Angiosarcoma — a malignant neoplasm secondary to radiotherapy for breast cancer in a female patient following breast-conserving treatment — a case report

ABSTRACT

Angiosarcoma is a rare malignant neoplasm, accounting for 1–2% of all sarcomas. The main cause of developing secondary angiosarcoma is radiotherapy. We analysed the case of a 52-year-old woman with breast cancer, who had undergone breast-conserving therapy. Four years after finishing treatment, she was diagnosed with secondary angiosarcoma in the irradiated area. The patient underwent a mastectomy. The disease relapsed six months after the operation in form of local recurrence, as well as liver and lung metastases. The patient’s condition gradually deteriorated despite treatment (chemotherapy and symptomatic management). The patient died due to cardiorespiratory failure nine months after the diagnosis of secondary malignancy.

Key words: angiosarcoma, breast cancer, chemotherapy, secondary malignant neoplasm, radiotherapy

Introduction

The incidence of sarcomas in Poland is estimated at 2/100,000 per year; 1–2% of them are angiosarcomas (AS) [1, 2], which are soft tissue sarcomas stemming from the endothelial cells of blood or lymphatic vessels [3]. The most common locations of this tumour are the head, breast, and the limbs [4]. These neoplasms may occur as primary tumours, with no influence of external factors, or as secondary tumours — usually following radiotherapy (RT). The latter constitute about 0.5–5% of all sarcomas [5, 6]. Although the secondary AS of the breast is very rare and constitutes about 0.9 per 1000 cases of malignant neoplasms of the breast, they are an important clinical issue because they are characterised by a poor prognosis. It is estimated that their number will grow due to the higher incidence of breast cancer and the use of RT in breast-conserving treatment [7–9].

Below, we present the case of a 52-year-old female breast cancer patient who had previously undergone breast-conserving therapy with a radical goal. Four years after finishing the above treatment, an AS with a high grade of malignancy was diagnosed in the RT area.

Case report

A 47-year-old woman came in for mammography (MMG) in November 2012, which showed a lesion of increased density with malignant characteristics (BI-RADS 5), about 19 mm in size, in the upper exterior quadrant of the left breast, within 2 cm of the areola.
In an ultrasonographically (USG) controlled fine-needle biopsy of the above-mentioned lesion, the presence of malignant cells was confirmed. In the same month, the patient underwent breast-conserving surgery (excision of the upper external quadrant along with the sentinel lymph node). In a surgical pathology test, metastases to the sentinel lymph node were detected, and a decision was made to excise the remaining axillary lymph nodes. The lesion was excised completely — macroscopically as well as microscopically. In a post-operative pathology examination, the presence of invasive grade 2 (G2) ductal carcinoma (Figure 1A) was detected, with estrogen receptor (ER) expression in 80% of the tumour cells, and progesterone receptor (PR) expression in 90% of the cells, but no human epidermal growth factor receptor 2 (HER2) expression was found and Ki-67 cell proliferation marker was present in 5% of the tumour cells. Distally, focal lesions of ductal carcinoma in situ (DCIS) were present. Metastases to one of the eight excised lymph nodes were detected. The clinical stage of the disease was marked as pT2N1M0.

The patient received four cycles of adjuvant chemotherapy (AC regimen — doxorubicin and cyclophosphamide) from January 2013 until March 2013, with subsequent adjuvant hormonal therapy with tamoxifen at a daily dose of 20 mg (beginning in March 2013). From April 2013 until June 2013, the patient was treated with postoperative radiotherapy for the area of the right breast, in radiation conditions of × 4MV, × 6MV up to a total dose of 50 Gy/2 Gy/in 25 fractions. For the post-operative area, the total dose was raised to 66 Gy/2 Gy/in 33 fractions. During radiotherapy, an acute cutaneous post-radiation reaction occurred with a G2 intensity in the RTOG scale, which healed after a month’s time.

