Molecular biology of sarcoma


- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute — Oncology Centre, Warsaw, Poland
- Department of Experimental and Clinical Physiology, Warsaw Medical University, Warsaw, Poland
open access
Abstract
Abstract
Keywords
sarcoma; genetics; STS


Title
Molecular biology of sarcoma
Journal
Issue
Article type
Review paper
Pages
307-330
Page views
2264
Article views/downloads
1101
DOI
10.5603/OCP.2018.0045
Bibliographic record
Oncol Clin Pract 2018;14(6):307-330.
Keywords
sarcoma
genetics
STS
Authors
Michał Fiedorowicz
Ewa Bartnik
Paweł Sobczuk
Paweł Teterycz
Anna M. Czarnecka


- Taylor BS, Barretina J, Maki RG, et al. Advances in sarcoma genomics and new therapeutic targets. Nat Rev Cancer. 2011; 11(8): 541–557.
- Sbaraglia M, Dei Tos AP. The pathology of soft tissue sarcomas. Radiol Med. 2018 [Epub ahead of print]: 1–16.
- Ballinger ML, Goode DL, Ray-Coquard I, et al. International Sarcoma Kindred Study. Monogenic and polygenic determinants of sarcoma risk: an international genetic study. Lancet Oncol. 2016; 17(9): 1261–1271.
- Rutkowski P, Świtaj T. Bone sarcomas. Oncol Clin Pract. 2018; 14(3): 115–128.
- Rutkowski P, Ługowska I. Soft tissue sarcomas in adults. Oncol Clin Pract. 2017; 13(5): 181–201.
- Farid M, Ngeow J. Sarcomas Associated With Genetic Cancer Predisposition Syndromes: A Review. Oncologist. 2016; 21(8): 1002–1013.
- Groisberg R, Hong DS, Holla V, et al. Clinical genomic profiling to identify actionable alterations for investigational therapies in patients with diverse sarcomas. Oncotarget. 2017; 8(24): 39254–39267.
- The Cancer Genome Atlas Research Network. Cancer Genome Atlas Research, Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell. 2017; 171(4): 950–965.e28.
- Hameed M. Pathology and genetics of adipocytic tumors. Cytogenet Genome Res. 2007; 118(2–4): 138–147.
- Arrigoni G, Doglioni C. Atypical lipomatous tumor: molecular characterization. Curr Opin Oncol. 2004; 16(4): 355–358.
- D'Angelo A, Garzia L, André A, et al. Prune cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis. Cancer Cell. 2004; 5(2): 137–149.
- Cin PD, Kools P, Sciot R, et al. Cytogenetic and fluorescence in situ hybridization investigation of ring chromosomes characterizing a specific pathologic subgroup of adipose tissue tumors. Cancer Genet Cytogenet. 1993; 68(2): 85–90.
- Crago AM, Socci ND, DeCarolis P, et al. Copy number losses define subgroups of dedifferentiated liposarcoma with poor prognosis and genomic instability. Clin Cancer Res. 2012; 18(5): 1334–1340.
- Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: liposarcoma. Cancer Genet Cytogenet. 2004; 155(1): 1–24.
- Dei Tos AP, Doglioni P, Piccinin S, et al. Molecular abnormalities of the p53 pathway in dedifferentiated liposarcoma. J Pathol. 1997; 181(1): 8–13.
- Snyder EL, Sandstrom DJ, Law K, et al. c-Jun amplification and overexpression are oncogenic in liposarcoma but not always sufficient to inhibit the adipocytic differentiation programme. J Pathol. 2009; 218(3): 292–300.
- Hoang NT, Acevedo LA, Mann MJ, et al. A review of soft-tissue sarcomas: translation of biological advances into treatment measures. Cancer Manag Res. 2018; 2018(10): 1089–1114.
