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The oxidative stress theory of atherosclerosis has been coined some decades ago for explaining 

the key mechanisms accounting for arterial inflammation and ensuing formation of 

atherosclerotic plaque [1]. According to this theory, upon crossing endothelial wall, low-density 

lipoprotein (LDL) can become oxidized so eliciting an in situ inflammatory process leading to 

accumulation of monocytes-macrophages into the vessel wall: uptake of oxidised LDL 

(oxLDL) by macrophage scavenger receptor begets foam cell formation an eventually 

atherosclerotic plaque [2]. An open issue regards the initiation phase of atherosclerosis, overall, 

the intrinsic mechanism causing LDL oxidation; thus, in vitro studies consistently showed that 

LDL are oxidized by endothelial cells but the triggers as well as intra-signalling pathways 

implicated in LDL oxidation are still unclear. Overproduction of reactive oxidant species (ROS) 

by endothelial cells with ensuing interaction with sub-endothelial LDL has been shown in vitro 

and considered a potential mechanism but it is unclear if and how LDL may shift endothelial 

cells to ROS overproduction. Nonenzymatic oxidation may concur to formation of oxidation 



molecule as, for instance, in case of F2-isoprostanes that stem from ROS interaction with 

arachidonic acid; F2-isoprostanes have been detected in macrophages of human atherosclerotic 

plaque [3]. Enzymatic oxidation may be another mechanism eliciting LDL oxidation as 

suggested by HPLC analysis of human atherosclerotic specimens showing that atherosclerotic 

plaque is rich of oxidation molecule derived from 5-lipoxygenase activation [4]; however, it is 

unclear how the enzyme is activated upon LDL crossing arterial wall. That LDL oxidation is 

implicated in arterial inflammation concurring to formation of foam cells has been 

demonstrated in vivo by injection of radiolabelled LDL to patients undergoing endarterectomy 

given or not high doses of vitamin E, a powerful antioxidant; samples taken from vitamin E-

treated patients showed that lowered LDL accumulation within macrophages of atherosclerotic 

plaque suggesting a key role for oxidative stress as trigger of sub-endothelial inflammation [5].  

Several biomarkers of oxidative stress have been investigated to explore the interaction 

between ROS formation and cardiovascular disease progression in vivo [1]. The use of these 

biomarkers may help clinicians identifying patients at higher cardiovascular risk. Regarding the 

pro-oxidant pathways up-regulation, elevated levels of myeloperoxidase is associated with a 

high risk of major cardiovascular event in patients with chronic coronary syndrome as well as 

increased expression and activity of NADPH oxidase represents pro-oxidant mechanisms 

favouring coronary artery disease [6–10]. The risk of incident myocardial infarction (MI) 

appeared modestly higher in patients with some common polymorphisms in the 5-lipoxygenase 

pathway [11]. On the side of anti-oxidant pathways under-regulation, the few available data on 

humans confirm their role in cardiovascular disease development and progression [1]. 

Peripheral and coronary levels of some enzymes (e.g., superoxide dismutase and catalase) and 

direct antioxidants (e.g., glutathione) were lower in patients with unstable angina than healthy 

controls and a positive association of common nitric oxide synthase gene polymorphisms to 

coronary artery disease has been identified [12, 13]. These findings lead to hypothesize that 

administration of antioxidants could be an interesting therapeutic option to lower the risk of 

cardiovascular disease.  

Protein carbonylation refers to the introduction of reactive carbonyl groups (e.g., 

aldehyde, ketone, and lactam) into the side chains of proteins, is a further relevant ROS-related 

damage, and leads to loss of protein’s function [14]. Metal-catalyzed oxidation, protein 

interaction with aldehydes and derivates of lipid peroxidation, and nonenzymatic glycation 

reactions represent some mechanisms of proteins’ carbonylation [14]. Even if this process is 

generally irreversible, recent preliminary data showed that pyridoxamine ameliorate ROS-

mediated cellular dysfunction by scavenging protein carbonyls [15]. The current study by Mróz 



and colleagues [16] highlighted the relevance of persistent ROS overproduction in chronic 

coronary syndrome and the usefulness of carbonylated proteins measurement for patients’ 

prognosis stratification. In the current work, the plasmatic level of carbonylated proteins was 

measured in 178 consecutive patients with advanced stable coronary artery disease that has 

been clinically evaluated during a mean follow-up of 8.3 years. Patients in the highest quartile 

showed the highest risk of a composite of MI, ischemic stroke, systemic thromboembolism, and 

cardiovascular death. A further interesting finding is that protein carbonylation appeared to 

induce a prothrombotic and antifibrinolytic state. Protein carbonylation levels, indeed, were 

associated with low clot permeability and prolonged clot lysis time, and with elevated 

concentrations of plasminogen activator inhibitor-1 and thrombin-activatable fibrinolysis 

inhibitor. These data pose the basis for a deeper understanding of the mechanisms linking 

oxidative stress with clotting system activation and eventually cardiovascular disease 

progression. However, further studies in larger population will be needed to confirm the results 

and to validate the usefulness and reproducibility of carbonylated proteins in other clinical 

setting or patients’ population. This finding also reopens the “vexata question” on the potential 

usefulness of antioxidant administration for cardiovascular disease prevention. 

Several studies, overall in general population, has been undertook in the last decades to 

assess if single or cocktail of antioxidants vitamins such as vitamin E, vitamin C or beta-

carotene were able to reduce the cardiovascular events. Even if the results of experimental 

studies were promising, data from recent meta-analysis provided equivocal results on the 

beneficial effect of antioxidants supplementation (e.g., vitamin E) in cardiovascular disease 

prevention [17]. Thus, almost all meta-analysis negated a clinical efficacy of antioxidants while 

a more recent one seems to suggest a potential role for MI prevention [17]. There are, however, 

serious methodological caveats in the study methodology of clinical trials with antioxidants, 

including, for example, the lack of any information of baseline values of circulating vitamins 

before supplementation or of circulating vitamins after administration, that is a crucial issue 

considering that vitamin E, for example, is scarcely absorbed by intestinal gut [18]. Future 

clinical requisites for further investigating the impact of oxidative stress on atherosclerosis 

should include identification of specific molecules that are sensitive to cardiovascular disease 

progression and specific antioxidants that are able to prevent the oxidative pathway eliciting 

their formation.  
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