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INTRODUCTION
Due to complex morphology of bifurcation 
lesions, they are associated with a higher 
number of adverse events following stent 
implantation, such as stent thrombosis 
and in-stent restenosis [1]. Because of the 
differences in diameter between the pro-
ximal and distal parts of the vessel and the 
side branch (SB), appropriate implantation 
techniques, such as proximal optimization 
(POT) and frequently SB optimization, are 
necessary to achieve optimal procedural 
results. In left main (LM) stenting, the pro-
visional, single-stent strategy is associated 
with outcomes comparable to the more com-
plicated double-stent strategy [2]. Previous 
meta-analyses of randomized trials demon-
strated similar clinical outcomes regardless 
of SB optimization with the kissing-balloon 
inflation (KBI) technique [3]. However, up to 
date no large randomized trials focusing on 
the impact of final POT after KBI were per-
formed. We previously conducted benchtop 
tests that demonstrated significant differen-
ces in flow disturbances at SB ostia with and 
without KBI optimization in the LM setting 
[4]. Therefore, in this pilot human study, we 
aimed to evaluate the impact of KBI followed 
by final POT in LM interventions based on 
optical coherence tomography (OCT) ima-
ges and computational fluid dynamics (CFD) 
reconstructions. 

METHODS
This pilot study was conducted in the Division 
of Cardiology and Structural Heart Diseases at 
the Medical University of Silesia in Katowice 
between February and July 2021. Patients’ cli-
nical data are provided in the Supplementary 
material. The study received approval from 
the Bioethical Committee and adhered to the 
Declaration of Helsinki. All patients underwent 
surgery using a provisional stenting tech-
nique according to recommendations of the 
European Society of Cardiology, with a single 
stent (Xience Sierra, Abbott, Santa Clara, CA, 
US) positioned from the LM to the left anterior 
descending artery. The following steps were 
performed in each patient: predilatation, 
stent implantation, POT, KBI, and final POT. 
All balloon inflations were carried out using 
non-compliant balloons sized according to 
the distal segment of the target vessel. OCT 
images were obtained before stenting and af-
ter each stage of the procedure using the ILU-
MEN OPTIS system (Abbott, US). Subsequently, 
all OCT images were analyzed by a qualified 
medical staff at 1 mm intervals. Malapposition 
was defined as a distance between the strut 
blooming and lumen contour of more than 
81 μm. Floating struts were described as all 
struts observed in the opening angle of the 
SB. Furthermore, to understand the effects 
of overhanging struts at the boundary inter-
section between the main and side branches, 
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CFD analysis was performed. Two-dimensional models 
were created from the cross-sectional OCT pullbacks  
using Solidworks. The models underwent simulations using 
fluid computational software (Fluent, ANSYS). For analysis, 
a region of interest was created based on the SB diameter 
intersecting the main branch (MB), encompassing any 
overhanging struts, in each analysis model [5]. Parameters 
of interest analyzed in these regions included maximum 
shear rate (SR) and area of high SR.

Statistical analysis
IBM SPSS Statistics 29 (version 29; IBM, Armonk, NY, US) 
was used to perform the statistical analysis for exploratory 
purposes. Results were shown as a mean value (range and 
standard deviation). The values represent a normal distri-
bution; therefore, they were analyzed with parametric tests 
(one-way analysis of variance for dependent samples). The 
differences were considered meaningful if a P-value was 
<0.05. If the P-value was in the range between 0.05 and 
0.10, the differences were considered a statistical tendency.

