Nearly half a century of cardiac pacing evolution: A patient’s journey through epicardial, transvenous, and leadless pacemakers

Authors: Bartłomiej Wróbel, Mariusz Wójcik, Jakub Karpiak, Andrzej Przybylski

Article type: Clinical vignette

Received: April 6, 2024
Accepted: May 12, 2024
Early publication date: May 16, 2024
Nearly half a century of cardiac pacing evolution: A patient’s journey through epicardial, transvenous, and leadless pacemakers

Bartłomiej Wróbel1,2, Wójcik Mariusz1,2, Jakub Karpiak1, Przybylski Andrzej1,2

1Clinical Department of Cardiology with the Acute Coronary Syndromes Subdivision, Clinical Provincial Hospital No. 2 in Rzeszow, Rzeszów, Poland
2College of Medical Sciences, University of Rzeszow, Rzeszów, Poland

Correspondence to:
Bartłomiej Wróbel, MD,
Clinical Department of Cardiology
with the Acute Coronary Syndromes Subdivision,
Clinical Hospital No. 2 in Rzeszow,
Lwowska 60, 35–301 Rzeszów, Poland,
phone: +48 17 866 44 55,
e-mail: barwro89@gmail.com

Following case report concerns a 64-year-old man with a medical history dating back to 1976 when he underwent surgery for an atrial septal defect complicated by a persistent third-degree heart block. During the initial surgical intervention, he received a permanent pacemaker with epicardial leads, positioned abdominally. However, three years later, due to an exit block, he required the implantation of a transvenous single chamber ventricular pacemaker, repositioned in the pectoral region. Over the ensuing years, he underwent 5 replacements of the pulse generator. In 2023, he was admitted to the cardiology ward due to a pocket infection resulting in pocket erosion. Transthoracic and transesophageal echocardiography revealed preserved ejection fraction (EF \textasciitilde60\%) and ruled out bacterial vegetations and severe valvular defects. Additionally, his medical history included persistent atrial fibrillation and hypertension.

The patient underwent transvenous lead extraction utilizing a Liberator Beacon Tip Locking Stylet, steel sheath and an 11 Fr Evolution RL Controlled-Rotation Dilatator Sheath Set (Cook Vandergrift, Vandergrift, PA, US). During the procedure, a small segment of the ventricular electrode remained (<2 cm). Fluoroscopy indicated damaged epicardial leads. Subsequently, temporary cardiac pacing was initiated using an active fixation lead via jugular
access, with the pulse generator positioned externally. Fortunately, no procedure-related complications were encountered.

Given the patient’s favorable tolerance of right ventricular stimulation and previous pocket infection, the decision was made to implant a leadless pacemaker. The AVEIR VR (Abbott Cardiovascular, Plymouth, MN, US) leadless pacemaker, was selected (Figure 1C–D). The procedure, conducted via standard right femoral approach with Amplatz Super Stiff, AVEIR Catheter RV, and Aveir Introducer 25F, proceeded uneventfully [1]. Upon reaching the right ventricle, ventriculography was performed to confirm optimal positioning (Supplementary material, Videos S1–S2). Once satisfactory parameters (sensing, impedance, threshold, and current of injury) were attained, the pacemaker was released (Supplementary material, Video S3). Following removal of the delivery and introducer sheaths, the venous access site was sutured. Post-procedurally, no complications were observed, and the patient was discharged the following day (Figure 1A–B) [2].

At the 1-month follow-up, device demonstrated stable parameters, including a pacing threshold of 0.75 V @0.2 ms, R-wave >18 mV, and impedance of 710 ohm, with ventricular stimulation percentage at 100% upon interrogation. The expected time until battery replacement was estimated to be approximately 14 years. Notably, no symptoms of heart failure were reported, and transthoracic echocardiography revealed intact left ventricular ejection fraction (EF ~60%) and absence of valvular defects.

Leadless pacemakers represent a valuable alternative to traditional transvenous systems, offering stable and secure pacing, particularly in patients at high risk of pocket infection or with limited venous access [3, 4]. This type of stimulation features a reduced risk of cardiovascular implantable electronic device-related infection and allows safe and feasible implantation procedure at the time of or within a short period after TLE which may support patients’ lifespan, especially in pacemaker dependency. This case highlights the patient’s extensive journey through various modes of cardiac stimulation, mirroring the evolution of pacemaker technology and may be an option of a cost-effective approach for patients with high risk of cardiovascular implantable electronic device-related infection [5].

Supplementary material

Supplementary material is available at https://journals.viamedica.pl/polish_heart_journal.

Article information

Conflict of interest: None declared.
Funding: None.

Open access: This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, which allows downloading and sharing articles with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially. For commercial use, please contact the journal office at polishheartjournal@ptkardio.pl

REFERENCES

Figure 1. A–B. X-ray in the posteroanterior view and the lateral view presenting AVEIRA VR (white arrows), fractured epicardial lead encased by calcification (yellow arrows) and retained part of ventricular lead (red arrows). C. Fluoroscopy in RAO position. D. Fluoroscopy in LAO position, (AVEIR VR with the delivery system)