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INTRODUCTION
Age-related macular degeneration (AMD) is one 

of the leading causes of blindness worldwide [1]. It 
is characterized by damage to the macular region 
resulting in central vision loss. It affects individuals 
over the age of 55 years [2]. The global prevalence 

of AMD is estimated at 8.69% [3]. AMD is classi-
fied as early-stage (medium-sized drusen and reti-
nal pigmentary changes) to late-stage (neovascular 
and atrophic) [4]. “Dry” AMD refers to the pres-
ence of drusen and atrophy and is the most com-
mon type of AMD (80–85%). “Wet” AMD (exu-
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ABSTRACT

Age-related macular degeneration (AMD) is a leading cause of blindness globally, affecting mainly individuals over 
55 years old. Diagnosis typically involves dilated fundus examination and optical coherence tomography (OCT). Ar-
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that did not meet the selected criteria were excluded. Machine learning technologies have demonstrated encouraging 
outcomes in detection, staging, progression prediction, differentiation, and treatment efficacy assessment. AI-based 
screening has the potential to identify asymptomatic patients at an early stage who require further investigation by 
an ophthalmologist. Diagnostic accuracy and clinical management can be enhanced by selecting patients requiring 
more frequent evaluation and medical interventions. However, further investigations are necessary to fully establish 
the utility of AI in future clinical practice.  
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dative/neovascular) is the type with developed neo-
vascularization leading to hemorrhaging and leak-
age of fluid in the inner retinal layers. It affects 
15–20% of cases. 10–15% of dry AMD progress 
to wet AMD. Diagnosis is made by dilated fundus 
examination — evaluation of macula for drusen, 
pigmentary changes, geographic atrophy, hemor-
rhage, fluid, exudate, scar formation, and fibrosis. 
Optical coherence tomography (OCT) is helpful 
in the differentiation between wet and dry AMD 
and the characterization of disease activity [5].

Artificial intelligence (AI) is a computer tech-
nology for the simulation and extension of human 
intelligence. Currently, AI plays a significant role 
in various disciplines where it is applied [6]. In 
the field of medicine, it has the potential to improve 
diagnosis, screening, and treatment, among other 
use cases [7]. Machine learning is the discipline fo-
cusing on how computers learn from data [8]. Deep 
learning, a subset of machine learning, implements 
a representation learning approach that involves not 
only learning to assign a certain data representation 
to output data but also learning the representation 
itself. It enables computers to learn complex depen-
dencies in data by introducing representations of 
data that are expressed in terms of other, simpler 
representations [9]. Deep convolutional networks, 
a type of deep learning model, have revolutionized 
the processing of images, videos, speech, and audio 
[10]. The development of artificial intelligence tech-
nologies has significantly influenced ophthalmology 
due to its dependency on image-based clinical deci-
sion-making and investigations [11]. Over the past 
decade, machine learning technologies have demon-
strated the potential to transform the clinical man-
agement of AMD. Besides that, they support re-
search for a better understanding of the disease [12]. 
The aim of this review was to establish the utility of 
AI in the screening and management of AMD.

MATERIALS AND METHODS 
PubMed and Google Scholar databases were 

searched using the keywords: “Artificial intelligence 
in age-related macular degeneration”, “Machine 
learning in age-related macular degeneration”, 
“Deep learning in age-related macular degenera-
tion”, “Artificial Intelligence”, and “Age-related mac-
ular degeneration”. Original articles in English, 
published between 2017–2024, were included. 
Articles that did not meet the selected criteria were 
excluded.

DETECTION AND CLASSIFICATION OF AMD 
Given the prevalence and sight-threatening na-

ture of the disease, developing a diagnostic system 
for AMD screening is essential, especially for people 
with limited access to healthcare. Numerous stud-
ies have investigated the detection of AMD using AI. 

Burlina et al. [13] measured and compared deep 
learning performance versus human clinicians in 
classifying fundus images. Deep convolutional 
neural network results were comparable with hu-
man performance levels (accuracy score = 88.7% 
vs. 90.2%). Sensitivity and specificity were 84.6% 
and 92.0% respectively. The authors suggest using 
AI to help find patients who should be referred to 
an ophthalmologist in the management of AMD.

Ting et al. [14] proved AUC 0.931, 93.2% 
sensitivity, and 88.7% specificity of deep learning 
systems for identifying AMD using retinal fundus 
images.

Another study investigating AI performance in 
the diagnosis of AMD based on ocular fundus pho-
tographs reached an accuracy of 97.3%, a sensitivity 
of 88.1%, and a specificity of 97.6% in the identi-
fication of AMD [15]. 

AI can successfully detect AMD patients based 
on OCT scans. The trained deep neural network 
showed an accuracy of 93.45%, a sensitivity of 
92.64%, and a specificity of 93.69% in detecting 
AMD from OCT images [16]. 

Kadry et al. [17] tested AI in detecting AMD 
from fundus retinal images (FRI) and OCT images 
separately. Detection accuracies were 97.08% for 
FRI and 97.50% for OCT images. 

