had the best predictive performance with the highest 
AUROC (0.66), and the Brier score was 0.14. The age-adjusted Charlson comorbidity index, brain 
natriuretic peptide, heart failure, cholesterol, free thyroxine, thymidine kinase 1, osmotic pressure, 
and red blood cell distribution width (standard deviation) were the common important features to 
predict 30-day and 1-year readmissions of elderly IHD patients.

Conclusions: Elderly IHD patients with high risk of 30-day or 1-year readmission can be identified 
using machine learning and features collected at the time of discharge.
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INTRODUCTION
Ischemic heart disease (IHD), a common 
chronic non-communicable cardiovascular 
disease (CVD), is one of the major contributors 
to CVD-related disease burden [1]. Due to poor 
disease control, many IHD patients return to 
the hospital after discharge. For elderly IHD 
patients and their families, frequent read-
missions may increase the financial burden 
and reduce the quality of life [2]. Therefore, 
identifying high-risk readmission patients 
and providing individualized therapeutic regi-
mens is the key to reducing the readmission 
rate of elderly IHD patients.

Many features such as age [3], sex [4], 
length of stay (LOS) [5] , and complications 

[6] associated with patient readmission have 
been described. Results of some routine 
laboratory tests were also associated with 
rehospitalization [7, 8]. However, it has not 
been possible to determine the impact of 
these features on patient readmission rates or 
to assess the effect of these features on patient 
clinical outcomes. Moreover, it is not clear 
whether the elderly IHD patients at high risk of 
readmission can be accurately identified using 
these clinically relevant variables available at 
the time of hospital discharge. In recent years, 
some screening tools to identify heart failure 
or acute myocardial infarction patients who 
may be readmitted to the hospital have been 
established [9, 10], which showed that using 
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W H A T ’ S  N E W ?
Few studies evaluated readmissions for elderly patients with ischemic heart disease. Therefore, we developed a predictive 
model based on machine learning. The results showed that the categorical boosting model had better predictive performance 
and good calibration in identifying readmissions in 30 days and 1 year for elderly patients with ischemic heart disease. We also 
found that the age-adjusted Charlson comorbidity index, brain natriuretic peptide level, heart failure, cholesterol, free thyroxine, 
thymidine kinase 1, osmotic pressure, and red blood cell distribution width (standard deviation) were common risk factors for 
readmission at different times.

machine learning to develop a complicated and reliable 
classification tool is possible. However, to our knowledge, 
there is no practical readmission evaluation tool for elderly 
IHD patients.

In this study, we produced 30-day and 1-year readmis-
sion prediction models for elderly IHD patients combining 
8 machine-learning algorithms and data routinely collected 
at the time of hospital discharge. Additionally, we analyzed 
the contribution of those features to the predictions.

METHODS

Participants and outcome
The subjects were elderly IHD patients who were admitted 
to Sichuan Provincial People’s Hospital from August 2018 to 
April 2020. Inclusion criteria were age ≥60 years, and IHD 
diagnosis  [11]. The exclusion criteria were as follows:  
1) LOS <2 days; 2) transfer to other hospitals; 3) death in 
the hospital; and 4) follow-up time <1 year. The primary 
outcomes were 30-day and 1-year all-cause readmission. 
This study was approved by the Ethics Committee of the 
Sichuan Academy of Medical Sciences and Sichuan Pro-
vincial People’s Hospital (approval number: 2023-85). Due 
to the retrospective nature of the study, informed consent 
was waived.

Data collection and preprocessing
Data were collected from the Hospital Information System, 
which included basic patient information, medications, 
comorbidities, and laboratory tests. For multiple laboratory 
test results, we selected the last results before discharge. 
For multiple readmissions, the first admission record 
was included.

Data preprocessing was as follows. First, using informa-
tion about the comorbidities at the time of discharge, we 
calculated the age-adjusted Charlson comorbidity index 
(ACCI) for all patients [12]. The calculation method of ACCI 
is shown in Supplementary material, Table S1. Moreover, 
we counted the number of medications (NOM) taken by 
each patient at the time of discharge. For the laboratory 
test results, the feature with more than 90% of missing data 
was deleted. Then, we used the random forest (RF) method 
to replace the missing data and Lasso analysis to select 
features. Before the modeling, the continuous variables 
were standardized by Z-score.

