Drug selection in the treatment of breakthrough pain: how the pharmacokinetic profile of drugs is to be translated into clinical practice

Abstract
Breakthrough pain in cancer patients (BTP), also referred to as episodic or incident pain, occurs in a significant proportion of patients with baseline pain (40–60%). It is characterized by rapid intensifying (within tens of seconds or a few minutes) and a strong intensity in the numerical rating scale always above 5 and a limited duration, usually up to about 60 minutes. The choice of the drug for the management of BTP in clinical practice should be based on a profound knowledge of pathophysiology of BTP and pharmacokinetic parameters of the drugs used.

Key words: breakthrough pain, treatment, drug pharmacokinetics.

Introduction
Breakthrough pain (BTP), also known as episodic or incident, occurs in a significant proportion (40–60%) of cancer patients [1–4]. Two types of BTP were clinically distinguished: spontaneous (idiopathic), in which it is difficult to determine clearly identifiable causative factors, and incident, in which pain episodes are related to specific causative factors, dependent and independent of the patient. This ambiguity of the causative factors implies the division of incident pain into: volitional, which is caused by certain activities dependent on the patient, e.g. hygienic-care activities, change of position in bed, movement and non-volitional, which is caused by factors independent of the patient’s will, e.g. coughing, sneezing, defecation. Spontaneous BTP amounts to approximately 39% of all BTP episodes, while incident constitutes approx. 44%. Approx. 17% of patients complain of mixed pain, i.e. a combination of idiopathic and incident pain. The maximum pain intensity on average is reached within approx. 3–15 minutes (range < 1–240 minutes) for all BTP episodes. The average rate of increase in intensity is higher in incident pain than in spontaneous pain and amounts to 10 minutes and 20 minutes, respectively. The average duration of untreated BTP episodes is about 60 minutes (range < 1 minute to 8 hours), whereas the median number of BTP episodes is 3 in a day (the range from 2 episodes in 7 days to 24 episodes in one day). The intensity of BTP usually oscillates around 7 on the numerical rating scale (NRS).
Knowledge of the BTP characteristics and the ability to differentiate its types based on causative factors plays an important role in the clinical practice as it allows to distinguish BTP from pain episodes that occur during the titration of an opioid dose used to treat chronic cancer pain [5,6] and from end-of-dose pain. End-of-dose pain occurs in approximately 15–20% of patients and is directly attributable to the plasma half-life of the analgesic used to treat baseline pain, which implies appropriate intervals between successive drug doses [3]. It is important to be aware that a number of drugs and dietary supplements may interfere with the plasma half-life of analgesics used to treat baseline pain. Such a situation may involve, for example, morphine and oxycodone, which are mainly eliminated by kidneys. Both drugs are weak bases, which means in practice that loop diuretics, especially furosemide and urine acidifying drugs (vitamin C in large doses, cranberries) may significantly shorten the time of their analgesic effect [7–9]. In the case of end-of-dose pain, the dose of analgesic should be increased or intervals between subsequent administrations shortened.

Compared to patients with no diagnosis of BTP, patients with breakthrough pain are more likely to experience functional disorders, higher levels of anxiety and depression, and significantly worse quality of life. Moreover, in this group of patients the usage of hypnotics and other groups of psychotropic drugs increases, which in consequence may lead to a deterioration in the effectiveness of analgesic therapy and an increase in the risk of unfavourable drug interactions with analgesics [7–9].

Breakthrough pain management strategy should be based on an accurate diagnosis of the type of pain and its causes. The treatment of BTP episodes requires the administration of additional analgesics, which have an optimal pharmacokinetic profile for different types of BTP [8]. Otherwise, the treatment of BTP will be ineffective, with an increased risk of side effects or of addiction. Additional difficulty in choosing the right drug results from the fact that different types of BTP may occur alternately in one patient, therefore the choice of treatment should be based not only on the analysis of one characteristic of BTP, e.g. the speed of increase of pain intensity, but also on the possible duration and number of episodes per day and their frequency in the longer term, e.g. within 7 days.

How to translate drug pharmacokinetics into clinical practice?