In August of 2013, after the acute reaction had healed, redness and swelling of the skin of the right breast appeared again, and remained throughout the time during which routine examinations were conducted. On imaging — MMG and USG — performed outside of our hospital, no evidence of recurrent disease was detected. In July 2017, four years after completing radiotherapy, a cyanotic lesion on the skin of the right breast appeared, along with a small ulceration in the proximity of the nipple. Antibiotics and anti-coagulants were prescribed. Due to the continuing presence of the above-mentioned lesions, in December of 2017 samples were taken from the ulcerated lesion near the nipple (Figure 2A). Pathology examination revealed AS — a malignant neoplasm secondary to radiotherapy (Figure 1B). Computed tomography (CT) scans showed no evidence of distal metastases. The patient underwent mastectomy in January 2018. In July 2018, on imaging done outside of our hospital, metastases to the lungs and liver were shown. On examination upon hospital admission, traits of local recurrence were observed in the form of lumps in the scar from the right-side mastectomy. In August 2018, half a year after the surgery, the patient underwent palliative chemotherapy (ADIC regimen — doxorubicin and dacarbazine). After the first cycle of this treatment, laboratory testing showed anaemia and G3 neutropaenia. Treatment with granulocyte growth factor was applied, along with symptomatic treatment, and the patient’s condition improved. Within the same month, due to increasing dyspnea and recurring fluid in the pleural cavity (after draining the right pleural cavity twice), and clinical recurrence, a control CT scan was performed. The test showed local recurrence, metastases to the lungs and liver, a significant amount of fluid in the pleural cavity, and fungal lesions in the lungs (Figure 2B, C, D). In order to lessen the symptoms, talc pleurodesis was performed. In September 2018, in an angio-CT scan of the thorax, a sub-segmental pulmonary embolism was detected, along with progression of local infiltration and
enlargement of fungal lesions in the lungs. The patient was given anti-fungal treatment and the best possible symptomatic treatment. Despite treatment, the patient’s state gradually worsened, and in September 2018 she died due to cardiorespiratory insufficiency.

Discussion

Angiosarcomas are very rare tumours, characterised by a high level of malignancy [10]. Factors predisposing towards the development of AS are: previous radiotherapy, exposure to polyvinyl chloride, arsenic, and thorium dioxide, chronic swelling (described as Steward-Trewes syndrome in related literature), and probably exposure to UV radiation (especially cutaneous sarcomas of the head) [4, 10–16]. No co-occurrence with genetic syndromes has been proven, although 3% of patients with AS are diagnosed with Ollier’s disease, Maffucci disease, von Recklinghausen syndrome, retinoblastoma, or xeroderma pigmentosum [4, 13, 17–19].

In a retrospective study, Kirova YM et al. [20] showed that of 13,472 patients who underwent radiotherapy due to early breast cancer, 35 developed sarcomas (48% — 12 patients had breast AS and 1 patient was found to have AS of thoracic region). The cumulated risk of RT-induced sarcoma has been calculated to be 0.27% after 10 years, and 0.48% 15 years after treatment with radiation. The standardised incidence ratio (SIR) for sarcomas in patients with breast cancer, who previously underwent radiation therapy, has been calculated at 10.2; however, in women who did not receive RT, the SIR amounts to 1.3. Yap et al. [7] also observed an increase in sarcoma incidence in the area submitted to radiation. Among them, AS amounted to 56.8% of cases. However, in those who did not undergo RT, only

Figure 2. Angiosarcoma in a 53-year-old female patient, 4 years after completion of radical treatment of breast cancer (breast-conserving surgery, radiotherapy, chemotherapy). Computed tomography following contrast administration (venous phase). A. Tumour of right nipple-surrounding area (white arrow). Testing conducted previous to treatment (January 2018). B. Cystic metastases of angiosarcoma to the liver (white arrow), Testing conducted after chemotherapy (August 2018). C. Cystic metastases to the lungs (white arrow) and free flood in the pleural cavity (black arrow). Test conducted after chemotherapy (August 2018). D. Fungal cavities in the right lung (black arrow) — lung window. Testing conducted after chemotherapy (September 2018)
5.7% developed this malignancy. In a study by Huang et al. [21], an increased incidence of soft-tissue sarcomas was also confirmed (especially AS), in patients who had undergone RT due to breast cancer. The standardised incidence factor in the case of AS secondary to RT has been estimated at 26.2, and 2.1 in women who were not treated with RT.