Model development
We used 8 representative machine learning algorithms 
including logistic regression (LR), k-nearest neighbor 
(KNN), support vector machine (SVM), adaptive boosting 
(AdaBoost), gradient boosting decision tree (GBDT), RF, 
categorical boosting (CB), and extreme gradient boosting 
(XGB) to develop prediction models.

In the modeling process, the patients were randomly 
assigned into a training set and a test set according to 
a proportion of 7:3. The training set was used to develop 
models, and 10-fold cross-validation on the training set was 
applied for parameter optimization. The test set was used 
to evaluate the predictive performance of the models. We 
developed the 30-day and 1-year readmission prediction 
models, respectively. Notably, compared to non-readmis-
sion, fewer patients were readmitted in 30 days. To improve 
the predictive performance of the models, we randomly 
matched the non-readmission patients to the 30-day read-
mission patients by a ratio of 5:1. The matched data were 
used to establish the 30-day readmission prediction model.

Model assessment
Model performance was mainly assessed using the area 
under the receiver operating characteristic curve (AUROC) 
and the area under the precision-recall curve (AUPRC). 
Meanwhile, we calculated the accuracy, precision, positive 
predictive value (PPV), and negative predictive value (NPV) 
to evaluate the predictive performance of the machine 
learning models [13]. The calibration of the model was 
assessed by the Brier score, which is an index to evaluate 
both discrimination and calibration performance [14]. 
The model was considered to have favorable calibration 
when the Brier score was ≤0.25 [15]. The SHapley Additive 
exPlanations (SHAP) algorithm was used to measure the 
contribution of each feature to the best model.

Statistical analysis
All statistical analyses were performed using SPSS soft-
ware version 25. Model building was implemented in 
Python (Version 3.7.0). The Shapiro–Wilk test was used 
to assess whether continuous variables followed normal 
distributions. Normally distributed variables and skewed 
distributional data were described as means and standard 
deviations (SD) and medians and interquartile ranges, 
respectively. The t-test or Mann–Whitney test was used to 
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7133 patients aged ≥60 years

6898 patients with LOS >2 days

235 patients with LOS <2 days

8695 inpatients diagnosed with IHD 
from August 2018 to April 2020

1562 patients aged <60 years

6687 patients included in the study

211 patients transferred 
to other hospitals, 

died in hospital 
or follow-up time <1 year

Figure 1. Patient data selection process

Abbreviations: IHD, ischemic heart disease; LOS, length of stay

analyze significant differences, respectively. The χ2 test was 
chosen for the analysis of categorical variables, which were 
expressed as counts and percentages. A two-sided P-value 
of <0.05 was considered statistically significant.

RESULTS

Baseline characteristics
The patient data selection process is shown in Figure 1. This 
study included 6687 patients, of whom 904 (13.52%) experi-
enced 1-year readmission and 325 (4.86%) experienced 30-
day readmission. There were 3673 (54.93%) male patients 
and 3014 (45.07%) female patients. The average age was 
73.5 (8.1) years. Data from all patients were used to develop 
machine learning models to predict 1-year readmission, 
and 1950 patients were used to predict 30-day readmis-
sion. Table 1 shows the general patient characteristics. The 
characteristics of 30-day readmission and non-readmission 
patients before matching are shown in Supplementary 
material, Table S2.

Features selection
A total of 174 features were collected, and 85 features with 
missing data >90% were deleted (Supplementary material, 
Table S3). Then, Lasso regression analysis was performed on 
the remaining 89 features as independent variables with 
30-day and 1-year readmissions as dependent variables, 
respectively (Figure 2). When using Lasso regression for 
features selection, the appropriate lambda values can 
be select the lambda with minimum mean square error 

(dashed black line in Figure 2), in which case the feature 
with a non-0 coefficient is the important feature to be 
selected. The names of selected features are presented in
Supplementary material, Table S4.

