

Kardiologia Polska

The Official Peer-reviewed Journal of the Polish Cardiac Society since 1957

Online first

This is a provisional PDF only. Copyedited and fully formatted version will be made available soon

ISSN 0022-9032 e-ISSN 1897-4279

Oxidative stress and atherosclerosis: Basic and clinical open issues

Authors: Francesco Violi, Pasquale Pignatelli, Emanuele Valeriani

Article type: Editorial

Received: May 31, 2024

Accepted: June 4, 2024

Early publication date: June 4, 2024

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.

Oxidative stress and atherosclerosis: Basic and clinical open issues

Francesco Violi¹, Pasquale Pignatelli², Emanuele Valeriani^{3, 4}

¹Sapienza University of Rome, Rome, Italy

²Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza

University of Rome, Rome, Italy

³Department of General Surgery and Surgical Specialty, Sapienza University of Rome, Rome,

Italy

⁴Department of Infectious Disease, Azienda Ospedaliero — Universitaria Policlinico Umberto

I, Rome, Italy

Related article

by Mróz et al.

Correspondence to:

Prof. Francesco Violi, MD, PhD,

Sapienza University of Rome,

phone: +39 064 997 01 02,

e-mail: francesco.violi@uniroma1.it

The oxidative stress theory of atherosclerosis has been coined some decades ago for explaining

the key mechanisms accounting for arterial inflammation and ensuing formation of

atherosclerotic plaque [1]. According to this theory, upon crossing endothelial wall, low-density

lipoprotein (LDL) can become oxidized so eliciting an in situ inflammatory process leading to

accumulation of monocytes-macrophages into the vessel wall: uptake of oxidised LDL

(oxLDL) by macrophage scavenger receptor begets foam cell formation an eventually

atherosclerotic plaque [2]. An open issue regards the initiation phase of atherosclerosis, overall,

the intrinsic mechanism causing LDL oxidation; thus, in vitro studies consistently showed that

LDL are oxidized by endothelial cells but the triggers as well as intra-signalling pathways

implicated in LDL oxidation are still unclear. Overproduction of reactive oxidant species (ROS)

by endothelial cells with ensuing interaction with sub-endothelial LDL has been shown in vitro

and considered a potential mechanism but it is unclear if and how LDL may shift endothelial

cells to ROS overproduction. Nonenzymatic oxidation may concur to formation of oxidation

molecule as, for instance, in case of F2-isoprostanes that stem from ROS interaction with arachidonic acid; F2-isoprostanes have been detected in macrophages of human atherosclerotic plaque [3]. Enzymatic oxidation may be another mechanism eliciting LDL oxidation as suggested by HPLC analysis of human atherosclerotic specimens showing that atherosclerotic plaque is rich of oxidation molecule derived from 5-lipoxygenase activation [4]; however, it is unclear how the enzyme is activated upon LDL crossing arterial wall. That LDL oxidation is implicated in arterial inflammation concurring to formation of foam cells has been demonstrated in vivo by injection of radiolabelled LDL to patients undergoing endarterectomy given or not high doses of vitamin E, a powerful antioxidant; samples taken from vitamin E-treated patients showed that lowered LDL accumulation within macrophages of atherosclerotic plaque suggesting a key role for oxidative stress as trigger of sub-endothelial inflammation [5].

Several biomarkers of oxidative stress have been investigated to explore the interaction between ROS formation and cardiovascular disease progression in vivo [1]. The use of these biomarkers may help clinicians identifying patients at higher cardiovascular risk. Regarding the pro-oxidant pathways up-regulation, elevated levels of myeloperoxidase is associated with a high risk of major cardiovascular event in patients with chronic coronary syndrome as well as increased expression and activity of NADPH oxidase represents pro-oxidant mechanisms favouring coronary artery disease [6-10]. The risk of incident myocardial infarction (MI) appeared modestly higher in patients with some common polymorphisms in the 5-lipoxygenase pathway [11]. On the side of anti-oxidant pathways under-regulation, the few available data on humans confirm their role in cardiovascular disease development and progression [1]. Peripheral and coronary levels of some enzymes (e.g., superoxide dismutase and catalase) and direct antioxidants (e.g., glutathione) were lower in patients with unstable angina than healthy controls and a positive association of common nitric oxide synthase gene polymorphisms to coronary artery disease has been identified [12, 13]. These findings lead to hypothesize that administration of antioxidants could be an interesting therapeutic option to lower the risk of cardiovascular disease.