In the choice of treatment, considering the characteristics of BTP and especially its intensity, “strong” opioid analgesics should be favoured. In Polish medicine, one of the most commonly used drugs is morphine administered orally in the form of immediate release (IR) tablets, much less frequently in the form of an aqueous solution. The disadvantage of this route of morphine use is low bioavailability, significant “first pass” effect and delayed onset of action that occurs approximately 30–40 minutes after administration, which, with respect to BTP characteristics, significantly decrease the effectiveness of treatment of various types of breakthrough pain. From a practical point of view, “oral” morphine can be effective in treating volitional incident pain. Then, being aware of the approaching pain-inducing activity, the patient should receive in advance a short-acting morphine via oral route. However, it is necessary to add that administering anticipation drug is associated with the risk of “unnecessary opioid use”, as not always the expected stimulus will cause BTP.

The analgesic efficacy of morphine IR products administered via oral route during the first 30 minutes after administration is the same as the placebo effect. Therefore, in most patients with BTP, especially in episodes of unpredictable onset and duration, the “pseudo analgesic” effect of short-acting morphine, which may be more related to spontaneous pain relief than to the morphine analgesic effect, can be described as the “pseudo analgesic” effect.

In hospitalized patients, additional doses of morphine may be administered by the intravenous route, which is characterized by a rapid onset of analgesic action (approximately 5–8 minutes), in the case of BTP. However, the intravenous route is difficult to be administered in patients staying at home and often involved in normal routine activities. The plasma half–life of morphine reduces the effectiveness of a single dose for BTP episodes with the incidence of more than 4 hours during the day. In addition, factors such as difficulties in swallowing, nausea and vomiting may limit or prevent the oral route of administration. IR morphine should also be considered in the case of side effects caused by opioids used to treat baseline pain. An additional dose of morphine may significantly intensify opioid-induced constipation.

In most types of BTP, intranasal, sublingual or buccal fentanyl products are an effective alternative to IR “oral” morphine [1–3]. In clinical practice, it is important to remember about differences in pharmacokinetic parameters of individual products and factors influencing the route of drug administration, which allows to choose an effective therapy adjusted to individual needs and preferences of the patient [1–3, 8, 9].

Figure 1 shows the pharmacokinetics of various fentanyl products used in the treatment of BTP.
Considering the BTP characteristics, T_{max}, i.e. the rate at which the peak concentration of the drug in the central compartment (C_{max}) is reached, is crucial when selecting a drug. This applies especially to incident, non-volitional and spontaneous BTP with a rapid intensifying and severe intensity. Considering the duration of single BTP episodes, an appropriate plasma half-life is essential to ensure effective analgesia of both short (up to 60 minutes) and longer BTP episodes. The plasma half-life also plays an important role in the incidence of several BTP episodes per day, especially when the interval between subsequent pain attacks is several hours. In such cases, a relatively long plasma half-life may allow the patient to limit the administration of the next opioid dose.

Reducing the need for further doses plays an important role in minimising the risk of developing a potential addiction. A quick time needed to reach C_{max} guarantees a rapid onset of action, but it is also a factor increasing the risk of addiction. This effect is additionally intensified in the case of a rapid decrease in C_{max}, which may result in a shorter therapeutic effect below the duration of a single BTP episode or a series of several subsequent episodes. This can lead to a situation where the patient takes an extra dose of the drug without the required interval between doses. Re-
peated, rapid change of C_{max} is an additional important factor contributing to the occurrence of addiction.

Improper drug administration by the patient may also increase the risk of addiction in the case of long T_{max}, which is inadequate to the period of pain intensifying during BTP episode. In such situations, the patient, trying to “improve” the analgesic effect, administer the next dose of the drug and in consequence increases C_{max} above the “titrated” therapeutic concentration of the drug. An increase in opioid concentration inadequate to the requirement resulting from breakthrough pain episodes may also occur if a part of fentanyl contained in transmucosal products is swallowed. Absorption from the gastrointestinal tract is related to the “first pass” effect, which can cause unpredictable opioid concentration increase in relation to the concentration obtained via the transmucosal route. Due to the different formulations of fentanyl for the treatment of BTP factors directly influencing the possible routes of administration should also be taken into account in the choice of the optimal therapy. Xerostomia occurs in 78–82% of cancer patients,

