Vol 6, No 4 (2010)
Review paper
Published online: 2010-12-16

open access

Page views 978
Article views/downloads 6030
Get Citation

Connect on Social Media

Connect on Social Media

Pharmacokinetics and pharmacogenetics in breast cancer patients systemic treatment

Joanna Huszno, Elżbieta Nowara
Onkol. Prak. Klin 2010;6(4):159-170.

Abstract

Pharmacogenetics is an intensively developing branch of science, which investigate the correlation between genetic differentiation and treatment response. The purpose of pharmacogenetics is also a selection of patients, who are the most likely to develope severe side effects.
The aim of this study is to recapitulate the pharmacogenetics and pharmacokinetics researches conducted in breast cancer patients received up to now. We concentrated mainly on polymorphisms in transporters proteins and in drug-metabolising enzymes used in cancer chemotherapy in breast cancer patients. Literature review was performed using ScienceDirect and PubMED bases. We discussed the influence of identified gene polymorphisms on development of severe toxic side effects in healthy tissues and tumor response.

Onkol. Prak. Klin. 2010; 6, 4: 159–170

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Orzechowska-Juzwenko K. Leki stosowane w leczeniu nowotworów. In: Janiec W. ed. Farmakodynamika . Podręcznik dla studentów farmacji. PZWL Wydawnictwo Lekarskie, Warszawa 2009: 989–1022.
  2. Niewiński P, Orzechowska-Juzwenko K, Milejski P. Farmakogenetyka. In: Orzechowska-Juzwenko K, Orzechowska-Juzwenko K, Milejski P. ed. Farmakologia kliniczna. Znaczenie w praktyce medycznej. Górnicki Wydawnictwo Medyczne, Wrocław 2006: 145–161.
  3. Mutschler E, Geisslinger G, Kroemer HK, Ruth P, Schafer-Korting M. Chemioterapia nowotworów złośliwych. . In: Buczko W, Geisslinger G, Kroemer HK, Ruth P, Schafer-Korting M. ed. Kompendium farmakologii i toksykologii Mutschlera. 2007: 413–428.
  4. Matti SA, Von Minckwitz G. Molecular basis for the development of novel taxanes in the treatment of metastatic breast cancer. EJC. 2008; 10: 3–11.
  5. Gorczyca M. Biotransformacja leków. In: Zejc A, Gorzyca M. ed. Chemia leków. PZWL Wydawnictwo Lekarskie, Warszawa 2008: 756–773.
  6. Bruno R, Olivares R, Berille J, et al. Alpha-1-acid glycoprotein as an independent predictor for treatment effects and a prognostic factor of survival in patients with non-small cell lung cancer treated with docetaxel. Clin Cancer Res. 2003; 9(3): 1077–1082.
  7. Hansen JE, Larsen VA, Bøg-Hansen TC. The microheterogeneity of alpha 1-acid glycoprotein in inflammatory lung disease, cancer of the lung and normal health. Clin Chim Acta. 1984; 138(1): 41–47.
  8. Nakamura T, Board PG, Matsushita K, et al. Alpha 1-acid glycoprotein expression in human leukocytes: possible correlation between alpha 1-acid glycoprotein and inflammatory cytokines in rheumatoid arthritis. Inflammation. 1993; 17(1): 33–45.
  9. Marsh S, Paul J, King CR, et al. Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the Scottish Randomised Trial in Ovarian Cancer. J Clin Oncol. 2007; 25(29): 4528–4535.
  10. Wiechec E, Hansen LL. The effect of genetic variability on drug response in conventional breast cancer treatment. Eur J Pharmacol. 2009; 625(1-3): 122–130.
  11. Gehrmann M, Schmidt M, Brase JC, et al. Prediction of paclitaxel resistance in breast cancer: is CYP1B1*3 a new factor of influence? Pharmacogenomics. 2008; 9(7): 969–974.
  12. Flanagan MB, Dabbs DJ, Brufsky AM, et al. Histopathologic variables predict Oncotype DX recurrence score. Mod Pathol. 2008; 21(10): 1255–1261.