Protein carbonylation refers to the introduction of reactive carbonyl groups (e.g., aldehyde, ketone, and lactam) into the side chains of proteins, is a further relevant ROS-related damage, and leads to loss of protein's function [14]. Metal-catalyzed oxidation, protein interaction with aldehydes and derivates of lipid peroxidation, and nonenzymatic glycation reactions represent some mechanisms of proteins' carbonylation [14]. Even if this process is generally irreversible, recent preliminary data showed that pyridoxamine ameliorate ROS-mediated cellular dysfunction by scavenging protein carbonyls [15]. The current study by Mróz

and colleagues [16] highlighted the relevance of persistent ROS overproduction in chronic coronary syndrome and the usefulness of carbonylated proteins measurement for patients' prognosis stratification. In the current work, the plasmatic level of carbonylated proteins was measured in 178 consecutive patients with advanced stable coronary artery disease that has been clinically evaluated during a mean follow-up of 8.3 years. Patients in the highest quartile showed the highest risk of a composite of MI, ischemic stroke, systemic thromboembolism, and cardiovascular death. A further interesting finding is that protein carbonylation appeared to induce a prothrombotic and antifibrinolytic state. Protein carbonylation levels, indeed, were associated with low clot permeability and prolonged clot lysis time, and with elevated concentrations of plasminogen activator inhibitor-1 and thrombin-activatable fibrinolysis inhibitor. These data pose the basis for a deeper understanding of the mechanisms linking oxidative stress with clotting system activation and eventually cardiovascular disease progression. However, further studies in larger population will be needed to confirm the results and to validate the usefulness and reproducibility of carbonylated proteins in other clinical setting or patients' population. This finding also reopens the "vexata question" on the potential usefulness of antioxidant administration for cardiovascular disease prevention.

Several studies, overall in general population, has been undertook in the last decades to assess if single or cocktail of antioxidants vitamins such as vitamin E, vitamin C or betacarotene were able to reduce the cardiovascular events. Even if the results of experimental studies were promising, data from recent meta-analysis provided equivocal results on the beneficial effect of antioxidants supplementation (e.g., vitamin E) in cardiovascular disease prevention [17]. Thus, almost all meta-analysis negated a clinical efficacy of antioxidants while a more recent one seems to suggest a potential role for MI prevention [17]. There are, however, serious methodological caveats in the study methodology of clinical trials with antioxidants, including, for example, the lack of any information of baseline values of circulating vitamins before supplementation or of circulating vitamins after administration, that is a crucial issue considering that vitamin E, for example, is scarcely absorbed by intestinal gut [18]. Future clinical requisites for further investigating the impact of oxidative stress on atherosclerosis should include identification of specific molecules that are sensitive to cardiovascular disease progression and specific antioxidants that are able to prevent the oxidative pathway eliciting their formation.

Article information

Conflict of interest: None declared.

Funding: None.

Open access: This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, which allows downloading and sharing articles with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially. For commercial use, please contact the journal office at polishheartjournal@ptkardio.pl

REFERENCES

- 1. Violi F, Loffredo L, Carnevale R, et al. Atherothrombosis and oxidative stress: Mechanisms and management in elderly. Antioxid Redox Signal. 2017; 27(14): 1083–1124, doi: 10.1089/ars.2016.6963, indexed in Pubmed: 28816059.
- 2. Pignatelli P, Menichelli D, Pastori D, et al. Oxidative stress and cardiovascular disease: new insights. Kardiol Pol. 2018; 76(4): 713–722, doi: 10.5603/KP.a2018.0071, indexed in Pubmed: 29537483.
- Gniwotta C, Morrow JD, Roberts LJ, et al. Prostaglandin F2-like compounds, F2-isoprostanes, are present in increased amounts in human atherosclerotic lesions.
 Arterioscler Thromb Vasc Biol. 1997; 17(11): 3236–3241, doi: 10.1161/01.atv.17.11.3236, indexed in Pubmed: 9409317.
- 4. Folcik VA, Nivar-Aristy RA, Krajewski LP, et al. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Invest. 1995; 96(1): 504–510, doi: 10.1172/JCI118062, indexed in Pubmed: 7615823.
- 5. Iuliano L, Mauriello A, Sbarigia E, et al. Radiolabeled native low-density lipoprotein injected into patients with carotid stenosis accumulates in macrophages of atherosclerotic plaque: Effect of vitamin E supplementation. Circulation. 2000; 101(11): 1249–1254, doi: 10.1161/01.cir.101.11.1249, indexed in Pubmed: 10725283.
- 6. Cheng M, Cheng M, Wei Q. Association of myeloperoxidase, homocysteine and high-sensitivity C-reactive protein with the severity of coronary artery disease and their diagnostic and prognostic value. Exp Ther Med. 2020; 20(2): 1532–1540, doi: 10.3892/etm.2020.8817, indexed in Pubmed: 32765675.
- 7. Kimak E, Zięba B, Duma D, et al. Myeloperoxidase level and inflammatory markers and lipid and lipoprotein parameters in stable coronary artery disease. Lipids Health Dis. 2018; 17(1): 71, doi: 10.1186/s12944-018-0718-4, indexed in Pubmed: 29618370.
- 8. Guzik TJ, Sadowski J, Guzik B, et al. Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler Thromb Vasc Biol.

