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Benefits and difficulties during  
brain radiotherapy planning  
with hippocampus sparing

ABSTRACT
Radiotherapy (RT) is frequently used in the treatment of primary and secondary brain tumours, as well as in 

prophylactic cranial irradiation (PCI). The hippocampus plays a key function in the process of remembering, 

relaying information from short-term to long-term memory as consolidation, and spatial orientation. Sparing the 

hippocampus during brain radiotherapy aims to prevent hippocampal-dependent cognitive function deterioration. 

This procedure requires a good knowledge of the brain’s radiological anatomy and use of modern radiotherapy 

techniques. 

This article presents the validity of hippocampus sparing during brain radiotherapy, the potential benefits of using 

this procedure, available clinical premises regarding patient qualification, and technical difficulties in the brain’s 

RT planning with hippocampus avoidance.
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Hippocampus

The hippocampus was first described by Arantius in 
1587 as a grey matter brain zone resembling a creature 
from Greek mythology drawing the chariot of the god of 
the sea, Poseidon. It consists of the head with the appear-
ance of a horse’s head and a curved body like a sea wave. 
Hence the name of this organ is derived from hippo 
(horse) and campi (turn) [1]. It is difficult to depict the 
shape of the hippocampus in a two-dimensional plane 
due to its long, curved body (Fig. 1A, 1B).

Anatomically, the hippocampus is an even organ 
located in telencephalon region, in the temporal lobes 
of the cerebral cortex of the right and left hemispheres 
of the brain. Within the hippocampus, in the vicinity of 
the dentate gyrus, there is a cluster of neural stem cells 
(NSCs) grouped in two niches: the subventricular zone 
(SVZ) and the subgranular zone (SGZ) [2, 3] (Fig. 2). 
These NSCs are responsible for the key functions of this 
structure. It is worth noting that they are very sensitive to 

damaging factors such as ischaemia, stress, and ionising 
radiation [4]. An analysis of brain magnetic resonance 
imaging (MRI) of 58 patients with nasopharyngeal car-
cinoma performed three and six months after completed 
brain RT revealed atrophy of the hippocampal area [5]. 
Depopulation of NSCs by apoptosis, which occurs after 
the activation of the damaging factor, appears already 
after 12 hours and leads to the manifestation of deficits 
in cognitive functions for which the hippocampus cor-
responds, and in particular to disorders in memorising 
and reproduction of information from working memory 
[6–8]. It was shown that irradiation of the hippocampus 
area with doses close to 30 Gy and higher, given in 
conventional fractionation, causes a decrease in NSCs 
proliferation by 93–96% after 48 hours [7]. Deficits in 
cognitive functions appear about two months after the 
activation of the damaging factor, and the peak of inten-
sity falls around the fourth month [9–12]. Importantly, 
the consequences of NSC apoptosis are irreversible and 
usually progressive over time.
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A B

Hippocampi, dentate gyrus

Figure 2. Localisation of neural stem cell (NSC) compartment in the region of dentate gyrus of hippocampi (author: M. Filippow)

Figure 1. The anatomical shape of the hippocampi (A) and a sketch of the creation from Greek mythology (B) (author: M. Filippow)

The rationale of hippocampus 
contouring during brain CT planning

The majority of patients with malignant neoplasms 
within the brain manifest cognitive dysfunction even be-
fore the implementation of any causative treatment. They 
may result from the presence of malignant disease within 
the brain, its progression, the use of supportive treatment 
(e.g. opioids, steroids), comorbidities, or advanced age 
[13, 14]. Sudden/acute deterioration of cognitive functions 
may appear just after the brain’s RT due to the presence 
of brain metastases accompanied by extensive oedema 
zones around changes [15]. In turn, it was demonstrated 
that patients with small-cell lung cancer (SCLC) without 
metastases in the brain may show deterioration of cogni-