- Singer S, Socci ND, Ambrosini G, et al. Gene expression profiling of liposarcoma identifies distinct biological types/subtypes and potential therapeutic targets in well-differentiated and dedifferentiated liposarcoma. Cancer Res. 2007; 67(14): 6626–6636.
- Limon J, Turc-Carel C, Cin PD, et al. Recurrent chromosome translocations in liposarcoma. Cancer Genet Cytogenet. 1986; 22(1): 93–94.
- Aman P, Ron D, Mandahl N, et al. Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer. 1992; 5(4): 278–285.
- Kuroda M, Ishida T, Horiuchi H, et al. Chimeric TLS/FUS-CHOP gene expression and the heterogeneity of its junction in human myxoid and round cell liposarcoma. Am J Pathol. 1995; 147(5): 1221–1227.
- Panagopoulos I, Lassen C, Isaksson M, et al. Characteristic sequence motifs at the breakpoints of the hybrid genes FUS/CHOP, EWS/CHOP and FUS/ERG in myxoid liposarcoma and acute myeloid leukemia. Oncogene. 1997; 15(11): 1357–1362.
- Antonescu CR, Elahi A, Humphrey M, et al. Specificity of TLS-CHOP rearrangement for classic myxoid/round cell liposarcoma: absence in predominantly myxoid well-differentiated liposarcomas. J Mol Diagn. 2000; 2(3): 132–138.
- Panagopoulos I, Åman P, Mertens F, et al. Genomic PCR detects tumor cells in peripheral blood from patients with myxoid liposarcoma. Gene Chromosome and Canc. 1996; 17(2): 102–107, doi: 10.1002/(sici)1098-2264(199610)17:2<102::aid-gcc5>3.0.co;2-9.
- Demicco EG, Torres KE, Ghadimi MP, et al. Involvement of the PI3K/Akt pathway in myxoid/round cell liposarcoma. Mod Pathol. 2012; 25(2): 212–221.
- Costa A, Daidone MG, Daprai L, et al. Telomere maintenance mechanisms in liposarcomas: association with histologic subtypes and disease progression. Cancer Res. 2006; 66(17): 8918–8924.
- Fritz B, Schubert F, Wrobel G, et al. Microarray-based copy number and expression profiling in dedifferentiated and pleomorphic liposarcoma. Cancer Res. 2002; 62(11): 2993–2998.
- Larramendy ML, Kaur S, Svarvar C, et al. Gene copy number profiling of soft-tissue leiomyosarcomas by array-comparative genomic hybridization. Cancer Genet Cytogenet. 2006; 169(2): 94–101.
- Wang R, Lu YJ, Fisher C, et al. Characterization of chromosome aberrations associated with soft-tissue leiomyosarcomas by twenty-four-color karyotyping and comparative genomic hybridization analysis. Gene Chromosome Canc. 2001; 31(1): 54–64.
- Otaño-Joos M, Mechtersheimer G, Ohl S, et al. Detection of chromosomal imbalances in leiomyosarcoma by comparative genomic hybridization and interphase cytogenetics. Cytogenet Cell Genet. 2000; 90(1–2): 86–92.
- Derré J, Lagacé R, Nicolas A, et al. Leiomyosarcomas and Most Malignant Fibrous Histiocytomas Share Very Similar Comparative Genomic Hybridization Imbalances: An Analysis of a Series of 27 Leiomyosarcomas. Lab Invest. 2001; 81(2): 211–215.
- Wang R, Titley JC, Lu YJ, et al. Loss of 13q14-q21 and gain of 5p14-pter in the progression of leiomyosarcoma. Mod Pathol. 2003; 16(8): 778–785.
- Riva P, Dalprá L, Gualandri V, et al. 19p deletion in recurring leiomyosarcoma lesions from the same patient. Cancer Genet Cytogenet. 2000; 119(2): 102–108.