<table>
<thead>
<tr>
<th>Drug used to treat breakthrough pain</th>
<th>How pharmacokinetics affects the selection in clinical practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instanyl</td>
<td>Due to the drug form there is no release process and rapid absorption occurs. Furthermore, the distribution of fentanyl to the central nervous system (CNS) is achieved not only through the absorption of the drug into the central compartment (circulatory system), but also through the direct distribution of the drug to the CNS through the structures of vascular plexuses and the nervous system structure. Therefore, it is an effective solution in a situation where the intensity of BTP increases rapidly. After intranasal administration, the drug is highly bioavailable and has a rapid onset of analgesia (approx. 5 minutes). A very short duration of action (less than 1 hour) limits the use of the drug in longer BTP episodes or in the case of several subsequent episodes at short intervals. Rapid increase and decrease in the peak plasma concentration (C_{max}) may increase the risk of addiction, especially in BTP episodes that more slowly intensifying or of longer duration than the drug period of analgesic action, when the patient takes the drug incorrectly.</td>
</tr>
<tr>
<td>PecFent</td>
<td>Intranasal pectin based fentanyl spray. After administration of the drug, pectin and calcium ions present in the nasal mucosa interact with each other, resulting in the formation of a gel that keeps fentanyl at the administration site, preventing the drug dripping down the throat and swallowing. Pectin gel ensures fast T_{max} which translates into a rapid onset of analgesia (5 minutes) and extends the time of absorption of the entire dose of fentanyl, which translates into a longer stabilization of C_{max} at the therapeutic level so that there are no quick fluctuations in the fentanyl concentration in time. A quick analgesic effect allows PecFent to be used in rapidly intensifying BTP. Stable C_{max} at the therapeutic level for approx. 90 minutes ensures the effectiveness of the drug also in the treatment of longer pain episodes or several short episodes separated by a time interval. A rapid onset of action, stable C_{max} at the therapeutic level and a long half-life increase the effectiveness of the drug in different BTP types, thus reducing the risk of misuse and abuse of the drug, and, consequently the development of addiction. Additionally, pectin gel prevents the absorption of subsequent fentanyl doses administered contrary to the SPC, which also significantly reduces the risk of addiction. From a pharmacokinetic point of view, it appears that a pectin-based fentanyl nasal spray is a universal choice for the treatment of most BTP types.</td>
</tr>
<tr>
<td>Vellofent</td>
<td>The drug is in the form of a tablet administered sublingually. After application, the tablet dissolves for approx. 25 minutes. The release of fentanyl from the tablet may be impaired in xerostomia, oral mucositis and the use of peripheral anticholinergic drugs. Approx. 50% of the drug is swallowed and absorbed from the gastrointestinal (GI) tract. The drug is characterized by a long T_{max} and moderate plasma half-life. Due to the heterogeneous and time–dependent absorption, an unpredictable increase in concentration, inadequate to the duration of the BTP episode, is likely to occur. Pharmacokinetic properties allow the drug to be used in the treatment of pain with moderate time of exacerbation and longer duration</td>
</tr>
<tr>
<td>Effentora</td>
<td>The drug may be administered either by buccal or sublingual route. In the first phase after administration citric acid and CO₂ are released from the tablet, which results in acidification of the oral cavity environment. Lower pH contributes to ionization and dissolution of fentanyl from the tablet. Over the course of time, CO₂ is eliminated, resulting in a pH increase. As a result, dissolved fentanyl becomes non-ionized and can be absorbed by the mucous membrane. The complex process of releasing and absorbing fentanyl from the tablet translates into a slower time to reach C_{max}. Only approx. 50% of the fentanyl contained in the tablet is absorbed through the oral mucosa, the remaining part is swallowed and slowly absorbed from the GI tract subject to the first pass effect, which may cause unpredictable concentration fluctuations over time after administration of the tablet. The drug is characterized by a long period of reaching the maximum serum concentration and a long plasma half-life, which implies its choice in the treatment of slowly intensifying and long duration of BTP.</td>
</tr>
</tbody>
</table>
salivary glands hypofunction in 82–83% of patients and oral mucositis in 20–40% of chemotherapy patients may prevent the choice of sublingual or buccal route. Epistaxis, on the other hand, may affect the absorption from intranasal solutions.