tive functions based on a previously unknown mechanism, 
presumably as a paraneoplastic effect [16]. The progress 
in oncological treatment is reflected both in the quality 
of therapy and in its effectiveness, which translates into 
longer survival time. Recently, attention has been paid to 
the patient’s quality of life after the use of anti-cancer treat-
ment, and attempts are being made to reduce the negative 
effects of the therapy. Irradiation of the brain, particularly 
the area of the hippocampus, may lead to further cognitive 
deficits, which as a result significantly affects patients’ quality 
of life. Described cognitive functions relate to the thought 
processes used to process information coming from the 
outside world into the mind and contain basic aspects such 
as memory, attention, and association and complex ones, 
which include thinking and imagination [17].
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The most frequently described deficits of cognitive 
functions after brain CT are losses in short-term memory 
and less frequently in delayed memory, and problems 
with information recall and learning [18, 19]. There 
are also described verbal memory disorders, necessary 
to understand reading text, as well as inhibition of the 
higher cognitive processes necessary to behave in new 
and difficult situations [20, 21]. It is worth noting that 
any deterioration of cognitive functions in oncological 
patients significantly affects the quality of life after the 
completion of anticancer treatment and can contribute 
to the deepening of lowered mood, and even the occur-
rence of depressive episodes [22, 23]. 

It should be noted that the hippocampus is a very 
rare location of cancer metastases [24, 25]. Researchers 
from the University of Wisconsin documented that only 
3.3% of intracranial metastatic lesions were located up 
to 5 mm from the hippocampus, and over 86% were 
located at least 15 mm from this structure [26]. In 
another retrospective study analysing the location of 
697 intracranial metastases, only 2.2% of lesions were 
found in the direct location of the hippocampus, and 
in patients with oligometastatic disease (one to three 
brain metastases) the rate of hippocampal metastases 
was below 1% [25]. 

Clinical assessment of impaired 
cognitive functions

Evaluation of the cognitive deficit after brain CT 
is methodically difficult and ambiguous. Until now, 
researchers have used subjective methods in the form 
of psychological tests, e.g. MMSE (mini-mental stage 
examination), HVLT (Hopkins verbal learning test), 
and AVLT (auditory verbal learning test) [10, 12, 27]. 
An example is the RTOG 0914 study conducted in 
a group of 445 patients with brain metastases (BM), 
who underwent whole brain radiotherapy (WBRT), 
which proved that both hypofractionated (30 Gy/10 frac-
tions) and conventional (40 Gy/20 fractions) RT lead 
to a significant reduction in cognitive function, and the 
results of the MMSE test revealed a marked deteriora-
tion in cognitive functions in both groups two and three 
months after completion of RT [9]. Another multicentre 
phase III trial based on 401 patients with BM treated 
with WBRT (30 Gy/10 fractions) revealed a significant 
decrease in cognitive functions assessed on the basis of 
the verbal fluency test (COWA, controlled oral word 
association) four months after RT, and then their 
improvement 15 months after completion of RT [28]. 
Preliminary results of the phase II RTOG 0933 study, 
using Hopkins’ verbal learning test (HVLT) showed 
that the use of hippocampal sparing in patients with 
BM during WBRT resulted in lower intensity of early 

cognitive deficits within the first four months of treat-
ment versus the state before treatment, as compared to 
RT without the cover of this structure [10, 12]. Another 
study, using the HVLT test, showed a smaller loss of cog-
nitive functions in the field of learning and short-term 
memory in patients with 1–3 BM, who underwent only 
stereotactic brain radiotherapy (SRT), in comparison to 
patients with WBRT [12]. In turn, the AVLT auditory 
test revealed a decrease in verbal memory 6–8 weeks 
after completion of WBRT in patients with BM, in com-
parison to baseline status [12]. In the phase III RTOG 
0214 study conducted in a group of patients with stage 
III non-small cell lung cancer (NSCLC) subject to PCI, 
a marked decrease in cognitive function was seen after 
three months of brain RT evaluated with the MMSE test 
[27]. Research is ongoing to find an objective biomarker 
used alone or in fusion with MRI to detect early damage 
in the hippocampal region [5].

Hippocampus contouring techniques

Manual contouring of the hippocampus

This is the most popular technique in the daily 
practice of a radiotherapist; however, it requires a good 
knowledge of anatomy in the planned area. Correct 
contouring of the hippocampus is the most important 
process during the preparation of an irradiation plan 
with a procedure for the protection of this structure. In 
any case of contouring of the hippocampus, it is neces-
sary to fuse locational computed tomography images 
with a current T2-weighted MRI brain examination 
at a scan density of min. every 1.5 mm [1]. The atlas 
created by the RTOG group is an assistance in the pro-
cess of contouring the hippocampus during brain RT 
planning [29]. The necessity of training in contouring 
is emphasised, which allows practice of the technique 
of contouring of the most important area within the 
hippocampus: the dentate gyrus [30]. It was shown that 
without “contouring learning” of this structure there are 
large discrepancies in the exact location of this region 
between radiotherapists, and hence inconsequence in 
planning the brain RT and suboptimal results of treat-
ment. The biggest discrepancies during manual contour-
ing of the hippocampus occur in the area of the horn of 
the anterior lateral ventricle, while the smallest are in 
the area of the brain stem [31].