- Kawaguchi Ki, Oda Y, Saito T, et al. Mechanisms of inactivation of the p16INK4a gene in leiomyosarcoma of soft tissue: decreased p16 expression correlates with promoter methylation and poor prognosis. J Pathol. 2003; 201(3): 487–495.
- Henriksen J, Aagesen TH, Maelandsmo GM, et al. Amplification and overexpression of COPS3 in osteosarcomas potentially target TP53 for proteasome-mediated degradation. Oncogene. 2003; 22(34): 5358–5361.
- Ragazzini P, Gamberi G, Pazzaglia L, et al. Amplification of CDK4, MDM2, SAS and GLI genes in leiomyosarcoma, alveolar and embryonal rhabdomyosarcoma. Histol Histopathol. 2004; 19(2): 401–411.
- Hernando E, Charytonowicz E, Dudas ME, et al. The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med. 2007; 13(6): 748–753.
- Grossmann A, Layfield L, Randall R. Classification, Molecular Characterization, and the Significance ofPtenAlteration in Leiomyosarcoma. Sarcoma. 2012; 2012: 1–8.
- Pérot G, Derré J, Coindre JM, et al. Strong smooth muscle differentiation is dependent on myocardin gene amplification in most human retroperitoneal leiomyosarcomas. Cancer Res. 2009; 69(6): 2269–2278.
- Yang J, Du X, Chen K, et al. Genetic aberrations in soft tissue leiomyosarcoma. Cancer Lett. 2009; 275(1): 1–8.
- Guo X, Jo VY, Mills AM, et al. Clinically Relevant Molecular Subtypes in Leiomyosarcoma. Clin Cancer Res. 2015; 21(15): 3501–3511.
- El Beaino M, Araujo DM, Lazar AJ, et al. Synovial Sarcoma: Advances in Diagnosis and Treatment Identification of New Biologic Targets to Improve Multimodal Therapy. Ann Surg Oncol. 2017; 24(8): 2145–2154.
- Pan M, Merchant M. Risk Factors Including Age, Stage and Anatomic Location that Impact the Outcomes of Patients with Synovial Sarcoma. Med Sci (Basel). 2018; 6(1): 21.
- Rao UNM, Cieply K, Sherer C, et al. Correlation of Classic and Molecular Cytogenetic Alterations in Soft-Tissue Sarcomas: Analysis of 46 Tumors With Emphasis on Adipocytic Tumors and Synovial Sarcoma. Appl Immunohistochem Mol Morphol. 2017; 25(3): 168–177.
- Lagarde P, Przybyl J, Brulard C, et al. Chromosome instability accounts for reverse metastatic outcomes of pediatric and adult synovial sarcomas. J Clin Oncol. 2013; 31(5): 608–615.
- Przybyl J, Sciot R, Wozniak A, et al. Metastatic potential is determined early in synovial sarcoma development and reflected by tumor molecular features. Int J Biochem Cell Biol. 2014; 53: 505–513.
- Nielsen TO, Poulin NM, Ladanyi M. Synovial sarcoma: recent discoveries as a roadmap to new avenues for therapy. Cancer Discov. 2015; 5(2): 124–134.
- Noujaim J, Thway K, Bajwa Z, et al. Epithelioid Sarcoma: Opportunities for Biology-Driven Targeted Therapy. Frontiers in Oncology. 2015; 5(186): 1–11.
- Thway K, Jones RL, Noujaim J, et al. Epithelioid Sarcoma: Diagnostic Features and Genetics. Adv Anat Pathol. 2016; 23(1): 41–49.
- Modena P, Lualdi E, Facchinettii F, et al. SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res. 2005; 65(10): 4012–4019.
- Sápi Z, Papp G, Szendrői M, et al. Epigenetic regulation of SMARCB1 By miR-206, -381 and -671-5p is evident in a variety of SMARCB1 immunonegative soft tissue sarcomas, while miR-765 appears specific for epithelioid sarcoma. A miRNA study of 223 soft tissue sarcomas. Gene Chromosome Canc. 2016; 55(10): 786–802.