Model performance and calibration
Eight machine learning algorithms combined with 10 fea-
tures selected by Lasso were used to develop prediction 
models for 30-day readmission. On the training set, the 
RF model had the highest AUROC (0.95 [0.01], standard 
error = 0.003) (Figure 3A). On the test set, the CB model 
had the highest AUROC (0.72) (Figure 3B). The GBDT and 
XGB models had the highest AUPRC (0.31) on the test set 
(Figure 3C). The AUPRC of the CB model was 0.30 on the 
test set (Figure 3C). The accuracy, precision, PPV, and NPV 
of the CB model to 30-day readmission on the test set were 
0.77, 0.28, 0.28, and 0.87 (Table 2), respectively.

Eight machine learning algorithms combined with 
36 features selected by Lasso were used to develop pre-
diction models for 1-year readmission. On the training set, 
the RF model had the highest AUROC (0.98 [0.01], standard 
error = 0.002) (Figure 3D). On the test set, the CB model had 
the highest AUROC (0.66) (Figure 3E). Moreover, LR, CB, and 
XGB models had the highest AUPRC (0.20) on the test set 
(Figure 3F). The accuracy, precision, PPV, and NPV of the 
CB model for 30-day readmission on the test set were 0.86, 
0.17, 0.17, and 0.88 (Table 2), respectively.

We used the Brier score to assess the calibration of the 
machine learning models. For 30-day readmission, the XGB 
model had the optimal Brier score (0.19). The Brier score of 
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Table 1. Patient characteristics

Characteristics 30–day 1–year

Readmission
(n = 325)

Non-readmission 
(n = 1625)

P-value Readmission
(n = 904)

Non-readmission
(n = 5783)

P-value

Sex

Males 185 (56.9) 863 (53.1) 0.208 557 (61.6) 3116 (53.9) <0.001

Females 140 (43.1) 762 (46.9) 347 (38.4) 2667 (46.1)

Age, years

60–69 87 (26.8) 602 (37.0) <0.01 267 (29.5) 2150 (37.2) <0.001

70–79 143 (44.0) 648 (39.9) 371 (41.0) 2296 (39.7)

≥80 95 (29.2) 375 (23.1) 266 (29.4) 1337 (23.1)

ACCI

2–5 204 (62.8) 1198 (73.7) <0.001 559 (61.8) 4214 (72.9) <0.001

6–10 115 (35.4) 411 (25.3) 331 (36.6) 1508 (26.1)

≥11 6 (1.8) 16 (1.0) 14 (1.5) 61 (1.1)

NOM

1–5 66 (20.3) 335 (20.6) <0.001 129 (14.3) 1182 (20.4) <0.001

6–10 143 (44.0) 900 (55.4) 474 (52.4) 3233 (55.9)

≥11 116 (35.7) 390 (24.0) 301 (33.3) 1368 (23.7)

Total protein, g/l 66.8 (61.0–72.0) 67.8 (62.7–72.8) <0.01 66.7 (61.0–71.8) 68.0 (62.8–72.7) <0.001

Total bilirubin, µmol/l 13.3 (9.3–18.1) 13.3 (10.3–18.0) 0.333 12.8 (9.2–17.3) 13.4 (10.1–17.9) <0.01

Cholesterol, mmol/l 3.78 (2.94–4.43) 4.07 (3.29–4.92) <0.001 3.84 (3.13–4.63) 4.06 (3.32–4.88) <0.001

AST, U/l 28 (22–37) 28 (22–36) 0.516 27 (22–35) 28 (22–36) <0.05

Osmotic pressure, mOsm/l 283 (278–287) 283 (279–287) <0.05 283 (278–287) 283 (279–287) <0.05

Urea, mmol/l 6.75 (5.00–8.99) 6.13 (4.95–7.72) <0.01 6.47 (4.95–8.53) 6.08 (4.86–7.78) <0.001

Creatine kinase, U/l 83 (51–119) 92 (64–142) <0.001 88 (59–129) 90 (63–138) <0.05

Myoglobin, ng/ml 57.2 (39.2–100.8) 47.2 (33.8–75.0) <0.001 55.2 (37.4–91.1) 48.0 (34.2–76.2) <0.001