Table 1 presents pharmacokinetic parameters of individual fentanyl-containing drugs available on the Polish market.

From a practical point of view, not only the onset of action, but also the stability of the drug concentration in the steady-state and the plasma half-life are important for the selection of analgesic suitable for the BTP characterization [1, 2, 7–9]. A common mistake is the use of sublingual buprenorphine in the treatment of BTP. The ineffectiveness of this form of drug is related to the time after which it reaches peak plasma concentration (C_{max}). This parameter significantly determines the onset of analgesia, and for sublingual buprenorphine it is 90 minutes. The overall analgesic effect is determined by the total exposure to the drug, which is understood as the area under the plasma drug concentration-time curve. Table 2 summarises information that helps to select the right drug according to the characteristics of BTP.

Table 3 presents the suggestions for the use of different rapid-acting fentanyl products, based on the characteristics of breakthrough pain.

Summary

The selection of a drug for the treatment of BTP should be individualized. Knowledge of the PK/PD profile allows for optimal selection of an effective and safe medical product [1, 2, 9]. It should be emphasized that fentanyl used to treat BTP can be combined with other opioids, including buprenorphine, whose until reaching “ceiling analgesic” dose (approximately 15 mg/day, in clinical practice doses up to 3 mg/day are used) acts similarly to other opioid analgesics as a pure agonist at µ-opioid receptors. However, the use of fentanyl in combination with nalbuphine is not recommended [1, 2, 5, 8, 9]. Since BTP may be characterized by a different pathophysiology than baseline pain, in clinical practice the dose of the opioid used to treat BTP rather does not represent the appropriate fraction (percentage) of the dose used to treat baseline pain. The complexity of the phenomena that lead to the occurrence of a BTP episode rather precludes such simple calculations. Therefore, a thorough clinical assessment of pain in the context of other patient symptoms, as well as psychological, social and spiritual circumstances remains essential [2–5].

References

Praca poglądowa

Jarosław Woroń
Zakład Farmakologii Klinicznej Katedry Farmakologii, Wydział Lekarski, Uniwersytet Jagielloński, Collegium Medicum, Kraków

Wybór leku w terapii bólu przebijającego, czyli jak przekładać profil farmakokinetyczny leków na praktykę kliniczną

Piśmiennictwo znajduje się na stronie 215.

Streszczenie

Ból przebijający (BTP), nazywany także epizodycznym bądź incydentalnym, występuje u znacznego odsetka chorych na nowotwory (40–60%). Ból przebijający u chorych na nowotwory cechuje szybki wzrost (w okresie kilkudziesięciu sekund bądź kilku minut) i znaczne natężenie w skali numerycznej zawsze powyżej 5 oraz ograniczony czas trwania, najczęściej do około 60 minut. Wybór leku w praktyce klinicznej powinien być oparty na dokładnej znajomości patomechanizmu bólu przebijającego i parametrów farmakokinetycznych stosowanych leków.

Słowa kluczowe: ból przebijający, leczenie, farmakokinetyka leków

Wstęp

Ból przebijający (BTP, breakthrough pain), nazywany także epizodycznym bądź incydentalnym, występuje u znacznego odsetka nowotworowych (40–60%) chorych na nowotwory [1–4]. Klinicznie wyróżniono dwa rodzaje BTP: spontaniczny, w którym trudno wskazać jasno identyfikowalne czynniki wywołujące, i incydentalny, w którym epizody bólowe związane są ze spreocyzanowanymi czynnikami wywołującymi, zależnymi i niezależnymi od pacjenta. Ta dwojakość czynników wywołujących implikuje podział bólu incydentalnego na: dobrowolny, który wywołany jest przez określone aktywności zależne od pacjenta, na przykład czynności higieniczne, zmiana pozycji w łóżku, ruch, i niedobrowolny, który wywołany jest przez czynniki niezależne od woli pacjenta, na przykład kaszel, kichnięcie, defekację. Ból przebijający spontaniczny stanowi około 39% wszystkich epizodów BTP, natomiast incydentalny około 44%. U około 17% chorych występuje ból mieszany, czyli połączenie bólu samoistnego i incydentalnego. Maksymalne natężenie bólu narasta średnio przez około 3–15 minut (zakres < 1–240 min) dla wszystkich epizodów BTP. Średnie tempo narastania jest szybsze w bólu incydentalnym niż w bólu spontanicznym i wynosi, odpowiednio 10 minut i 20 minut.
Jarosław Woroń, Wybór leku w terapii bólu przebijającego

