Vol 14, No 6 (2018)
Review paper
Published online: 2019-03-15

open access

Page views 2497
Article views/downloads 1441
Get Citation

Connect on Social Media

Connect on Social Media

Molecular biology of sarcoma

Michał Fiedorowicz1, Ewa Bartnik23, Paweł Sobczuk45, Paweł Teterycz4, Anna M. Czarnecka14
Oncol Clin Pract 2018;14(6):307-330.

Abstract

Soft tissue sarcomas are a large group of heterogenous neoplasms, many of them are highly aggressive. Most of the cases are sporadic, without any well-defined pathogenetic factor. Potential risk factors are ionizing radiation, lymphatic oedema (secondary angiosarcoma of the breast), viral infections (HHV8 and Kaposi sarcoma), exposure to chemical factors (vinyl chloride and hepatic angiosarcoma). Genetic susceptibility plays a role in a minority of cases. However, mutations in TP53, ATM and ATR genes are associated with enhanced susceptibility to radiation. Li-Fraumeni syndrome (autosomal dominant TP53 mutation) predisposes to development of malignancies, one third of them are sarcomas. Genetic alterations observed in sarcomas could be divided into three major groups characterized by: (1) chromosome translocations; (2) simple karyotype and mutations; (3) variably complex karyotypes. A large part of sarcomas belong to the first group and the specific chromosal translocations could be utilized in the diagnostic process. A smaller number of sarcomas could be assigned to the second group, e.g. desmoid fibromatosis (CTNNB1 or APC mutations) and GIST (KIT, PDGFRA, or less frequently BRAF, SDH, NF1). A large number of sarcomas are characterized by complex and variable karyotypes. Gene copy number alterations are frequent in this group, e.g. in well-differentiated liposarcoma there is an amplification of MDM2, CDK4 and HMGA2 genes or sarcoma-specific chromosomal break regions present in the CHOP gene in myxoid liposarcoma and FKHR in alveolar rhabdomyosarcoma.