RESULTS AND DISCUSSIONS
In this pilot study, we aimed to evaluate the effects of POT, 
KBI, and final POT on morphometric OCT parameters and 
flow disturbances in the SB ostium using CFD analysis in 
the LM setting. Because of their morphological comple-
xity, bifurcation lesions, especially in the LM region, are 
prone to a higher number of adverse events [1]. In our 
study, OCT analysis demonstrated a positive trend in the 
LM minimal lumen area, starting from 4.99 mm2 (3.58–6.11; 
SD, 1.29) before stent implantation to 8.76 mm2 (5.88– 
–12.06; SD, 3.11) after POT, 8.78 mm2 (6.84–11.6; SD, 2.51) 
after KBI, and 10.29 mm2 (8.76–12.36; SD, 1.86) after final 
POT; P = 0.064. However, after performing the correction 
for multiple comparisons, none of the compared pairs 
differed significantly from each other. We observed 
a significant difference in the LM minimal stent area 
(MSA) after each stage, with 8.88 mm2 (6.83–12.52; SD, 
3.16) after POT, 9.24 mm2 (7.11–13.0; SD, 3.27) after KBI, 
and 11.42 mm2 (9.52–13.85; SD, 2.21) after final POT; 
P <0.05, with positive tendency between POT and KBI 
(P = 0.093). This is an important finding since a smaller 
post-implantation minimal lumen area and minimal stent 
area (indicating stent under-expansion) were found to 
be independent predictors of stent failure, including ST 
and in-stent restenosis [6]. The number of malapposed 
struts registered in each frame in the region of interest 
decreased numerically after each stage, with no statistical 
significance: 4.67 (0–11; SD, 5.69) after POT, 4 (0–10; SD, 
5.29) after KBI, and 2.33 (0–5; SD, 2.52) after final POT; 
P = 0.35. The number of floating struts in the SB region 
decreased significantly: 39 (18–55; SD, 19) after POT, 
28.33 (12–41; SD, 14.84) after KBI, and 26.67 (9–40; SD, 
15.95) after final POT, P <0.05. We also observed a posi-
tive trend in floating struts between POT and final-POT 
(P = 0.06). Previously published bench-test studies 

demonstrated a correlation between struts protruding 
into the SB ostium and increased thrombogenicity [4].

The SR was defined as the local gradient in velocity 
between two surfaces that contain the fluid. Blood flow 
disruption and the extension of high shear rate regions 
may be caused by the presence of struts in the SB ostia. 

In our study, CFD analysis showed a significant dif-
ference in the number of maximum shear rates at SB 
ostia after stent implantation: 390.07 s-1 (115.5–616.7; SD,  
254.01), subsequent POT: 1522.1 s-1 (450.5–3049.6;  
SD, 1358.2) and KBI: 2370.77 s-1 (1489.5–3843.3; SD, 1283.47) 
with a reduction after final POT: 454.1 s-1 (356.4–518.6; SD, 
86.05), P <0.05, with a positive tendency between POT and 
KBI (P = 0.08). In areas with SR >1000 s-1, we did not observe 
a significant difference with 0 mm2 (0–0; SD, 0) at baseline, 
0.02 mm2 (0–0.07; SD, 0.04) following implantation with 
subsequent POT, 0.02 mm2 (0.004–0.066; SD, 0.04) after KBI, 
and 0 mm2 (0–0; SD, 0) after final POT; P = 0.39. Represent-
ative images of OCT and CFD are presented in Figure 1. In 
the distal LM lesions, POT plays a crucial role in the MB 
optimization proximally to the SB and is mandatory to 
improve stent expansion and strut apposition [9]. Also, it 
allows adjusting the stent shape to the fractal geometry 
of the vessel and correcting the flow dynamics. However, 
despite the theoretical reduction of floating struts at the 
SB ostia following KBI, its clinical impact is still debated. 
Nevertheless, it is important to emphasize that KBI may 
be responsible for ellipsoid stent distortion of the proxi-
mal MB and its excessive overexpansion, which might be 
associated with higher risk of MB-related adverse events 
[10]. Finally, data from a randomized trial comparing provi-
sional stenting with or without KBI did not demonstrate any 
improvements in clinical outcomes for the KBI strategy [3].

A few limitations are important to highlight. First, the 
number of patients analyzed in this preliminary study 
was small. Additionally, our study assessed only one DES 
platform, thus the results might differ with other devices.

In conclusion, based on these preliminary results, we 
demonstrated that performing KBI without following 
stent optimization may disrupt stent geometry unless it 
is followed by final POT, which is associated with nume-
rical improvements of OCT morphometric parameters as 
well as a reduction of floating struts at SB ostia and the  
area of high shear rate in CFD analysis. This shows  
the potential of KBI followed by final POT in further redu-
cing the number of adverse events in patients with distal 
LM lesions. Nevertheless, larger studies evaluating the 
impact of SB optimization are crucial to further explore 
these preliminary findings.
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Figure 1. Representative images. A. Before stent implantation: left OCT 2D, middle OCT 3D, right CFD. B. After POT: left OCT 2D, middle OCT 
3D, right CFD. C. After KBI: left OCT 2D, middle OCT 3D, right CFD. D. After final POT: left OCT 2D, middle OCT 3D, right CFD

Abbreviations: CFD, computational fluid dynamics; KBI, kissing-balloon inflation; OCT, optical coherence tomography; POT, proximal optimi-
zation
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