Średni czasu trwania nieleczonych epizodów BTP wynosi około 60 minut (zakres < 1 min do 8 godz.). Natomiast mediana liczby epizodów bólu przebijającego wynosi 3 na dobę (zakres 2 na 7 dni do 24/dobę). Natężenie bólu przebijającego z reguły oscyluje wokół 7 w skali numerycznej (NRS, numerical rating scale).

Znajomość cech charakterystycznych dla BTP i umiejętności różnicowania jego rodzajów, na podstawie czynników wywołujących, odgrywa istotną rolę w klinice, bowiem pozwala na odróżnienie BTP od epizodów bólu, które pojawiają się podczas miarzczkowania dawki opioidu stosowanego do leczenia przewlekłego bólu nowotworowego [5, 6] i od bólu końca dawki. Ból końca dawki występuje u około 15–20% pacjentów i wynika bezpośrednio z okresu półtrwania analgetyku zastosowanego w leczeniu bólu podstawowego, który przeprowadza odpowiednie oddziały czasowe pomiędzy kolejnymi dawkami leku [3]. Należy mieć świadomość, że wiele leków i suplementów diety może zaburzać okres półtrwania analgetyków stosowanych w leczeniu bólu podstawowego. Taka sytuacja może dotyczyć na przykład morfiny i oksykedonu, które eliminowane są głównie przez nerkę. Obydwa leki są słabymi zasadami, co powoduje w praktyce, że diuretyki pętlowe, zwłaszcza furosemid, mogą znacznie skracać czas ich działania przeciwbólowe.

Skuteczność przeciwbólowa produktów morfiny istotnie ogranicza skuteczność leczenia różnych rodzajów bólu przebijającego. Z praktycznego punktu widzenia „doustna” morfina może być skuteczna w leczeniu bólowych i incydentalnych dobrowolnych. Wówczas pacjent mając świadomość zbliżającą się aktywności wywołującej ból, powinien z odpowiednim wyprzedzeniem otrzymać szybkodziałającą morfinę drogą doustną. Należy jednak dodać, że podanie leku mającego na celu wyprzedzenie bólu jest związane z ryzykiem przyjęcia „opioidu bez potrzeby”, ponieważ nie zawsze spodziewany bodziec będzie wywoływał BTP.

Skuteczność przeciwbólowa produktów morfiny na natychmiastowym uwalnianiu stosowanych drogą doustną w pierwszych 30 minutach podania jest tożsama z efektem placebo, dlatego w przypadku chorych z BTP, zwłaszcza w epizodach o nieprzewidywalnym początku i czasie trwania, można mówić o „pseudo analgetycznym” efekcie działania szybko działającego morfiny, który może być bardziej związany z samoistnym ustawieniem bólu niż z efektem analgetycznym.

U pacjentów hospitalizowanych, w przypadku wystąpienia bólu przebijającego można podawać dodatkowe dawki morfiny drogą dożylną, którą cechuje szybki początek działania przeciwbólowego (ok. 5–8 min). Jednak droga dożylna jest trudna do zastosowania i nie jest odpowiednia do bólów przebijających o częstotliwości występowania powyżej 4 godzin w ciągu dnia. Także takie czynniki, jak utrudnione połykanie, nudności i wymioty mogą ograniczać lub uniemożliwiać doustną drogę podania.
leku. Należy rozważyć zastosowanie szybkodziałającej morfiny także w przypadku działań niepożądanych wywołanych przez opioidy stosowane w leczeniu bólu podstawowego. Dodatkowa dawka morfiny może bardzo znacznie nasilać występowanie zaparć po-opioidowych.