Article available in PDF format

View PDF Download PDF file

References

  1. Taylor BS, Barretina J, Maki RG, et al. Advances in sarcoma genomics and new therapeutic targets. Nat Rev Cancer. 2011; 11(8): 541–557.
  2. Sbaraglia M, Dei Tos AP. The pathology of soft tissue sarcomas. Radiol Med. 2018 [Epub ahead of print]: 1–16.
  3. Ballinger ML, Goode DL, Ray-Coquard I, et al. International Sarcoma Kindred Study. Monogenic and polygenic determinants of sarcoma risk: an international genetic study. Lancet Oncol. 2016; 17(9): 1261–1271.
  4. Rutkowski P, Świtaj T. Bone sarcomas. Oncol Clin Pract. 2018; 14(3): 115–128.
  5. Rutkowski P, Ługowska I. Soft tissue sarcomas in adults. Oncol Clin Pract. 2017; 13(5): 181–201.
  6. Farid M, Ngeow J. Sarcomas Associated With Genetic Cancer Predisposition Syndromes: A Review. Oncologist. 2016; 21(8): 1002–1013.
  7. Groisberg R, Hong DS, Holla V, et al. Clinical genomic profiling to identify actionable alterations for investigational therapies in patients with diverse sarcomas. Oncotarget. 2017; 8(24): 39254–39267.
  8. The Cancer Genome Atlas Research Network. Cancer Genome Atlas Research, Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell. 2017; 171(4): 950–965.e28.
  9. Hameed M. Pathology and genetics of adipocytic tumors. Cytogenet Genome Res. 2007; 118(2–4): 138–147.
  10. Arrigoni G, Doglioni C. Atypical lipomatous tumor: molecular characterization. Curr Opin Oncol. 2004; 16(4): 355–358.
  11. D'Angelo A, Garzia L, André A, et al. Prune cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis. Cancer Cell. 2004; 5(2): 137–149.
  12. Cin PD, Kools P, Sciot R, et al. Cytogenetic and fluorescence in situ hybridization investigation of ring chromosomes characterizing a specific pathologic subgroup of adipose tissue tumors. Cancer Genet Cytogenet. 1993; 68(2): 85–90.
  13. Crago AM, Socci ND, DeCarolis P, et al. Copy number losses define subgroups of dedifferentiated liposarcoma with poor prognosis and genomic instability. Clin Cancer Res. 2012; 18(5): 1334–1340.
  14. Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: liposarcoma. Cancer Genet Cytogenet. 2004; 155(1): 1–24.
  15. Dei Tos AP, Doglioni P, Piccinin S, et al. Molecular abnormalities of the p53 pathway in dedifferentiated liposarcoma. J Pathol. 1997; 181(1): 8–13.
  16. Snyder EL, Sandstrom DJ, Law K, et al. c-Jun amplification and overexpression are oncogenic in liposarcoma but not always sufficient to inhibit the adipocytic differentiation programme. J Pathol. 2009; 218(3): 292–300.
  17. Hoang NT, Acevedo LA, Mann MJ, et al. A review of soft-tissue sarcomas: translation of biological advances into treatment measures. Cancer Manag Res. 2018; 2018(10): 1089–1114.
  18. Singer S, Socci ND, Ambrosini G, et al. Gene expression profiling of liposarcoma identifies distinct biological types/subtypes and potential therapeutic targets in well-differentiated and dedifferentiated liposarcoma. Cancer Res. 2007; 67(14): 6626–6636.
  19. Limon J, Turc-Carel C, Cin PD, et al. Recurrent chromosome translocations in liposarcoma. Cancer Genet Cytogenet. 1986; 22(1): 93–94.
  20. Aman P, Ron D, Mandahl N, et al. Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer. 1992; 5(4): 278–285.
  21. Kuroda M, Ishida T, Horiuchi H, et al. Chimeric TLS/FUS-CHOP gene expression and the heterogeneity of its junction in human myxoid and round cell liposarcoma. Am J Pathol. 1995; 147(5): 1221–1227.
  22. Panagopoulos I, Lassen C, Isaksson M, et al. Characteristic sequence motifs at the breakpoints of the hybrid genes FUS/CHOP, EWS/CHOP and FUS/ERG in myxoid liposarcoma and acute myeloid leukemia. Oncogene. 1997; 15(11): 1357–1362.