It is thought that the highest incidence of radiation-induced AS is in patients undergoing treatment for breast cancer of lymphoma [7, 21, 22]. The latency period from completion of RT to the development of breast AS varies from 3 to 25 years [15, 23–26]. The pathological mechanism of RT’s influence on the development of AS is not fully known yet. It suggests that radiation dosages above 50 Gy cause cellular apoptosis, and doses below 50 Gy cause DNA damage and instability. Sarcomas often occur on the area surrounding the irradiated body part, where doses may vary [23, 24]. Attempts at modifying the radiation dosage, volume of the body space being irradiated, and the total RT time in breast cancer patients are being made in order to lower the risk of recurrent disease, as well as the occurrence of late-onset radiation complications [27–29].

A primary breast AS usually occurs in women aged 30–50 years as a lump of the breast, whereas the secondary AS usually develops in women aged over 60 years as a cutaneous lesion (a blue-cherry colour lump, swelling, erythematous patches) [15, 16, 26].

On imaging (USG, MMG), sarcomas of the breast give nonspecific symptoms — usually a thickening and swelling of the skin, similar to the lesions present in most women who undergo breast-conserving therapy and supplementary radiotherapy. This causes a delay in diagnosis and treatment. In the case of suspicion of a breast AS, the best imaging test is MRI [9, 30, 31]. The final diagnosis of AS is made based on the results of pathological testing [32, 33].

The tumours being discussed — besides a high rate of local recurrences — are characterised by a relatively high rate of distal metastases and are associated with poor prognosis. The most important prognostic factors related to poor outcomes are: the diameter of the tumour, the depth of infiltration, positive surgical margins, the presence of metastases, or local recurrence after surgical resection [23, 34, 35]. The most common sites of distal metastases are the lungs [16, 36], but liver, cecum, tonsillar, cheek, oral cavity, and heart metastases are also documented. [37–40].

The only chance of cure in patients with secondary AS is when R0 margins are achieved during surgery [41, 42]. In a case series of 14 patients observed for 12 years, a non-radical resection of the tumour was associated with rapid local recurrence and poor prognosis. The average survival time of patients who had undergone extensive surgery amounted to 42 months, when compared to six months in people who did not achieve R0 margins [24]. However, in a study by Seinen et al. [23], in 14 out of 24 patients who underwent a mastectomy, a surgical margin free of malignancy was achieved, when compared to two out of seven patients who underwent a tumour resection with a macroscopic margin equal to or greater than 2 cm. Only 3 women underwent an extensive resection of the area subjected to radiation, and in 2 of these patients the surgical margin was free of tumour cells. Despite achieving R0 margins in these patients, in about 2/3 of these patients local recurrence took place, and the median survival specific to the disease was 37 months.

In the case of AS, RT may be considered, although most radiation oncologists are not very willing to apply it to an area which was previously irradiated. Some authors claim that hyper-fractioned adjuvant RT after surgery may be a promising method of secondary AS treatment. [43–45].

So far, there has been a lack of unequivocal data regarding adjuvant chemotherapy in this indication [4, 17, 46, 47]. The most effective agents are doxorubicin and ifosfamide [48]. Some studies have proven that simultaneous treatment with neoadjuvant chemotherapy and hyperthermia in patients with poor prognostic soft tissue sarcoma results in better survival [49].

Currently, the greatest hope in treating sarcoma patients is based on the molecular biology evolution. Bevacizumab, sorafenib, and pazopanib were studied among other agents [50, 51]. A varied response to treatment with sorafenib and bevacizumab was found [51–53]. In the case of pazopanib, an improvement in progression-free survival was found; however, the effectiveness of the drug may be limited due to the sarcoma’s acquisition of immunity to a given therapy [54, 55]. Anti-angiogenic treatment may play a role in some soft tissue therapy, which is why further research is necessary for the planning of effective therapeutic regimens [51, 52].

In conclusion, malignant neoplasm secondary to RT — an AS with a high level of malignancy — developed just four years after irradiation. The disease course was aggressive — just a month after surgical resection due to AS, local recurrence appeared, along with metastases to the lungs and liver. The patient survived only nine months after receiving the diagnosis. Studies aimed at identifying factors that amplify the risk of acquiring AS secondarily to RT are needed. Awareness regarding late-onset complications of RT, such as secondary neoplasms, should be raised among doctors who are responsible for patient observation, in order for the earliest possible detection to take place.
References