- 2006; 26(2): 333–339, doi: <u>10.1161/01.ATV.0000196651.64776.51</u>, indexed in Pubmed: <u>16293794</u>.
- 9. Loffredo L, Martino F, Zicari AM, et al. Enhanced NOX-2 derived oxidative stress in offspring of patients with early myocardial infarction. Int J Cardiol. 2019; 293: 56–59, doi: 10.1016/j.ijcard.2019.05.014, indexed in Pubmed: 31126732.
- Arca M, Conti B, Montali A, et al. C242T polymorphism of NADPH oxidase p22phox and recurrence of cardiovascular events in coronary artery disease. Arterioscler Thromb Vasc Biol. 2008; 28(4): 752–757, doi: 10.1161/ATVBAHA.107.154823, indexed in Pubmed: 18239158.
- 11. Gammelmark A, Nielsen MS, Lundbye-Christensen S, et al. Common polymorphisms in the 5-lipoxygenase pathway and risk of incident myocardial infarction: A Danish case-cohort study. PLoS One. 2016; 11(11): e0167217, doi: 10.1371/journal.pone.0167217, indexed in Pubmed: 27893808.
- 12. Dragan PD, Ivan SB, Goran DZ, et al. The role of systemic oxidative status in coronary arterial and peripheral venous blood of patients with unstable angina pectoris. Life (Basel). 2023; 13(7): 1537, doi: 10.3390/life13071537, indexed in Pubmed: 37511912.
- 13. Rai H, Parveen F, Kumar S, et al. Association of endothelial nitric oxide synthase gene polymorphisms with coronary artery disease: An updated meta-analysis and systematic review. PLoS One. 2014; 9(11): e113363, doi: 10.1371/journal.pone.0113363, indexed in Pubmed: 25409023.
- 14. Akagawa M. Protein carbonylation: Molecular mechanisms, biological implications, and analytical approaches. Free Radic Res. 2021; 55(4): 307–320, doi: 10.1080/10715762.2020.1851027, indexed in Pubmed: 33183115.
- 15. Voziyan PA, Hudson BG. Pyridoxamine as a multifunctional pharmaceutical: targeting pathogenic glycation and oxidative damage. Cell Mol Life Sci. 2005; 62(15): 1671–1681, doi: 10.1007/s00018-005-5082-7, indexed in Pubmed: 15905958.
- 16. Mróz K, Paszek E, Baran M, et al. Elevated carbonylated proteins are associated with major cardiovascular events in patients with chronic coronary syndrome: A cohort study. Pol Heart J. 2024 [Epub ahead of print], doi: 10.33963/v.phj.100609, indexed in Pubmed: 38767160.
- 17. Violi F, Nocella C, Loffredo L, et al. Interventional study with vitamin E in cardiovascular disease and meta-analysis. Free Radic Biol Med. 2022; 178: 26–41, doi: 10.1016/j.freeradbiomed.2021.11.027, indexed in Pubmed: 34838937.

18. Iuliano L, Micheletta F, Maranghi M, et al. Bioavailability of vitamin E as function of food intake in healthy subjects: effects on plasma peroxide-scavenging activity and cholesterol-oxidation products. Arterioscler Thromb Vasc Biol. 2001; 21(10): E34–E37, doi: 10.1161/hq1001.098465, indexed in Pubmed: 11597949.