Automatic contouring of the hippocampus 

Automatic methods of brain segmentation are usu-
ally based on MRI images obtained on 1.5 T, 3 T, and 
even 7 T cameras, for better imaging and contrast of 
individual structures [32]. The first group includes pro-
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grams based on atlases, i.e. Atlas-Based Segmentation, 
Multi-Atlas-Based Methods [33, 34]. The second group 
of methods are modern computer programs analysing 
voxels, such as the Auto-Context Model (ACM) [35]. 
The automatic program for contouring the hippocampus 
during RT planning has advantages and disadvantag-
es. The advantages undoubtedly include the minimum 
contribution of the “radiotherapist’s hand” and the ac-
curacy of contouring on MRI images. However, it should 
be remembered that such contouring should always 
be verified and approved by a radiotherapist, which is 
connected with the requirement of his/her knowledge 
not only of the radiological anatomy of the brain, but 
also of the influence of various pathologies on its mor-
phology [36, 37]. Automatic atlases for contouring of 
structures are becoming more common; however, most 
radiotherapy departments still do not have such software 
that is optimally integrated with the RT planning system. 
Importantly, this is also associated with the additional 
costs of purchasing such software. 

It is worth noting that the brain often has various pa-
thologies that disturb the anatomy of its structures, such 
as microcalcifications, the number of which increases 
with age, states after strokes, seizures, after brain infec-
tions or Alzheimer’s disease [38–40]. In such cases, the 
automatically contoured structures of the hippocampus 
may turn out to be incorrect. 

Clinical situations in which 
hippocampal protection should be 
considered during RT planning

In clinical practice, an appropriate group of patients 
should be selected in which there is a need for avoiding 
of the hippocampus during brain RT planning. The 
above procedure is a technical challenge regarding 
application of highly specialised RT techniques. It can 
be considered for patients with primary cerebral tu-
mours, where the use of intensity-modulated radiation 
therapy (IMRT) allows us to reduce the dose within the 
hippocampus by 56.8% in relation to the classical 3D 
technique, i.e. from 36.6 Gy to approx. 15 Gy in the case 
of irradiation of part of the brain in the aforementioned 
group of patients [41]. In certain clinical situations, i.e. 
in the presence of an extensive oedema or central tu-
mour location, especially around the brain stem, many 
authors suggest shielding only one hippocampus — on 
the opposite side of the tumour site [20, 42, 43]. It is 
worth adding that in children primary brain tumours 
are diagnosed much more frequently than in adults, and 
the procedure of hippocampal protection in these cases 
has a special clinical value during RT planning [44, 45].

Patients with SCLC represent another population. 
Elective brain radiotherapy — PCI with hippocampal 

sparing may be considered in patients with radical ra-
dio-chemotherapy or in patients undergoing palliative 
chemotherapy, who have achieved a clinical response 
within the chest after this treatment with no disease 
progression [46, 47]. The most frequently recommended 
PCI regimen is whole brain irradiation to a total dose 
of 25 Gy in 10 fractions of 2.5 Gy [48]. It has also been 
demonstrated that PCI may contribute to the impair-
ment of cognitive functions as a result of post-radiation 
depopulation of NSCs within the hippocampus [49, 50]. 
Research results indicate that the use of a cover of both 
hippocampi could reduce or even prevent cognitive 
complications after PCI [49, 51].

Patients with secondary brain tumours (BM) consti-
tute the most controversial group in terms of application 
of hippocampal protection procedure, due to the short-
est expected overall survival, and therefore a relatively 
short time of expected potential benefit. On the other 
hand, the majority of research on the hippocampus pro-
tection procedure during cerebral irradiation concerns 
patients with BM. Unfortunately, the current results of 
the study do not allow us to clearly define the eligibi
lity criteria for the hippocampus protection procedure 
during brain RT in the above group of patients [52–54]. 

There is a need to select specific criteria for the 
qualification of patients for hippocampus protection 
procedure during brain RT and to develop practical rec-
ommendations during this procedure within brain RT.