  23. Antonescu CR, Elahi A, Humphrey M, et al. Specificity of TLS-CHOP rearrangement for classic myxoid/round cell liposarcoma: absence in predominantly myxoid well-differentiated liposarcomas. J Mol Diagn. 2000; 2(3): 132–138.
  24. Panagopoulos I, Åman P, Mertens F, et al. Genomic PCR detects tumor cells in peripheral blood from patients with myxoid liposarcoma. Gene Chromosome and Canc. 1996; 17(2): 102–107, doi: 10.1002/(sici)1098-2264(199610)17:2<102::aid-gcc5>3.0.co;2-9.
  25. Demicco EG, Torres KE, Ghadimi MP, et al. Involvement of the PI3K/Akt pathway in myxoid/round cell liposarcoma. Mod Pathol. 2012; 25(2): 212–221.
  26. Costa A, Daidone MG, Daprai L, et al. Telomere maintenance mechanisms in liposarcomas: association with histologic subtypes and disease progression. Cancer Res. 2006; 66(17): 8918–8924.
  27. Fritz B, Schubert F, Wrobel G, et al. Microarray-based copy number and expression profiling in dedifferentiated and pleomorphic liposarcoma. Cancer Res. 2002; 62(11): 2993–2998.
  28. Larramendy ML, Kaur S, Svarvar C, et al. Gene copy number profiling of soft-tissue leiomyosarcomas by array-comparative genomic hybridization. Cancer Genet Cytogenet. 2006; 169(2): 94–101.
  29. Wang R, Lu YJ, Fisher C, et al. Characterization of chromosome aberrations associated with soft-tissue leiomyosarcomas by twenty-four-color karyotyping and comparative genomic hybridization analysis. Gene Chromosome Canc. 2001; 31(1): 54–64.
  30. Otaño-Joos M, Mechtersheimer G, Ohl S, et al. Detection of chromosomal imbalances in leiomyosarcoma by comparative genomic hybridization and interphase cytogenetics. Cytogenet Cell Genet. 2000; 90(1–2): 86–92.
  31. Derré J, Lagacé R, Nicolas A, et al. Leiomyosarcomas and Most Malignant Fibrous Histiocytomas Share Very Similar Comparative Genomic Hybridization Imbalances: An Analysis of a Series of 27 Leiomyosarcomas. Lab Invest. 2001; 81(2): 211–215.
  32. Wang R, Titley JC, Lu YJ, et al. Loss of 13q14-q21 and gain of 5p14-pter in the progression of leiomyosarcoma. Mod Pathol. 2003; 16(8): 778–785.
  33. Riva P, Dalprá L, Gualandri V, et al. 19p deletion in recurring leiomyosarcoma lesions from the same patient. Cancer Genet Cytogenet. 2000; 119(2): 102–108.
  34. Kawaguchi Ki, Oda Y, Saito T, et al. Mechanisms of inactivation of the p16INK4a gene in leiomyosarcoma of soft tissue: decreased p16 expression correlates with promoter methylation and poor prognosis. J Pathol. 2003; 201(3): 487–495.
  35. Henriksen J, Aagesen TH, Maelandsmo GM, et al. Amplification and overexpression of COPS3 in osteosarcomas potentially target TP53 for proteasome-mediated degradation. Oncogene. 2003; 22(34): 5358–5361.
  36. Ragazzini P, Gamberi G, Pazzaglia L, et al. Amplification of CDK4, MDM2, SAS and GLI genes in leiomyosarcoma, alveolar and embryonal rhabdomyosarcoma. Histol Histopathol. 2004; 19(2): 401–411.
  37. Hernando E, Charytonowicz E, Dudas ME, et al. The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med. 2007; 13(6): 748–753.
  38. Grossmann A, Layfield L, Randall R. Classification, Molecular Characterization, and the Significance ofPtenAlteration in Leiomyosarcoma. Sarcoma. 2012; 2012: 1–8.
  39. Pérot G, Derré J, Coindre JM, et al. Strong smooth muscle differentiation is dependent on myocardin gene amplification in most human retroperitoneal leiomyosarcomas. Cancer Res. 2009; 69(6): 2269–2278.
  40. Yang J, Du X, Chen K, et al. Genetic aberrations in soft tissue leiomyosarcoma. Cancer Lett. 2009; 275(1): 1–8.
  41. Guo X, Jo VY, Mills AM, et al. Clinically Relevant Molecular Subtypes in Leiomyosarcoma. Clin Cancer Res. 2015; 21(15): 3501–3511.
  42. El Beaino M, Araujo DM, Lazar AJ, et al. Synovial Sarcoma: Advances in Diagnosis and Treatment Identification of New Biologic Targets to Improve Multimodal Therapy. Ann Surg Oncol. 2017; 24(8): 2145–2154.