Creatinine, µmol/l 78.4 (64.1–103.6) 72.0 (59.9–89.8) <0.001 78.7 (63.0–101.0) 72.2 (59.7–90.5) <0.001

AST/ALT, U/l 1.30 (1.00–1.80) 1.28 (0.95–1.71) 0.167 1.28 (0.96–1.70) 1.28 (0.96–1.70) 0.511

eGFR, ml/min 79.0 (56.4–90.0) 84.1 (66.6–93.0) <0.001 79.7 (57.7–90.5) 83.9 (65.3–93.1) <0.001

HDL-C, mmol/l 1.14 (0.97–1.39) 1.18 (0.99–1.43) 0.084 1.16 (0.98–1.37) 1.19 (1.00–1.44) <0.01

Triglyceride, mmol/l 1.24 (0.83–1.90) 1.40 (0.98–2.05) <0.01 1.32 (0.91–1.96) 1.37 (0.97–1.99) 0.062

LDL-C, mmol/l 1.90 (1.36–2.61) 2.18 (1.58–2.86) <0.001 1.98 (1.46–2.69) 2.18 (1.61–2.81) <0.001

ALT, U/l 20 (15–30) 22 (16–34) <0.01 21 (15–32) 22 (15–33) 0.098

GGT, U/l 28 (19–46) 26 (17–44) 0.088 27 (18–48) 25 (17–44) <0.01

BNP, pg/ml 193.6 (58.6–511) 66.6 (26.2–214.1) <0.001 112.5 (45.9–349.4) 72.7 (28.3–219.7) <0.001

D–dimer, mg/l 0.65 (0.35–1.43) 0.46 (0.24–1.08) <0.001 0.54 (0.28–1.19) 0.47 (0.25–1.13) <0.01

Hemoglobin, g/l 124 (109–138) 130 (118–142) <0.001 126 (112–139) 130 (117–141) <0.001

Hematocrit 0.37 (0.31–0.42) 0.39 (0.33–0.42) <0.01 0.38 (0.32–0.42) 0.39 (0.32–0.42) <0.05

RDW–SD, fl 45.3 (43.0–48.1) 44.6 (42.5–47.0) <0.01 45.1 (42.8–47.9) 44.7 (42.6–47.3) <0.05

TK1, pmol/l 0.61 (0.30–1.31) 0.54 (0.23–1.24) 0.198 0.61 (0.33–1.32) 0.53 (0.23–1.23) <0.01

Data presented as number (%) or median (IQR)

Abbreviations: ACCI, age-adjusted Charlson comorbidity index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BNP, brain natriuretic peptide; eGFR, estima-
ted glomerular filtration rate; GGT, γ-glutamyl transpeptidase; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; NOM, number  
of medications; RDW-SD, red blood cell distribution width-standard deviation; TK1, thymidine kinase 1

the CB model was 0.23 (Table 2). For 1-year readmission, 
the Brier score of the CB model was 0.14 (Table 2).

Features contribution
The contributions of features to prediction of best-per-
forming models by different periods of readmission are 
presented in Figure 4. For 30-day readmission, the most 
important features were ACCI, B-type natriuretic peptide 
(BNP), heart failure, cholesterol, and thymidine kinase 
1 (TK1) (Figure 4A). For 1-year readmission, the most impor-
tant features were sex, hypertension, nephropathy, NOM, 
and BNP (Figure 4B).

The relationship between SHAP values and feature 
values is illustrated in more detail for the features of patient 

BNP and NOM in Figure 4C (30-day readmission) and Figure 
4D (1-year readmission). The results showed that patients 
with high BNP may have a high risk of 30-day readmission. 
Similarly, patients with ≥8 NOM were more likely to be 
readmitted in 1 year after discharge.