- Kohashi K, Oda Y. Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Sci. 2017; 108(4): 547–552.
- Klochendler-Yeivin A, Picarsky E, Yaniv M. Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Mol Cell Biol. 2006; 26(7): 2661–2674.
- Isakoff MS, Sansam CG, Tamayo P, et al. Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation. Proc Natl Acad Sci U S A. 2005; 102(49): 17745–17750.
- Grünewald TGP, Cidre-Aranaz F, Surdez D, et al. Ewing sarcoma. Nat Rev Dis Primers. 2018; 4(1): 5.
- Kim SK, Park YK. Ewing sarcoma: a chronicle of molecular pathogenesis. Hum Pathol. 2016; 55: 91–100.
- Vidya Rani PS, Shyamala K, Girish HC, et al. Pathogenesis of Ewing sarcoma: A review. J Adv Res. 2015; 2: 164–168.
- Crompton BD, Stewart C, Taylor-Weiner A, et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 2014; 4(11): 1326–1341.
- Tanaka M, Yamazaki Y, Kanno Y, et al. Ewing's sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors. J Clin Invest. 2014; 124(7): 3061–3074.
- Machiela MJ, Grünewald TGP, Surdez D, et al. Genome-wide association study identifies multiple new loci associated with Ewing sarcoma susceptibility. Nat Commun. 2018; 9(1): 3184.
- Dziuba I, Kurzawa P, Dopierała M, et al. Rhabdomyosarcoma in children — current pathologic and molecular classification. Pol J Pathol. 2018; 69(1): 20–32.
- Coffin CM, Davis JL, Borinstein SC. Syndrome-associated soft tissue tumours. Histopathology. 2014; 64(1): 68–87.
- Potter JW, Jones KB, Barrott JJ. Sarcoma — The standard-bearer in cancer discovery. Crit Rev Oncol Hematol. 2018; 126: 1–5.
- Akaike K, Suehara Y, Kohsaka S, et al. PPP2R1A regulated by PAX3/FOXO1 fusion contributes to the acquisition of aggressive behavior in PAX3/FOXO1-positive alveolar rhabdomyosarcoma. Oncotarget. 2018; 9(38): 25206–25215.
- Shern JF, Chen L, Chmielecki J, et al. Comprehensive Genomic Analysis of Rhabdomyosarcoma Reveals a Landscape of Alterations Affecting a Common Genetic Axis in Fusion-Positive and Fusion-Negative Tumors. Cancer Discovery. 2014; 4(2): 216–231.
- Yohe ME, Gryder BE, Shern JF, et al. MEK inhibition induces MYOG and remodels super-enhancers in RAS-driven rhabdomyosarcoma. Sci Transl Med. 2018; 10(448).
- Skrzypek K, Kusienicka A, Trzyna E, et al. SNAIL is a key regulator of alveolar rhabdomyosarcoma tumor growth and differentiation through repression of MYF5 and MYOD function. Cell Death Dis. 2018; 9(6): 643.
- Stewart E, McEvoy J, Wang H, et al. St. Jude Children's Research Hospital — Washington University Pediatric Cancer Genome Project. Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell. 2018; 34(3): 411–426.e19.
- Xu L, Zheng Y, Liu J, et al. Integrative Bayesian Analysis Identifies Rhabdomyosarcoma Disease Genes. Cell Rep. 2018; 24(1): 238–251.
- Stratton MR, Fisher C, Gusterson BA, et al. Detection of point mutations in N-ras and K-ras genes of human embryonal rhabdomyosarcomas using oligonucleotide probes and the polymerase chain reaction. Cancer Res. 1989; 49(22): 6324–6327.
- Paiva AC, Abreu MA, Souza MP. Undifferentiated pleomorphic sarcoma. An Bras Dermatol. 2018; 93(1): 154–155.