“Protective” doses of ionising radiation 
in the area of the hippocampus

In current research it has been shown that even 
small doses of ionising radiation cause radiation-induced 
inflammation of the areas of neurogenesis within the hip-
pocampus [6, 7]. In the phase II RTOG 0933 study a dose of 
ionising radiation was initially proposed that should not be 
exceeded in the hippocampal area during PCI and WBRT 
planning (Table 1) [54]. The above recommendations may 
prevent deterioration in terms of memory, especially short-
term memory and verbal memory, or the reproduction of 
freshly-stored information after application of RT to the 
cerebral region [58]. The proposed doses refer to conven-
tional radiotherapy in which the fractional dose oscillates 
between 2 and 3 Gy. The problem arises in the case of 
hypofractionated RT and in particular stereotactic RT, 
although there are newer reports of “protective” doses in 
the hippocampus region in such cases [59, 60]. 

Summary

Brain radiotherapy is a recognised method of on-
cological treatment in patients with primary and meta-
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Table 1. Ionising radiation doses (Gray — Gy) recommended for hippocampal sparing brain irradiation (WBRT, PCI) 
procedure, according to the RTOG 0933 study compared to other authors. The ranges of standards are given in brackets

RTOG 0933 
[54, 58]

Gondi et al. 
[55]

Nevelsky et al. 
[53]

Wang et al. 
[37]

Krayenbuehl 
et al. [56]

Zhao et al. 
[57]

PTV D98% (Gy) ≥ 25 25.7  
(25.4–25.9)

25.8  
(25.0–27.1)

≥ 25*

PTV V95% (%) 96.9  
(96.1–97.5)

96.9  
(96.0–97.5)

96.4  
(95.2–97.8)

PTV D2 (Gy) ≤ 37.5 37.2 
(36.9–37.6)

35.1  
(34.8–35.6)

33.5  
(32.8–34.6)

PTV V30Gy (%) = 90 92.1 
(90.5–93.2)

92 (92.0–92.0) < 23.75

Hippocampus D100% (Gy) ≤ 9 8.4 (7.7–8.9) 9.3 (8.3–10.0) 8.1 (7.8–8.5) ≤ 9

Hippocampus Dmean (Gy) 7.3 (7.2–7.6) 7.3 (6.0–7.9)

Hippocampus Dmax (Gy) ≤ 16 15.3 
(14.3–15.9)

14.3  
(13.5–15.4)

16 (14.6–16.9) 14.1  
(12.0–15.3)

≤ 16

Lens Dmax (Gy) 3.8 (3.1–4.3) 5.8 (4.5–6.5) 4.6 (3.7–5.6)

Crossing of the optic nerves 
(optic chiasm) Dmax (Gy)

≤ 37.5 36.2  
(33.9–37.2)

34.7  
(33.1–36.8)

32.9  
(31.7–35.1)

Optic nerve Dmax (Gy) ≤ 37.5 32.5  
(28.3–35.7)

32.0  
(23.7–36.1)

33.1  
(32.5–33.8)

*PCI-PTV — planning target volume with 3 mm margin excluding the hippocampal region (hippocampus expanded by 5 mm); PCI — prophylactic cranial 
irradiation; WBRT — whole brain radiation therapy; PTV — planning target volume; Dmax — maximal point dose; Dmin — minimal point dose; Dmean — mean 
point dose; D100% — dose to 100% of the volume; D98% — dose to 98% of the volume; V95% — volume covered by 95% of the prescribed dose;  
D2% — dose to 2% of the volume; V30Gy — volume covered by 30% of the prescribed dose

static cerebral lesions, although cognitive impairment 
appearing after this treatment may contribute to the 
deterioration of patients’ quality of life. Occurrence of 
these complications is associated with post-radiation 
damage to the hippocampus, a structure particularly 
sensitive to ionising radiation, and especially the NSCs 
within it. Cognitive deficits mainly concern problems 
with memorising and reproducing information, and 
problems with short-term, delayed, and verbal memory. 
Application of the hippocampus protection procedure 
during brain RT may significantly reduce or even pre-
vent the above complications.

Modern RT techniques provide the ability to 
protect the hippocampus during brain RT, although 
there is a need for further research to establish clinical 
indications, qualify the appropriate group of patients, 
and develop technical recommendations for the imple-
mentation of this procedure, which could translate into 
clinical benefits and improve the quality of radiotherapy 
(quality assurance).
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