Furthermore, SHAP can contribute to every feature of 
the predicted outcome of each patient. An example of 30- 
-day readmission is illustrated in Figure 4E. Total triiodothy-
ronine (TT3), BNP, osmotic pressure (OSM), free thyroxine 
(FT4), TK1, and red blood cell distribution width standard 
deviation (RDW-SD) provided a positive contribution, while 
heart failure, ACCI, and cholesterol provided a negative 
contribution. Another example of 1-year readmission is 
illustrated in Figure 4F. High-sensitivity cardiac troponin I, 
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Figure 3. Models predictive performance. A., B. and C. 30-day readmission. A. The AUROC on the training set. B. The AUROC on the test set. 
C. The AUPRC on the test set. D., E. and F. 1-year readmission. D. The AUROC on the training set. E. The AUROC on the test set. F The AUPRC 
on the test set

Abbreviations: AUPRC, area under the precision recall curve; AUROC, area under the receiver operating characteristic curve; other — see 
Table 2

A B C

D E F

Figure 2. A. and B. Lasso regression analysis for 30-day readmission. C. and D. Lasso regression analysis for 1-year readmission. A. and C. Ver-
tical lines are drawn at selected values by applying 10-fold cross-validation. B. and D. In the Lasso model, the coefficient profiles of 89 texture 
features were draw from the log (λ) sequence. Vertical dotted lines are drawn at the minimum mean square error and the standard error of 
the minimum distance

B

D

A

C
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LOS, total bilirubin, TK1, and procalcitonin provided a pos-
itive contribution, while sex, nephropathy, hypertension, 
and heart failure provided a negative contribution.

DISCUSSION
In this study, we reported the development and validation 
of machine learning models to identify elderly IHD patients 
at high risk for 30-day or 1-year readmission. We used 8 rep-
resentative machine learning algorithms including LR, KNN, 
SVM, AdaBoost, GBDT, RF, CB, and XGB, combined with the 
features selected by Lasso analysis to develop prediction 
models. For 30-day or 1-year readmission, the CB model 
had the best predictive performance.

Several studies have assessed 30-day or 1-year all-cause 
readmissions after acute myocardial infarction, but few are 
specific to IHD, especially in elderly patients. Dodson et 
al. [16] established a risk model by backward and Bayes-
ian selection to predict all-cause readmission at 30 days 
for 3006 elderly acute myocardial infarction patients 
(≥75 years). The C statistic of the model was 0.63 in the 
validation cohort. Another study established RF was the 
best predictive model with an AUROC of 0.66 [17]. The 
model developed by Dreyer et al. [18] to predict 1-year 
readmission among younger acute myocardial infarction 
adults had good calibration, and the C statistic of the model 
was 0.69. Compared to other studies, the best model in 
predicting 30-day or 1-year readmissions in our study had 
a consistent predictive performance. Meanwhile, the Brier 
score of the CB model was 0.23 on 30-day readmission and 
0.14 on 1-year readmission, which showed the model had 
a good calibration ability.

An important challenge in optimizing the clinical utility 
of machine learning models resides in balancing the PPV 
and NPV in specific clinical settings [13]. As the proportion 
of patients at high risk of readmission is low, benefit from 
machine learning models should ensure that patients with 

high risk of readmission can be identified before discharge. 
In our study, all machine learning models had good NPV, 
which suggested that our model can accurately identify 
patients at low risk for readmissions. However, the PPV 
values of all models were unsatisfactory, and we need to 
optimize these models to improve the identification of 
high-risk readmission patients in further studies.

Many of the top predictors contributing to identified 
readmission of elderly IHD patients in this study have 
been previously reported, such as BNP, LOS, sex, and ACCI 
[19–23]. Heart failure is one of significant risk factors for 
30-day readmission in cardiovascular patients [24]. Our 
results also clarify that elderly IHD patients with heart 
failure were more likely to be readmitted within 30 days or 
1 year. Poly-comorbidity often means polypharmacy. Care 
for hospitalized elderly patients is made more complex by 
polypharmacy, which may increase the risks of adverse 
drug events [25]. Our study was unable to trace the cause 
of readmission. This is one of the limitations of the study. 
However, those elderly IHD patients who are affected by 
polypharmacy should receive more attention to reduce 
readmissions. Furthermore, a new finding is that OSM is 
also a common important feature for the prediction of 30- 
-day or 1-year readmission of elderly IHD patients. Severe 
reduction in OSM predicts adverse outcomes in patients 
with cardiopulmonary failure. Taniguchi and colleagues 
recommended using OSM measurement to monitor pa-
tients with unstable angina pectoris [26]. One interesting 
finding was that TK1 was a common important feature in 
predicting 30-day and 1-year readmission in elderly IHD 
patients. However, TK1 is not routinely tested in patients 
with cardiovascular disease, which limits the clinical utility 
of the model.