  13. Deporte-Fety R, Simon N, Fumoleau P, et al. Population pharmacokinetics of short intravenous vinorelbine infusions in patients with metastatic breast cancer. Cancer Chemother Pharmacol. 2004; 53(3): 233–238.
  14. Pan Jh, Han Jx, Wu Jm, et al. MDR1 single nucleotide polymorphisms predict response to vinorelbine-based chemotherapy in patients with non-small cell lung cancer. Respiration. 2008; 75(4): 380–385.
  15. Pan JH, Han JX, Wu JM, et al. CYP450 polymorphisms predict clinic outcomes to vinorelbine-based chemotherapy in patients with non-small-cell lung cancer. Acta Oncol. 2007; 46(3): 361–366.
  16. Wong M, Balleine RL, Blair EYL, et al. Predictors of vinorelbine pharmacokinetics and pharmacodynamics in patients with cancer. J Clin Oncol. 2006; 24(16): 2448–2455.
  17. Schott AF, Rae JM, Griffith KA, et al. Combination vinorelbine and capecitabine for metastatic breast cancer using a non-body surface area dosing scheme. Cancer Chemother Pharmacol. 2006; 58(1): 129–135.
  18. Powis G, Reece P, Ahmann DL, et al. Effect of body weight on the pharmacokinetics of cyclophosphamide in breast cancer patients. Cancer Chemother Pharmacol. 1987; 20(3): 219–222.
  19. Gheuens E, Slee PH, de Bruijn EA. Bioavailability of cyclophosphamide in the CMF regimen. Onkologie. 1990; 13(3): 203–206.
  20. Petros WP, Hopkins PJ, Spruill S, et al. Associations between drug metabolism genotype, chemotherapy pharmacokinetics, and overall survival in patients with breast cancer. J Clin Oncol. 2005; 23(25): 6117–6125.
  21. Nakajima M, Komagata S, Fujiki Y, et al. Genetic polymorphisms of CYP2B6 affect the pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese cancer patients. Pharmacogenet Genomics. 2007; 17(6): 431–445.
  22. Coles BF, Kadlubar FF. Detoxification of electrophilic compounds by glutathione S-transferase catalysis: determinants of individual response to chemical carcinogens and chemotherapeutic drugs? Biofactors. 2003; 17(1-4): 115–130.
  23. Bewick MA, Conlon MSC, Lafrenie RM. Polymorphisms in manganese superoxide dismutase, myeloperoxidase and glutathione-S-transferase and survival after treatment for metastatic breast cancer. Breast Cancer Res Treat. 2008; 111(1): 93–101.
  24. Sugiyama E, Kaniwa N, Kim SR, et al. Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism. J Clin Oncol. 2007; 25(1): 32–42.
  25. Marsh S. Pharmacogenetics of colorectal cancer. Expert Opin Pharmacother. 2005; 6(15): 2607–2616.
  26. Shrubsole MJ, Shu XOu, Ruan ZX, et al. MTHFR genotypes and breast cancer survival after surgery and chemotherapy: a report from the Shanghai Breast Cancer Study. Breast Cancer Res Treat. 2005; 91(1): 73–79.
  27. Sohn KJ, Croxford R, Yates Z, et al. Effect of the methylenetetrahydrofolate reductase C677T polymorphism on chemosensitivity of colon and breast cancer cells to 5-fluorouracil and methotrexate. J Natl Cancer Inst. 2004; 96(2): 134–144.
  28. Guillem VM, Collado M, Terol MJ, et al. Role of MTHFR (677, 1298) haplotype in the risk of developing secondary leukemia after treatment of breast cancer and hematological malignancies. Leukemia. 2007; 21(7): 1413–1422.
  29. Paré L, Altés A, Ramón y Cajal T, et al. Influence of thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphisms on the disease-free survival of breast cancer patients receiving adjuvant 5-fluorouracil/methotrexate-based therapy. Anticancer Drugs. 2007; 18(7): 821–825.
  30. Toffoli G, Veronesi A, Boiocchi M, et al. MTHFR gene polymorphism and severe toxicity during adjuvant treatment of early breast cancer with cyclophosphamide, methotrexate, and fluorouracil (CMF). Ann Oncol. 2000; 11(3): 373–374.