  43. Pan M, Merchant M. Risk Factors Including Age, Stage and Anatomic Location that Impact the Outcomes of Patients with Synovial Sarcoma. Med Sci (Basel). 2018; 6(1): 21.
  44. Rao UNM, Cieply K, Sherer C, et al. Correlation of Classic and Molecular Cytogenetic Alterations in Soft-Tissue Sarcomas: Analysis of 46 Tumors With Emphasis on Adipocytic Tumors and Synovial Sarcoma. Appl Immunohistochem Mol Morphol. 2017; 25(3): 168–177.
  45. Lagarde P, Przybyl J, Brulard C, et al. Chromosome instability accounts for reverse metastatic outcomes of pediatric and adult synovial sarcomas. J Clin Oncol. 2013; 31(5): 608–615.
  46. Przybyl J, Sciot R, Wozniak A, et al. Metastatic potential is determined early in synovial sarcoma development and reflected by tumor molecular features. Int J Biochem Cell Biol. 2014; 53: 505–513.
  47. Nielsen TO, Poulin NM, Ladanyi M. Synovial sarcoma: recent discoveries as a roadmap to new avenues for therapy. Cancer Discov. 2015; 5(2): 124–134.
  48. Noujaim J, Thway K, Bajwa Z, et al. Epithelioid Sarcoma: Opportunities for Biology-Driven Targeted Therapy. Frontiers in Oncology. 2015; 5(186): 1–11.
  49. Thway K, Jones RL, Noujaim J, et al. Epithelioid Sarcoma: Diagnostic Features and Genetics. Adv Anat Pathol. 2016; 23(1): 41–49.
  50. Modena P, Lualdi E, Facchinettii F, et al. SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res. 2005; 65(10): 4012–4019.
  51. Sápi Z, Papp G, Szendrői M, et al. Epigenetic regulation of SMARCB1 By miR-206, -381 and -671-5p is evident in a variety of SMARCB1 immunonegative soft tissue sarcomas, while miR-765 appears specific for epithelioid sarcoma. A miRNA study of 223 soft tissue sarcomas. Gene Chromosome Canc. 2016; 55(10): 786–802.
  52. Kohashi K, Oda Y. Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Sci. 2017; 108(4): 547–552.
  53. Klochendler-Yeivin A, Picarsky E, Yaniv M. Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Mol Cell Biol. 2006; 26(7): 2661–2674.
  54. Isakoff MS, Sansam CG, Tamayo P, et al. Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation. Proc Natl Acad Sci U S A. 2005; 102(49): 17745–17750.
  55. Grünewald TGP, Cidre-Aranaz F, Surdez D, et al. Ewing sarcoma. Nat Rev Dis Primers. 2018; 4(1): 5.
  56. Kim SK, Park YK. Ewing sarcoma: a chronicle of molecular pathogenesis. Hum Pathol. 2016; 55: 91–100.
  57. Vidya Rani PS, Shyamala K, Girish HC, et al. Pathogenesis of Ewing sarcoma: A review. J Adv Res. 2015; 2: 164–168.
  58. Crompton BD, Stewart C, Taylor-Weiner A, et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 2014; 4(11): 1326–1341.
  59. Tanaka M, Yamazaki Y, Kanno Y, et al. Ewing's sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors. J Clin Invest. 2014; 124(7): 3061–3074.
  60. Machiela MJ, Grünewald TGP, Surdez D, et al. Genome-wide association study identifies multiple new loci associated with Ewing sarcoma susceptibility. Nat Commun. 2018; 9(1): 3184.
  61. Dziuba I, Kurzawa P, Dopierała M, et al. Rhabdomyosarcoma in children — current pathologic and molecular classification. Pol J Pathol. 2018; 69(1): 20–32.
  62. Coffin CM, Davis JL, Borinstein SC. Syndrome-associated soft tissue tumours. Histopathology. 2014; 64(1): 68–87.
  63. Potter JW, Jones KB, Barrott JJ. Sarcoma — The standard-bearer in cancer discovery. Crit Rev Oncol Hematol. 2018; 126: 1–5.
  64. Akaike K, Suehara Y, Kohsaka S, et al. PPP2R1A regulated by PAX3/FOXO1 fusion contributes to the acquisition of aggressive behavior in PAX3/FOXO1-positive alveolar rhabdomyosarcoma. Oncotarget. 2018; 9(38): 25206–25215.