W większości rodzajów BTP skuteczną alternatywą dla „doustnej” szybkodziałającej morfiny stanowią produkty fentanylu podawane drogą donosową, podjęzykową lub podpoliczkową [1–3]. W praktyce klinicznej istotne jest, aby pamiętać o różnicach parametrów farmakokinetycznych poszczególnych produktów i czynnikach wpływających na drogę podania leku, co pozwala na wybór skutecznej terapii dostosowanej do indywidualnych potrzeb i preferencji pacjenta [1–3, 8, 9].

Na rycinie 1 przedstawiono farmakokinetykę różnych produktów fentanylu stosowanych w leczeniu BTP. Mając na uwagę cechy BTP bardzo istotny w wyborze leku jest T_{max}, czyli szybkość osiągnięcia maksymalnego stężenia leku w kompartmentcie centralnym (C_{max}). Dotyczy to zwłaszcza bólow przebijających incydentalnych niedobrowolnych i spontanicznych o szybkim czasie narastania i silnym natężeniu. Mając na względzie czas trwania pojedynczych epizodów BTP, istotny jest odpowiedni okres półtrwania,

Rycina 1. Farmakokinetyka preparatów fentanylu stosowanego w terapii bólu przebijającego

Tabela 1. Parametry farmakokinetyczne produktów leczniczych zawierających fentanyl przeznaczonych do stosowania w leczeniu bólu przebijającego

<table>
<thead>
<tr>
<th>Parametr farmakokinetyczny</th>
<th>Instanyl Roztwór wodny fentanyl</th>
<th>PecFent Roztwór fentanylu na bazie pektyny</th>
<th>Vellofent Tabletna fentanyl</th>
<th>Effentora Tabletna fentanyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Droga podania</td>
<td>Donosowa</td>
<td>Donosowa</td>
<td>Podjęzykowa</td>
<td>Podpoliczkowa</td>
</tr>
<tr>
<td>Biodostępność z miejsca podania</td>
<td>89%</td>
<td>60%</td>
<td>70%</td>
<td>65%</td>
</tr>
<tr>
<td>Czas osiągnięcia maksymalnego stężenia w surowicy wyrażony w minutach (T_{max})</td>
<td>9–15</td>
<td>15–21</td>
<td>50</td>
<td>47</td>
</tr>
<tr>
<td>Początek efektu przeciwbólowego, względny czas latencji wyrażony w minutach</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Okres półtrwania wyrażony w godzinach</td>
<td>3–4</td>
<td>15–25</td>
<td>12</td>
<td>22</td>
</tr>
</tbody>
</table>
Tabela 2. Charakterystyka bólu przebijającego a wybór leku