- Widemann BC, Italiano A. Biology and Management of Undifferentiated Pleomorphic Sarcoma, Myxofibrosarcoma, and Malignant Peripheral Nerve Sheath Tumors: State of the Art and Perspectives. J Clin Oncol. 2018; 36(2): 160–167.
- Sanei B, Kefayat A, Samadi M, et al. Undifferentiated Pleomorphic Sarcoma of Pancreas: A Case Report and Review of the Literature for the Last Updates. Case Rep Med. 2018; 2018: 1–6.
- Li B, Li Li, Li X, et al. Undifferentiated pleomorphic sarcoma with co-existence of KRAS/PIK3CA mutations. Int J Clin Exp Pathol. 2015; 8(7): 8563–8567.
- Lahat G, Zhang P, Zhu QS, et al. The expression of c-Met pathway components in unclassified pleomorphic sarcoma/malignant fibrous histiocytoma (UPS/MFH): a tissue microarray study. Histopathology. 2011; 59(3): 556–561.
- May CD, Landers SM, Bolshakov S, et al. Co-targeting PI3K, mTOR, and IGF1R with small molecule inhibitors for treating undifferentiated pleomorphic sarcoma. Cancer Biol Ther. 2017; 18(10): 816–826.
- Lewin J, Garg S, Lau BY, et al. Identifying actionable variants using next generation sequencing in patients with a historical diagnosis of undifferentiated pleomorphic sarcoma. Int J Cancer. 2018; 142(1): 57–65.
- Okada T, Lee AY, Qin LX, et al. Integrin-α10 Dependency Identifies RAC and RICTOR as Therapeutic Targets in High-Grade Myxofibrosarcoma. Cancer Discov. 2016; 6(10): 1148–1165.
- Ogura K, Hosoda F, Arai Y, et al. Integrated genetic and epigenetic analysis of myxofibrosarcoma. Nat Commun. 2018; 9(1): 2765.
- Ma S, Fan L, Liu Y, et al. MET-overexpressing myxofibrosarcoma frequently exhibit polysomy of chromosome 7 but not MET amplification, especially in high-grade cases: clinical and pathological review of 30 myxofibrosarcoma cases. Diagn Pathol. 2018; 13(1): 56.
- De Vita A, Recine F, Mercatali L, et al. Myxofibrosarcoma primary cultures: molecular and pharmacological profile. Ther Adv Med Oncol. 2017; 9(12): 755–767.
- Rickel K, Fang F, Tao J. Molecular genetics of osteosarcoma. Bone. 2017; 102: 69–79.
- Ribeiro CJA, Rodrigues CMP, Moreira R, et al. Chemical Variations on the p53 Reactivation Theme. Pharmaceuticals (Basel). 2016; 9(2): 1–33.
- Joseph CG, Hwang H, Jiao Y, et al. Exomic analysis of myxoid liposarcomas, synovial sarcomas, and osteosarcomas. Gene Chromosome Canc. 2014; 53(1): 15–24.
- Behjati S, Tarpey PS, Haase K, et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat Commun. 2017; 8: 1–8.
- Barris DM, Weiner SB, Dubin RA, et al. Detection of circulating tumor DNA in patients with osteosarcoma. Oncotarget. 2018; 9(16): 12695–12704.
- Bishop MW, Janeway KA, Gorlick R. Future directions in the treatment of osteosarcoma. Curr Opin Pediatr. 2016; 28(1): 26–33.
- Bousquet M, Noirot C, Accadbled F, et al. Whole-exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations. Annals of Oncology. 2016; 27(4): 738–744.
- Chen X, Bahrami A, Pappo A, et al. Recurrent Somatic Structural Variations Contribute to Tumorigenesis in Pediatric Osteosarcoma. Cell Reports. 2014; 7(1): 104–112.
- Kovac M, Blattmann C, Ribi S, et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun. 2015; 6: 1–9.