  65. Shern JF, Chen L, Chmielecki J, et al. Comprehensive Genomic Analysis of Rhabdomyosarcoma Reveals a Landscape of Alterations Affecting a Common Genetic Axis in Fusion-Positive and Fusion-Negative Tumors. Cancer Discovery. 2014; 4(2): 216–231.
  66. Yohe ME, Gryder BE, Shern JF, et al. MEK inhibition induces MYOG and remodels super-enhancers in RAS-driven rhabdomyosarcoma. Sci Transl Med. 2018; 10(448).
  67. Skrzypek K, Kusienicka A, Trzyna E, et al. SNAIL is a key regulator of alveolar rhabdomyosarcoma tumor growth and differentiation through repression of MYF5 and MYOD function. Cell Death Dis. 2018; 9(6): 643.
  68. Stewart E, McEvoy J, Wang H, et al. St. Jude Children's Research Hospital — Washington University Pediatric Cancer Genome Project. Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell. 2018; 34(3): 411–426.e19.
  69. Xu L, Zheng Y, Liu J, et al. Integrative Bayesian Analysis Identifies Rhabdomyosarcoma Disease Genes. Cell Rep. 2018; 24(1): 238–251.
  70. Stratton MR, Fisher C, Gusterson BA, et al. Detection of point mutations in N-ras and K-ras genes of human embryonal rhabdomyosarcomas using oligonucleotide probes and the polymerase chain reaction. Cancer Res. 1989; 49(22): 6324–6327.
  71. Paiva AC, Abreu MA, Souza MP. Undifferentiated pleomorphic sarcoma. An Bras Dermatol. 2018; 93(1): 154–155.
  72. Widemann BC, Italiano A. Biology and Management of Undifferentiated Pleomorphic Sarcoma, Myxofibrosarcoma, and Malignant Peripheral Nerve Sheath Tumors: State of the Art and Perspectives. J Clin Oncol. 2018; 36(2): 160–167.
  73. Sanei B, Kefayat A, Samadi M, et al. Undifferentiated Pleomorphic Sarcoma of Pancreas: A Case Report and Review of the Literature for the Last Updates. Case Rep Med. 2018; 2018: 1–6.
  74. Li B, Li Li, Li X, et al. Undifferentiated pleomorphic sarcoma with co-existence of KRAS/PIK3CA mutations. Int J Clin Exp Pathol. 2015; 8(7): 8563–8567.
  75. Lahat G, Zhang P, Zhu QS, et al. The expression of c-Met pathway components in unclassified pleomorphic sarcoma/malignant fibrous histiocytoma (UPS/MFH): a tissue microarray study. Histopathology. 2011; 59(3): 556–561.
  76. May CD, Landers SM, Bolshakov S, et al. Co-targeting PI3K, mTOR, and IGF1R with small molecule inhibitors for treating undifferentiated pleomorphic sarcoma. Cancer Biol Ther. 2017; 18(10): 816–826.
  77. Lewin J, Garg S, Lau BY, et al. Identifying actionable variants using next generation sequencing in patients with a historical diagnosis of undifferentiated pleomorphic sarcoma. Int J Cancer. 2018; 142(1): 57–65.
  78. Okada T, Lee AY, Qin LX, et al. Integrin-α10 Dependency Identifies RAC and RICTOR as Therapeutic Targets in High-Grade Myxofibrosarcoma. Cancer Discov. 2016; 6(10): 1148–1165.
  79. Ogura K, Hosoda F, Arai Y, et al. Integrated genetic and epigenetic analysis of myxofibrosarcoma. Nat Commun. 2018; 9(1): 2765.
  80. Ma S, Fan L, Liu Y, et al. MET-overexpressing myxofibrosarcoma frequently exhibit polysomy of chromosome 7 but not MET amplification, especially in high-grade cases: clinical and pathological review of 30 myxofibrosarcoma cases. Diagn Pathol. 2018; 13(1): 56.
  81. De Vita A, Recine F, Mercatali L, et al. Myxofibrosarcoma primary cultures: molecular and pharmacological profile. Ther Adv Med Oncol. 2017; 9(12): 755–767.
  82. Rickel K, Fang F, Tao J. Molecular genetics of osteosarcoma. Bone. 2017; 102: 69–79.
  83. Ribeiro CJA, Rodrigues CMP, Moreira R, et al. Chemical Variations on the p53 Reactivation Theme. Pharmaceuticals (Basel). 2016; 9(2): 1–33.
  84. Joseph CG, Hwang H, Jiao Y, et al. Exomic analysis of myxoid liposarcomas, synovial sarcomas, and osteosarcomas. Gene Chromosome Canc. 2014; 53(1): 15–24.
  85. Behjati S, Tarpey PS, Haase K, et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat Commun. 2017; 8: 1–8.