<table>
<thead>
<tr>
<th>Lek stosowany w leczeniu bólu przebijającego</th>
<th>Jak farmakokinetyka leku wpływa na wybór w praktyce klinicznej</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instanyl</td>
<td>Z uwagi na postać leku brak procesu uwalniania, następuje szybkie wchłanianie. Ponadto, dystrybucja fentanylu do struktur ośrodkowego układu nerwowego (OUN) następuje nie tylko poprzez wchłanianie leku do kompartmentu centralnego (układ krążenia), ale także poprzez bezpośrednią dystrybucję leku do OUN poprzez struktury spoiłów naczyńowych i struktury układu nerwowego. Dlatego jest to skuteczne rozwiązanie w sytuacji, gdy natężenie bólu przebijającego narasta bardzo szybko. Po podaniu donosowym lek charakteryzuje wysoka biodostępność i szybki początek analgезji (ok. 5 min). Niestety, bardzo krótki okres działania (< 1 godz.) ogranicza zastosowanie leku w dłuższych epizodach BTP lub w przypadku kilku epizodów następujących po sobie w krótkich odstępach czasowych. Szybki wzrost i spadek maksymalnego stężenia C_{max}, może zwiększać ryzyko uzależnienia, zwłaszcza w epizodach BTP narastających wolniej lub trwających dłużej niż czas działania leku, kiedy może dochodzić do nieprawidłowego stosowania leku przez pacjenta.</td>
</tr>
<tr>
<td>PecFent</td>
<td>Donosowy roztwór fentanylu na bazie pektyny. Po aplikacji leku dochodzi do interakcji pektyny i jonów wapnia obręczowych w błonie śluzowej nosa w wyniku czego tworzy się żel, który utrzymuje fentanyl w miejscu podania, uniemożliwiając ściekanie do gardła i półkożnicę. Żel pektynowy zapewnia szybkie T_{max} przekładające się na szybki początek analgезji (5 min) i wydłuża czas wchłaniania całej dawki fentanylu, co przekłada się na dłuższą stabilizację C_{max}, na poziomie terapeutycznym tak, aby nie dochodziło do szybkich wahań stężenia fentanylu w czasie. Szybki efekt przeciwbólowy umożliwia stosowanie PecFentu w bólach przebijających o szybkim czasie narastania. Stabilne C_{max} na poziomie terapeutycznym przez około 90 minut zapewnia skuteczność leku także w leczeniu dłuższych epizodów bólowych lub kilku krótkich epizodów oddzielonych przerwą czasową. Szybki początek działania, stabilne C_{max} na poziomie terapeutycznym i długie okresy półtrwania zwiększają skuteczność leku w różnych rodzajach BTP przez co zmniejszają ryzyko nieprawidłowego zastosowania i nadużywania leku, a w konsekwencji do rozwoju uzależnienia. Dodatkowo, żel pektynowy uniemożliwia wchłanianie kolejnych dawek fentanylu aplikowanych niezgodnie z charakterystyką produktu leczniczego, co również znacząco ogranicza ryzyko rozwoju uzależnienia. Z punktu widzenia farmakokinetycznego wydaje się, że roztwór wodny fentanylu na bazie pektyny jest uniwersalnym rozwiązaniem w leczeniu większości rodzajów BTP.</td>
</tr>
<tr>
<td>Vellofent</td>
<td>Lek występuje w formie tabletki podawanej podjązykowo. Po aplikacji tabletki rozpoczyna się przez okres około 25 minut. Uwalnianie fentanylu z tabletki może być zaburzone w przypadku kserostomii, zapalenia błon śluzowych jamy ustnej i stosowania obwodowo działających leków antycholinergicznych. Około 50% leku zostaje pod %[219]pionie i ulega wchłanianiu z przewodu pokarmowego. Lek charakteryzuje długie T_{max}, przy równocześnie średnio długim okresie półtrwania. W związku z niejednorodnym rozłożonym w czasie wchłanianiem, możliwy jest nieprzewidywalny wzrost stężenia nieadekwatny do czasu trwania epizodu bólu przebijającego. Właściwości farmakokinetyczne pozwalają na zastosowanie leku w leczeniu bólu w średnim czasie narastania i dłuższym czasie trwania.</td>
</tr>
<tr>
<td>Effentora</td>
<td>Lek może być podawany zarówno drogą podpoliczkową, jak i podjązykową. W pierwszej fazie po podaniu z tabletki uwalniany jest kwas cytrynowy i CO_{2} przez co następuje zakwaszenie środowiska jamy ustnej. Niższe pH sprzyja jonizacji i rozpuszczaniu fentanylu z tabletki. W miarę upływu czasu CO_{2} jest eliminowane, co powoduje wzrost pH. Dzięki temu rozpuszczony fentanyl przechodzi w formę niejonizowaną i jest dostępny do wchłaniania przez błonę śluzową. Złożony proces uwolnienia i wchłaniania fentanylu z tabletki przekłada się na spowolnienie osiągnięcia C_{max}. Jedynie około 50% fentanylu zawarte w tabletki wchłania się przez błonę śluzową jamy ustnej, pozostała część zostaje połknięta i powoli wchłania się z przewodu pokarmowego, podlegając efektowi pierwszego przejścia, co może powodować nieprzewidywalne wahania stężenia rozłożone w czasie po podaniu tabletki. Lek charakteryzuje długi okres osiągnięcia stężenia maksymalnego w błonie i długim okresie półtrwania, co implikuje jego wybór w leczeniu bólu przebijającego o wolnym czasie narastania. Z punktu widzenia farmakokinetycznego, który zapewni skuteczną analgезję zarówno krótkich (do 60 min), jak i dłuższych epizodów BTP. Okres półtrwania odgrywa także istotną rolę w przypadku występowania kilku epizodów BTP dziennie zwłaszcza, kiedy odstępy pomiędzy kolejnymi napadami bólu wynoszą kilka godzin. W takich przypadkach odpowiednio długi okres półtrwania może pozwolić na ograniczenie przyjęcia kolejnej dawki opiodu przez pacjenta. Ograniczenie konieczności przyjmowania kolejnych dawek leku odgrywa istotną rolę w zmniejszeniu ryzyka rozwoju ewentualnego uzależnienia. Szybki czas osiągnięcia C_{max} gwarantuje szybki początek działania, jednak jest także czynnikiem zwiększającym ryzyko rozwoju uzależnienia. Efekt ten spotygowany jest dodatkowo w przypadku szybkiego spadku C_{max}, które może skutkować skróceniem działania terapeutycznego poniżej czasu trwania pojedynczego epizodu.</td>
</tr>
</tbody>
</table>
Tabela 3. Kliniczne kryteria wyboru fentanylu stosowanego w leczeniu bólu przebijającego