- Lindsey BA, Markel JE, Kleinerman ES. Osteosarcoma Overview. Rheumatol Ther. 2017; 4(1): 25–43.
- Ho XD, Phung P, Q Le V, et al. Whole transcriptome analysis identifies differentially regulated networks between osteosarcoma and normal bone samples. Exp Biol Med (Maywood). 2017; 242(18): 1802–1811.
- Zhou S, Wang B, Hu J, et al. miR-421 is a diagnostic and prognostic marker in patients with osteosarcoma. Tumour Biol. 2016; 37(7): 9001–9007.
- Kushlinskii NE, Fridman MV, Braga EA. Molecular Mechanisms and microRNAs in Osteosarcoma Pathogenesis. Biochemistry (Mosc). 2016; 81(4): 315–328.
- de Carvalho IN, de Freitas RM, Vargas FR. Translating microRNAs into biomarkers: What is new for pediatric cancer? Med Oncol. 2016; 33(5): 49.
- Chaiyawat P, Settakorn J, Sangsin A, et al. Exploring targeted therapy of osteosarcoma using proteomics data. Onco Targets Ther. 2017; 10: 565–577.
- Kim MJ, Cho KJ, Ayala AG, et al. Chondrosarcoma: with updates on molecular genetics. Sarcoma. 2011; 2011: 1–15.
- Sakamoto A. The molecular pathogenesis of dedifferentiated chondrosarcoma. Indian J Orthop. 2014; 48(3): 262–265.
- Polychronidou G, Karavasilis V, Pollack SM, et al. Novel therapeutic approaches in chondrosarcoma. Future Oncol. 2017; 13(7): 637–648.
- Perez J, Decouvelaere AV, Pointecouteau T, et al. Inhibition of chondrosarcoma growth by mTOR inhibitor in an in vivo syngeneic rat model. PLoS One. 2012; 7(6): e32458.
- Kim HK, Kim SY, Lee SuJ, et al. BEZ235 (PIK3/mTOR inhibitor) Overcomes Pazopanib Resistance in Patient-Derived Refractory Soft Tissue Sarcoma Cells. Transl Oncol. 2016; 9(3): 197–202.
- Lugowska I, Teterycz P, Mikula M, et al. IDH1/2 Mutations Predict Shorter Survival in Chondrosarcoma. J Cancer. 2018; 9(6): 998–1005.
- Schrage YM, Briaire-de Bruijn IH, de Miranda NF, et al. Kinome profiling of chondrosarcoma reveals SRC-pathway activity and dasatinib as option for treatment. Cancer Res. 2009; 69(15): 6216–6222.
- Schuetze SM, Wathen JK, Lucas DR, et al. SARC009: Phase 2 study of dasatinib in patients with previously treated, high-grade, advanced sarcoma. Cancer. 2016; 122(6): 868–874.
- Tarpey PS, Behjati S, Cooke SL, et al. Frequent mutation of the major cartilage collagen gene COL2A1 in chondrosarcoma. Nat Genet. 2013; 45(8): 923–926.
- Campbell VT, Nadesan P, Ali SA, et al. Hedgehog pathway inhibition in chondrosarcoma using the smoothened inhibitor IPI-926 directly inhibits sarcoma cell growth. Mol Cancer Ther. 2014; 13(5): 1259–1269.
- Wagner, AJ, Hohenberger P, Okuno S, et al. Results from a Phase 2 Randomized, Placebo-Controlled, Double Blind Study of the Hedgehog Pathway Antagonist IPI-926 in Patients with Advanced Chondrosarcoma. New York, 2013.
- Italiano A, Le Cesne A, Bellera C, et al. GDC-0449 in patients with advanced chondrosarcomas: a French Sarcoma Group/US and French National Cancer Institute Single-Arm Phase II Collaborative Study. Ann Oncol. 2013; 24(11): 2922–2926.