The convolutional neural networks model 
trained on OCT images presented by Motozawa et 
al. [18] was able to classify AMD and normal OCT 
images with 100% sensitivity, 91.8% specificity, 
and 99% accuracy. The second model could classify 
AMD as exudative or non-exudative with 98.4% 
sensitivity, 88.3% specificity, and 93.9% accuracy.  

Liefers et al. [19] developed a deep learning mod-
el for segmenting 13 features from OCT scans that 
can be associated with neovascular and atrophic 
AMD. The model’s performance was comparable 
with that of human experienced graders. 

Grassmann et al. [20] proved that AI correctly 
classified 94.3% of healthy fundus images. The ac-
curacy rate in differentiating AMD’s early and late 
stages was 84.2%. Their deep learning algorithm 
outperformed human graders.

Currently, the diagnosis of choroidal neovas-
cularization (CNV) primarily relies on OCT 
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and OCT angiography (OCTA) imaging modal-
ities. However, the use of fluorescein angiography 
(FA) is sometimes necessary due to its ability to 
visualize the dynamics of dye leakage over time. In 
a study involving patients with neovascular age-re-
lated macular degeneration (nAMD), automated 
predictions were more frequently rated as high-qual-
ity compared to manual human annotations. This 
suggests that the proposed deep learning models 
achieve at least human-level performance in both 
the “FA-CNV” and “FA-Leakage” datasets [21].

These studies prove that AI achieves a high ac-
curacy in detecting and classifying AMD. AI can 
identify AMD patients from fundus images, OCT 
scans, and fluorescein angiography. Using deep 
learning models has the potential to improve report-
ing and decision-making in the clinical approach. It 
could also reduce subjectivity in clinicians’ assess-
ments, increase interpretation speed, and improve 
personalized care. A summary of the results can be 
found in Table 1.

PREDICTION OF PROGRESSION TO LATE 
AMD 

AI can be used to predict risk for progression to 
late AMD. The model based on AMD scores com-
bined with sociodemographic clinical data achieved 
86.36% accuracy in the prediction of 2-year inci-
dence of late AMD, 66.88% for dry, and 67.15% 
for wet AMD [22].

Peng et al. [23] created a survival model to ana-
lyze time to late AMD. The model inputs were:

Severity grade predicted by the neural network 
from fundus images.

Additional deep features are extracted from this 
network.

Patient-related features — age, smoking status, 
and genotype.

The model achieved high prognostic accuracy 
(86.4%) that exceeded the assessment of retinal 
specialists using two clinical standards (accuracy of 
81.3% and 82%) [23].

Banerjee et al. [24] used a deep learning ap-
proach to predict the risk of exudation in non-ex-
udative AMD patients. They proved to have high 
performance in the prediction of exudation within 
3 months of testing the model on the clinical dataset 
(0.82 area under the receiver operating characteris-
tic curve — AUROC). However, prediction within 
21 months presented a decrease in performance 
(0.68 AUROC). 

The AI-based algorithm was used to predict pro-
gression to retinal atrophy for nonexudative AMD 
cases in OCT scans. It reached accurate predictions 
for four years and longer. Additionally, a personal-
ized atrophy progression risk map with a color-cod-
ed time scale was developed [25]. 

Ajana et al. [26] developed an AI model for 
selecting the best predictors of advanced AMD de-
velopment. The model retained age, phenotypic 
predictors (presence of intermediate drusens, hyper-
pigmentation, and Age-Related Eye Disease Study 
simplified score), genetic risk score, smoking, diet, 
education, and pulse pressure. It reached high dis-
crimination abilities with cross-validated area under 
the curve (AUC) estimation of 0.92 at 5 years, 0.92 
at 10 years, and 0.91 at 15 years [26].

Identification of patients with a high risk of pro-
gression to late AMD may select those with the need 
for more frequent detailed screening and medical 
interventions.

IDENTIFICATION OF PREDICTIVE FACTORS 
The potential of machine learning was investi-

gated to predict best corrected visual acuity (BCVA) 
outcomes in patients receiving anti-vascular endo-

Table 1. Summary of the results of the studies

Authors Imaging method Accuracy Sensitivity Specificity

Burlina et al. [13] Fundus images 88.7% 84.6% 92.0%

Ting et al. [14] Fundus images – 93.2% 88.7%

Dong et al. [15] Fundus images 97.3% 88.1% 97.6%

Lee et al. [16] OCT scan 93.45% 92.64% 93.69%

Kadry et al. [17]
Fundus images 97.08% – –

OCT scan 97.50% – –

Motozawa et al. [18] OCT scan 99% 100% 91.8%

OCT — optical coherence tomography
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thelial growth factor (anti-VEGF) therapy (ranibi-
zumab). Retinal features extracted from OCT im-
ages and BCVA measurements were used as markers 
to predict BCVA at 12 months. BCVA at month 3 
represented the strongest predictive factor (the ac-
curacy was R2 = 0.70). The most relevant marker 
from the OCT scan was a horizontal extension 
of intraretinal cystoid fluid in the foveal region, 
although other retinal features showed limited pre-
dictive value [27].