  86. Barris DM, Weiner SB, Dubin RA, et al. Detection of circulating tumor DNA in patients with osteosarcoma. Oncotarget. 2018; 9(16): 12695–12704.
  87. Bishop MW, Janeway KA, Gorlick R. Future directions in the treatment of osteosarcoma. Curr Opin Pediatr. 2016; 28(1): 26–33.
  88. Bousquet M, Noirot C, Accadbled F, et al. Whole-exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations. Annals of Oncology. 2016; 27(4): 738–744.
  89. Chen X, Bahrami A, Pappo A, et al. Recurrent Somatic Structural Variations Contribute to Tumorigenesis in Pediatric Osteosarcoma. Cell Reports. 2014; 7(1): 104–112.
  90. Kovac M, Blattmann C, Ribi S, et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat Commun. 2015; 6: 1–9.
  91. Lindsey BA, Markel JE, Kleinerman ES. Osteosarcoma Overview. Rheumatol Ther. 2017; 4(1): 25–43.
  92. Ho XD, Phung P, Q Le V, et al. Whole transcriptome analysis identifies differentially regulated networks between osteosarcoma and normal bone samples. Exp Biol Med (Maywood). 2017; 242(18): 1802–1811.
  93. Zhou S, Wang B, Hu J, et al. miR-421 is a diagnostic and prognostic marker in patients with osteosarcoma. Tumour Biol. 2016; 37(7): 9001–9007.
  94. Kushlinskii NE, Fridman MV, Braga EA. Molecular Mechanisms and microRNAs in Osteosarcoma Pathogenesis. Biochemistry (Mosc). 2016; 81(4): 315–328.
  95. de Carvalho IN, de Freitas RM, Vargas FR. Translating microRNAs into biomarkers: What is new for pediatric cancer? Med Oncol. 2016; 33(5): 49.
  96. Chaiyawat P, Settakorn J, Sangsin A, et al. Exploring targeted therapy of osteosarcoma using proteomics data. Onco Targets Ther. 2017; 10: 565–577.
  97. Kim MJ, Cho KJ, Ayala AG, et al. Chondrosarcoma: with updates on molecular genetics. Sarcoma. 2011; 2011: 1–15.
  98. Sakamoto A. The molecular pathogenesis of dedifferentiated chondrosarcoma. Indian J Orthop. 2014; 48(3): 262–265.
  99. Polychronidou G, Karavasilis V, Pollack SM, et al. Novel therapeutic approaches in chondrosarcoma. Future Oncol. 2017; 13(7): 637–648.
  100. Perez J, Decouvelaere AV, Pointecouteau T, et al. Inhibition of chondrosarcoma growth by mTOR inhibitor in an in vivo syngeneic rat model. PLoS One. 2012; 7(6): e32458.
  101. Kim HK, Kim SY, Lee SuJ, et al. BEZ235 (PIK3/mTOR inhibitor) Overcomes Pazopanib Resistance in Patient-Derived Refractory Soft Tissue Sarcoma Cells. Transl Oncol. 2016; 9(3): 197–202.
  102. Lugowska I, Teterycz P, Mikula M, et al. IDH1/2 Mutations Predict Shorter Survival in Chondrosarcoma. J Cancer. 2018; 9(6): 998–1005.
  103. Schrage YM, Briaire-de Bruijn IH, de Miranda NF, et al. Kinome profiling of chondrosarcoma reveals SRC-pathway activity and dasatinib as option for treatment. Cancer Res. 2009; 69(15): 6216–6222.
  104. Schuetze SM, Wathen JK, Lucas DR, et al. SARC009: Phase 2 study of dasatinib in patients with previously treated, high-grade, advanced sarcoma. Cancer. 2016; 122(6): 868–874.
  105. Tarpey PS, Behjati S, Cooke SL, et al. Frequent mutation of the major cartilage collagen gene COL2A1 in chondrosarcoma. Nat Genet. 2013; 45(8): 923–926.
  106. Campbell VT, Nadesan P, Ali SA, et al. Hedgehog pathway inhibition in chondrosarcoma using the smoothened inhibitor IPI-926 directly inhibits sarcoma cell growth. Mol Cancer Ther. 2014; 13(5): 1259–1269.
  107. Wagner, AJ, Hohenberger P, Okuno S, et al. Results from a Phase 2 Randomized, Placebo-Controlled, Double Blind Study of the Hedgehog Pathway Antagonist IPI-926 in Patients with Advanced Chondrosarcoma. New York, 2013.
  108. Italiano A, Le Cesne A, Bellera C, et al. GDC-0449 in patients with advanced chondrosarcomas: a French Sarcoma Group/US and French National Cancer Institute Single-Arm Phase II Collaborative Study. Ann Oncol. 2013; 24(11): 2922–2926.