Although our results provided overall risk estimates 
for the population, they are of limited clinical assistance 
because significant individual differences existed in read-

Table 2. Models performance

Prediction Model Accuracy Precision PPV NPV Brier score

30-day readmission LR 0.63 0.26 0.26 0.92 0.37

KNN 0.57 0.23 0.23 0.90 0.43

SVM 0.59 0.25 0.25 0.93 0.41

AdaBoost 0.71 0.28 0.28 0.89 0.29

GBDT 0.68 0.26 0.26 0.89 0.31

RF 0.78 0.30 0.30 0.87 0.22

CB 0.77 0.28 0.28 0.87 0.23

XGB 0.81 0.37 0.37 0.88 0.19

1-year readmission LR 0.62 0.18 0.18 0.91 0.38

KNN 0.41 0.15 0.15 0.93 0.59

SVM 0.69 0.19 0.19 0.91 0.31

AdaBoost 0.83 0.22 0.22 0.88 0.17

GBDT 0.87 0.21 0.21 0.88 0.13

RF 0.87 0.30 0.30 0.88 0.13

CB 0.86 0.17 0.17 0.88 0.14

XGB 0.86 0.26 0.26 0.88 0.14

Abbreviations: AdaBoost, adaptive boosting; CB, categorical boosting; GBDT, gradient boosting decision tree; KNN, k-nearest neighbor; LR, logistic regression; NPV, negative 
predictive value; PPV, positive predictive value; RF, random forest; SVM, support vector machine; XGB, extreme gradient boosting
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Figure 4. Contributions of input features to readmission predictions. The SHAP summary plot of the 10 most important variables of the CB 
model for 30-day readmission (A) and 1-year readmission (B). In the plots, the x-axis indicates the SHAP value; and the y-axis indicates the re-
lationship between features and SHAP values. The color of the dot represents the value of the features. Red represents higher feature values, 
and blue represents lower feature values (C). D. Scatter plot shows the relationship between the feature value and SHAP value. C. BNP for 30- 
-day readmission. D. NOM for 1-year readmission. In the plots, the distributions of the SHAP value and feature values are shown as histo-
grams on the right and top of the scatter graph. E. and F. Contribution of every feature to the predicted outcome of one sample. Red rep-
resents positive contribution, and blue represents negative contribution. E. 30-day readmission. F. 1-year readmission

Abbreviations: ADA, adenosine deaminase; FT4, free thyroxine; HS-TNTI, high-sensitivity cardiac troponin I; OSM, osmotic pressure;  
SHAP, Shapley additive explanations; TT3, total triiodothyronine; other — see Table 1 and Figure 1

A B

C D

E F
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mission risk features. The same features may have different 
clinical significance for different patients. A major advan-
tage of the model developed in our study is that it provides 
individual risk estimates, which may assist clinicians in 
providing optimal care and appropriate interventions 
for patients.

Limitations
There are several limitations to this study. First, although 
we had information about the complications in the elderly 
IHD patients who we had enrolled, some relevant aspects 
of that information, such as the duration of the complica-
tions and disease severity were not included in our study. 
Second, this was a single-center study, and it would need 
to be tested in other medical institutions to assess the 
predictive performance of the model. Third, the inclusion 
of some unconventional laboratory tests such as TK1 in the 
final model may limit its clinical utility. Finally, the inclusion 
of additional features, such as health literacy, frailty, and 
socioeconomic status, could improve the readmission risk 
assessment and should be validated in further studies.

CONCLUSIONS
In this study, we used clinically relevant features available 
at the time of hospital discharge combined with 8 machine 
learning algorithms to predict 30-day and 1-year read-
mission in elderly IHD patients and investigated features 
contributing to these predictions. The CB model had the 
best predictive performance and good calibration, which 
showed that machine learning models had potential clin-
ical application value.
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Supplementary material is available at https://journals.
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