Machine learning was used to predict visual 
function in patients with geographic atrophy. It 
was based on quantitative imaging biomarkers from 
OCT. The most significant predictive importance 
for visual acuity had features within the foveal re-
gion (46.5%) and retinal pigment epithelium (RPE) 
loss (31.1%) [28].

A machine learning model based on quantitative 
OCT imaging biomarkers was used to predict visual 
acuity (VA) and treatment needs in a treat-and-ex-
tend regimen in neovascular AMD patients. 
The extendable treatment interval group was pre-
dicted with an AUROC of 0.71, whereas VA was 
predicted with an AUROC of up to 0.87. The most 
important predictive markers for treatment intervals 
and visual outcomes were the volume of subretinal 
fluid and the volume of intraretinal fluid. This study 
proves the important role of quantitative fluid pa-
rameters on OCT [29].  

The deep learning-based algorithm was eval-
uated to determine the correlation of baseline 
OCT morphological features and fluid measure-
ments to changes in BCVA from baseline to week 
52. Total retinal fluid volume at baseline repre-
sented the strongest correlation to improvement in 
BCVA at month 12 [30]. 

Identification of predictive factors leads to 
a better understanding of the pathophysiology of 
the disease. It can also enhance disease monitoring 
by providing a personalized approach to manage-
ment and treatment. 

DIFFERENTIAL DIAGNOSIS
Polypoidal choroidal vasculopathy (PCV) 

and wet AMD share similar clinical features — ex-
udation and hemorrhages from abnormal choroi-
dal vasculopathy. Wet AMD demonstrates a bet-
ter response to anti-VEGF treatment than PCV, 
while PCV responds more positively to thermal 
laser photocoagulation and photodynamic therapy 
[31]. Ma et al. [31] presented a model for automatic 

differential diagnosis between PCV and wet AMD 
from OCT images. The authors used neural net-
works to classify OCT images as normal, AMD, or 
PCV. They evaluated different classification strate-
gies, and all presented similar and promising results. 
They also used the gradient-weighted class activa-
tion map (Grad-CAM) algorithm, which showed 
that the AI model has learned to focus on patholog-
ical regions of OCT images [31]. 

TREATMENT 
Assessment of visual function and morpho-

logical parameters are used for monitoring disease 
activity during anti-VEGF therapy. Reduction in 
fluid volume is one of the features considered [32]. 
A deep learning algorithm was used to quantify 
the fluid volumes in OCT images. Comparison 
with human expert readings confirmed that AI pre-
cisely measured fluid volumes with an AUC of > 0.9 
[33]. Accurate measurement of intraretinal volumes 
could be useful in evaluating response to treatment.  

A deep learning method for localization 
and quantifying fluid in all retinal compartments 
was used during the phase III, randomized, mul-
ticenter study to evaluate the efficacy and safety 
of intravitreal ranibizumab injections at 2 dosages 
and two regimens. The authors proved that AI-based 
quantification of fluid volume offers a precise mea-
surement of disease activity. This approach allows 
the identification of response patterns and a correla-
tion of fluid volume activity with functional change. 
Automated quantification of fluid response may 
improve the therapeutic management of neovascu-
lar AMD [34]. 

Maunz et al. [35] used machine learning to pre-
dict response to ranibizumab therapy in neovascular 
AMD. Seven models based on:
•	 quantitative OCT features;
•	 quantitative OCT features and clinical variables 

at baseline;
•	 baseline OCT images only 
•	 were tested.

The models based on AI-segmented OCT fea-
tures and clinical variables at baseline represented 
the best prognostic ability. However, further investi-
gations need to be done to realize the clinical utility 
of these models [35].  

Previously developed deep learning models were 
used to segment geographic atrophy (GA) lesions, 
photoreceptor integrity, and hyperreflective foci 
in spectral domain OCT (SD-OCT) at baseline 
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and 1-year follow-up using the data from clinical 
trial phase II of intravitreal pegcetacoplan injection 
versus sham injection. This approach enabled pre-
cise localization and quantification of GA progres-
sion to obtain an accurate evaluation of therapeutic 
efficacy. AI has the potential to introduce automati-
zation in clinical trials [36, 37].  

Moon et al. [38] developed an AI model to pre-
dict anti-VEGF agent-specific anatomic treatment 
outcomes in neovascular AMD patients receiving 
three loading injections of ranibizumab or afliber-
cept. AI model achieved higher sensitivity and spec-
ificity than human examiners [38].

CONCLUSIONS
The use of AI in medicine has grown in popu-

larity. Machine learning technologies have shown 
potential for improving the diagnosis and man-
agement of AMD. AI proved to have promising 
results in detecting, staging, predicting progression, 
differentiation, and establishing treatment efficacy. 
AI screening could indicate asymptomatic patients 
at an early stage of AMD who require further in-
vestigation by an ophthalmologist. It could be es-
sential in cases with limited access to healthcare. 
AI has the potential to improve diagnostic accuracy 
and clinical management. Indication of patients 
with a higher risk of late AMD development may 
select those with the need for more frequent de-
tailed screening and medical interventions. Despite 
the promising results, further investigations need 
to be done to establish the utility of AI in future 
clinical practice. 
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