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The oxidative stress theory of atherosclerosis 
was coined some decades ago to explain 
the key mechanisms accounting for arterial 
inflammation and ensuing formation of 
atherosclerotic plaque [1]. According to this 
theory, upon crossing the endothelial wall, 
low-density lipoprotein (LDL) can become 
oxidized thus eliciting an in situ inflammatory 
process that leads to accumulation of mono-
cytes-macrophages in the vessel wall; uptake 
of oxidized LDL (oxLDL) by macrophage 
scavenger receptors begets formation of foam 
cell and eventually atherosclerotic plaque [2]. 
An open issue regards the initiation phase of 
atherosclerosis, overall, the intrinsic mecha-
nism causing LDL oxidation. In vitro studies 
consistently showed that LDL is oxidized 
by endothelial cells but the triggers as well 
as intra-signalling pathways implicated in 
LDL oxidation are still unclear. Overproduc-
tion of reactive oxidant species (ROS) by 
endothelial cells with ensuing interaction 
with sub-endothelial LDL has been shown in 
vitro and considered a potential mechanism, 
but it is unclear if and how LDL may prompt 
endothelial cells to ROS overproduce. Non-
enzymatic oxidation may lead to formation 
of oxidation molecules as, for instance, in the 
case of F2-isoprostanes that stem from ROS 
interaction with arachidonic acid; F2-isopros-
tanes have been detected in macrophages of 
human atherosclerotic plaque [3]. Enzymatic 
oxidation may be another mechanism eliciting 
LDL oxidation, as suggested by HPLC analysis 
of human atherosclerotic specimens, showing 
that atherosclerotic plaque is rich in oxida-

tion molecules derived from 5-lipoxygenase 
activation [4]; however, it is unclear how the  
enzyme is activated upon LDL crossing  
the arterial wall. That LDL oxidation is implicat-
ed in arterial inflammation ensuing formation 
of foam cells has been demonstrated in vivo 
by injection of radiolabelled LDL in patients 
undergoing endarterectomy with or without 
high doses of vitamin E, a powerful antioxi-
dant. Samples taken from vitamin E-treated 
patients showed lowered LDL accumulation 
within macrophages of atherosclerotic 
plaque, which suggests a key role for oxi-
dative stress as a trigger of sub-endothelial 
inflammation [5]. 

Several biomarkers of oxidative stress have 
been investigated to explore the interaction 
between ROS formation and cardiovascular 
disease progression in vivo [1]. The use of 
these biomarkers may help clinicians identify 
patients at higher cardiovascular risk. Regard-
ing the pro-oxidant pathways up-regulation, 
elevated levels of myeloperoxidase are asso-
ciated with high risk of major cardiovascular 
events in patients with chronic coronary 
syndrome. Increased expression and activity 
of nicotinamide adenine dinucleotide phos-
phate oxidase also represent pro-oxidant 
mechanisms favoring coronary artery disease 
[6–10]. The risk of incident myocardial infarc-
tion (MI) appeared modestly higher in patients 
with some common polymorphisms in the 
5-lipoxygenase pathway [11]. Concerning 
anti-oxidant pathways under-regulation, the 
few available data on humans confirm their 
role in cardiovascular disease development 
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and progression [1]. Peripheral and coronary levels of 
some enzymes (e.g., superoxide dismutase and catalase) 
and direct antioxidants (e.g., glutathione) were lower in 
patients with unstable angina than in healthy controls, 
and a positive association of common nitric oxide syn-
thase gene polymorphisms to coronary artery disease 
has been identified [12, 13]. These findings lead to the 
hypothesis that the administration of antioxidants could 
be an interesting therapeutic option to lower the risk of 
cardiovascular disease. 

Protein carbonylation refers to the introduction of re-
active carbonyl groups (e.g., aldehyde, ketone, and lactam) 
into the side chains of proteins, which is another relevant 
ROS-related damage that leads to loss of proteins’ function 
[14]. Metal-catalyzed oxidation, protein interaction with al-
dehydes and derivates of lipid peroxidation, and nonenzy
matic glycation reactions represent some mechanisms of 
proteins’ carbonylation [14]. Even if this process is generally 
irreversible, recent preliminary data showed that pyrido
xamine ameliorates ROS-mediated cellular dysfunction by 
scavenging protein carbonyls [15]. 

The current study by Mróz and colleagues [16] high-
lighted the relevance of persistent ROS overproduction in 
chronic coronary syndrome and the usefulness of carbon-
ylated proteins measurement for patients’ prognosis strat-
ification. In that article, the plasma level of carbonylated 
proteins was measured in 178 consecutive patients with 
advanced stable coronary artery disease that was clinically 
evaluated during a mean follow-up of 8.3 years. Patients in 
the highest quartile showed the highest risk of a composite 
of MI, ischemic stroke, systemic thromboembolism, and 
cardiovascular death. A further interesting finding is that 
protein carbonylation appeared to induce a prothrom-
botic and antifibrinolytic state. Protein carbonylation 
levels, indeed, were associated with low clot permeability 
and prolonged clot lysis time; they were also associated 
with elevated concentrations of plasminogen activator 
inhibitor-1 and thrombin-activatable fibrinolysis inhibitor. 
These data provide the basis for a deeper understanding 
of the mechanisms linking oxidative stress with clotting 
system activation and eventually cardiovascular disease 
progression. However, further studies in a larger popula-
tion are needed to confirm these results and validate the 
usefulness and reproducibility of carbonylated proteins in 
other clinical settings or patient populations. This finding 
also reopens the vexata quaestio on the potential use-
fulness of antioxidant administration for cardiovascular 
disease prevention.

Several studies in the general population have been 
undertaken in the last decades to assess if a single or cock-
tail of antioxidant vitamins, such as vitamin E, vitamin C, 
or beta-carotene, can reduce cardiovascular events. Even 
if the results of experimental studies were promising, data 
from a recent meta-analysis provided equivocal results on 
the beneficial effect of antioxidant supplementation (e.g., 
vitamin E) in cardiovascular disease prevention [17]. Thus, 

almost all meta-analyses negated the clinical efficacy of 
antioxidants while a more recent one seems to suggest 
their potential role in MI prevention [17]. There are, how-
ever, serious methodological reservations regarding the 
methodology of clinical trials with antioxidants, including, 
for example, the lack of any information on baseline values 
of circulating vitamins before supplementation or of circu-
lating vitamins after administration. This is a crucial issue 
given that vitamin E, for example, is scarcely absorbed by 
the intestinal gut [18]. Future clinical requisities for further 
investigating the impact of oxidative stress on atheroscle-
rosis should include identification of specific molecules 
that are sensitive to cardiovascular disease progression 
and specific antioxidants that can prevent the oxidative 
pathway from inducing their formation. 
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