  31. Martin DN, Boersma BJ, Howe TM, et al. Association of MTHFR gene polymorphisms with breast cancer survival. BMC Cancer. 2006; 6: 257.
  32. Villafranca E, Okruzhnov Y, Dominguez MA, et al. Polymorphisms of the repeated sequences in the enhancer region of the thymidylate synthase gene promoter may predict downstaging after preoperative chemoradiation in rectal cancer. J Clin Oncol. 2001; 19(6): 1779–1786.
  33. Nordgard SH, Alnaes GIG, Hihn B, et al. Pathway based analysis of SNPs with relevance to 5-FU therapy: relation to intratumoral mRNA expression and survival. Int J Cancer. 2008; 123(3): 577–585.
  34. Ribelles N, López-Siles J, Sánchez A, et al. A carboxylesterase 2 gene polymorphism as predictor of capecitabine on response and time to progression. Curr Drug Metab. 2008; 9(4): 336–343.
  35. Sugiyama E, Kaniwa N, Kim SR, et al. Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism. J Clin Oncol. 2007; 25(1): 32–42.
  36. Rha SY, Jeung HC, Choi YH, et al. An Association Between RRM1 Haplotype and Gemcitabine-Induced Neutropenia in Breast Cancer Patients. The Oncologist. 2007; 12(6): 622–630.
  37. Toyama T, Zhang Z, Nishio M, et al. Association of TP53 codon 72 polymorphism and the outcome of adjuvant therapy in breast cancer patients. Breast Cancer Res. 2007; 9(3): R34.
  38. Pérez-Manga G, Lluch A, Alba E, et al. Gemcitabine in combination with doxorubicin in advanced breast cancer: final results of a phase II pharmacokinetic trial. J Clin Oncol. 2000; 18(13): 2545–2552.
  39. Rushing DA, Piscitelli SC, Rodvold KA, et al. The disposition of doxorubicin on repeated dosing. J Clin Pharmacol. 1993; 33(8): 698–702.
  40. Tanner M, Isola J, Wiklund T, et al. Scandinavian Breast Group Trial 9401. Topoisomerase IIalpha gene amplification predicts favorable treatment response to tailored and dose-escalated anthracycline-based adjuvant chemotherapy in HER-2/neu-amplified breast cancer: Scandinavian Breast Group Trial 9401. J Clin Oncol. 2006; 24(16): 2428–2436.
  41. Knoop A, Knudsen H, Balslev E, et al. Retrospective Analysis of Topoisomerase IIa Amplifications and Deletions As Predictive Markers in Primary Breast Cancer Patients Randomly Assigned to Cyclophosphamide, Methotrexate, and Fluorouracil or Cyclophosphamide, Epirubicin, and Fluorouracil: Danish Breast Cancer Cooperative Group. Journal of Clinical Oncology. 2005; 23(30): 7483–7490.
  42. Buzdar AU. Topoisomerase IIalpha gene amplification and response to anthracycline-containing adjuvant chemotherapy in breast cancer. J Clin Oncol. 2006; 24(16): 2409–2410.
  43. Barrett-Lee PJ. Growth factor signalling in clinical breast cancer and its impact on response to conventional therapies: a review of chemotherapy. Endocr Relat Cancer. 2005; 12 Suppl 1: S125–S133.
  44. Järvinen TA, Tanner M, Rantanen V, et al. Amplification and deletion of topoisomerase IIalpha associate with ErbB-2 amplification and affect sensitivity to topoisomerase II inhibitor doxorubicin in breast cancer. Am J Pathol. 2000; 156(3): 839–847.
  45. Fan Lu, Goh BC, Wong CI, et al. Genotype of human carbonyl reductase CBR3 correlates with doxorubicin disposition and toxicity. Pharmacogenet Genomics. 2008; 18(7): 621–631.
  46. Lal S, Sutiman N, Ooi LL, et al. Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. Cancer Sci. 2008; 99(4): 816–823.
  47. Kafka A, Sauer G, Jaeger C, et al. Polymorphism C3435T of the MDR-1 gene predicts response to preoperative chemotherapy in locally advanced breast cancer. Int J Oncol. 2003; 22(5): 1117–1121.