<table>
<thead>
<tr>
<th>Charakterystyka bólu przebijającego</th>
<th>Proponowany wybór leku</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bardzo krótki czas narastania bólu przebijającego i krótki czas trwania</td>
<td>Donosowy roztwór fentanylu lub donosowy roztwór fentanylu na bazie pektyny</td>
</tr>
<tr>
<td>Krótki czas narastania bólu przebijającego i dłuższy czas trwania epizodu bólu przebijającego</td>
<td>Donosowy roztwór fentanylu na bazie pektyny, fentanyl podjęzykowy</td>
</tr>
<tr>
<td>Wolny czas narastania bólu przebijającego i przedłużony okres trwania epizodu bólu</td>
<td>Donosowy roztwór fentanylu na bazie pektyny, fentanyl podjęzykowy lub podpoliczkowy</td>
</tr>
</tbody>
</table>

BTP lub serii kilku epizodów następujących szybko po sobie. Może to doprowadzić do sytuacji, w której pacjent zastosuje dodatkową dawkę leku bez zachowania wymaganej przerwy pomiędzy dawkami. Wielokrotna, szybka zmiana C_{max} stanowi dodatkowy istotny czynnik wystąpienia uzależnienia.

Nieprawidłowa ordynacja leku przez pacjenta może także zwiększać ryzyko uzależnienia w przypadku długiego T_{max}, które jest nieadekwatne do czasu narastania bólu przebijającego. W takich sytuacjach pacjent próbując „poprawić” efekt przeciwbólowy, sięga po kolejną dawkę leku, zwiększając C_{max} ponad „wymiarowano” stężenie terapeutycznego leku. Wzrost stężenia opioidu nieadekwatny do zapotrzebowania wynikałby z podatności na dawki podjęzykowej. W tabeli 1 przedstawiono informacje będące pomocne w wyborze odpowiedniego leku w zależności od charakterystyki bólu przebijającego.

W tabeli 3 przedstawiono propozycje stosowania poszczególnych postaci szybko działającego fentanylu na podstawie charakterystyki bólu przebijającego.

Podsumowanie

Wybór leku w terapii bólu przebijającego powinien podlegać indywidualizacji. Znajomość profilu PK/PD pozwala na optymalny wybór skutecznego i bezpiecznego produktu leczniczego [1, 2, 9]. Warto pamiętać, że fentanyl stosowany w leczeniu bólu przebijającego można łączyć z innymi opioidami, także z buprenorfyną, która do dawki pułapowej wykazuje charakterystykę agonisty receptora mu. Nie zalecane jest jedynie łączenie fentanylu z nalbufiną [1, 2, 5, 8, 9]. Ponieważ BTP może wykazywać inne patomechanizmy niż ból podstawowy, w praktyce klinicznej dawka opioidu stosowana w leczeniu BTP raczej nie stanowi odpowiedniego ułamka (odsetka) dawki stosowanej w leczeniu bólu podstawowego. Złożoność zjawisk, które prowadzą do wystąpienia epizodu bólu przebijającego, raczej wykluczają takie proste przeliczenia. Kluczowa pozostaje dokładna ocena kliniczna bólu w kontekście innych objawów występujących u pacjenta, sytuacji psychologicznej, socjalnej i duchowej [2–5].