  48. Lal S, Wong ZW, Jada SR, et al. Novel SLC22A16 polymorphisms and influence on doxorubicin pharmacokinetics in Asian breast cancer patients. Pharmacogenomics. 2007; 8(6): 567–575.
  49. Turgut S, Yaren A, Kursunluoglu R, et al. MDR1 C3435T polymorphism in patients with breast cancer. Arch Med Res. 2007; 38(5): 539–544.
  50. Hunz M, Jetter A, Warm M, et al. Plasma and tissue pharmacokinetics of epirubicin and Paclitaxel in patients receiving neoadjuvant chemotherapy for locally advanced primary breast cancer. Clin Pharmacol Ther. 2007; 81(5): 659–668.
  51. Fagerholm R, Hofstetter B, Tommiska J, et al. NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nat Genet. 2008; 40(7): 844–853.
  52. Ryu JS, Hong YC, Han HS, et al. Association between polymorphisms of ERCC1 and XPD and survival in non-small-cell lung cancer patients treated with cisplatin combination chemotherapy. Lung Cancer. 2004; 44(3): 311–316.
  53. Tibaldi C, Giovannetti E, Vasile E, et al. Correlation of CDA, ERCC1, and XPD polymorphisms with response and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res. 2008; 14(6): 1797–1803.
  54. Krzakowski M, Jassem J. Przedoperacyjne i pooperacyjne leczenie systemowe. In: Krzakowski M, Jassem J. ed. Rak piersi. Via Medica, Gdańsk 2009: 143–158.
  55. Marsh S, Liu G. Pharmacokinetics and pharmacogenomics in breast cancer chemotherapy. Adv Drug Deliv Rev. 2009; 61(5): 381–387.
  56. Jaremko M, Justenhoven C, Schroth W, et al. Polymorphism of the DNA repair enzyme XRCC1 is associated with treatment prediction in anthracycline and cyclophosphamide/methotrexate/5-fluorouracil-based chemotherapy of patients with primary invasive breast cancer. Pharmacogenet Genomics. 2007; 17(7): 529–539.
  57. Hertz DL, McLeod HL, Hoskins JM. Pharmacogenetics of breast cancer therapies. Breast. 2009; 18 Suppl 3: 559–563.
  58. Shields RL, Namenuk AK, Hong K, et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem. 2001; 276(9): 6591–6604.
  59. Warmerdam PA, van de Winkel JG, Vlug A, et al. A single amino acid in the second Ig-like domain of the human Fc gamma receptor II is critical for human IgG2 binding. J Immunol. 1991; 147(4): 1338–1343.
  60. Gennari R, Menard S, Fagnoni F, et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res. 2004; 10(17): 5650–5655.
  61. Varchetta S, Gibelli N, Oliviero B, et al. Elements related to heterogeneity of antibody-dependent cell cytotoxicity in patients under trastuzumab therapy for primary operable breast cancer overexpressing Her2. Cancer Res. 2007; 67(24): 11991–11999.
  62. Musolino A, Naldi N, Bortesi B, et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol. 2008; 26(11): 1789–1796.
  63. Jin Y, Desta Z, Stearns V, et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst. 2003; 95(23): 1758–1764.
  64. Goetz MP, Rae JM, Suman VJ, et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol. 2005; 23(36): 9312–9318.
  65. Schroth W, Antoniadou L, Fritz P, et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol. 2007; 25(33): 5187–5193.
  66. Bijl MJ, van Schaik RHN, Lammers LA, et al. The CYP2D6*4 polymorphism affects breast cancer survival in tamoxifen users. Breast Cancer Res Treat. 2009; 118(1): 125–130.
  67. Wegman P, Vainikka L, Stål O, et al. Genotype of metabolic enzymes and the benefit of tamoxifen in postmenopausal breast cancer patients. Breast Cancer Res. 2005; 7(3): R284–R290.
  68. Thuerlimann B, Koeberle D, Senn HJ. Guidelines for the adjuvant treatment of postmenopausal women with endocrine-responsive breast cancer: past, present and future recommendations. Eur J Cancer. 2007; 43(1): 46–52.