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Critical appraisal of clinical trials  
in oncology — part I

ABSTRACT
The main concept of evidence-based medicine is that all therapeutic decisions should be based on results from 

relevant, credible, and up-to-date clinical trials. Availability of a publication presenting a description of a clinical trial 

conducted with reliable methods and its high-quality results seems to be an ideal situation from the practitioner’s 

point of view. However, reading only the abstract or just the author’s conclusions may not always be sufficient 

to make the right clinical decision. For this purpose, several aspects of the clinical trial should be put under as-

sessment, namely the methodology, its quality, internal and external credibility, clinical and statistical significance, 

as well as consistency of the results. The ability to perform the proper assessment of clinical trials may prove 

to be very helpful for practicing oncologists, especially in the case of new, emerging therapies, specific clinical 

situations, or when salvage treatment is necessary. It is also worth emphasising that the outcome assessment 

in oncology trials is specific, mainly due to the role of the survival analysis, which is relatively difficult to interpret. 

In this paper we tried to present in a clear and intelligible way the theoretical basis and subsequent steps in the 

critical appraisal of methods and results of clinical trials in oncology.
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Introduction

Decisions regarding the choice of treatment are 
made based on correctly performed and reliable clinical 
trials. The results of clinical trials are used to develop 
the current guidelines for clinical practice in accord-
ance with the principles of evidence-based medicine 
(EBM). To assess whether the conclusions from the 
study are appropriate, first of all it should be critically 
analysed for internal credibility. In order to do this, it 
should be assessed whether the study has been carried 
out correctly (an appropriate methodology ensuring 
reliable and undistorted inference and proper statistical 
analysis) and whether there is internal consistency of 
conclusions in a range of individual endpoints. External 
consistency assessment can be also helpful, determining 
whether a similar effect was observed in other clinical 
trials. Then an assessment of external credibility should 

be made, to find out whether the results of a clinical trial 
recognized as internally reliable can be extrapolated 
to the population subjected to treatment under real 
clinical practice, and whether similar clinical effects 
could be expected in these circumstances (patients’ 
characteristics, additional medical procedures, appro-
priate comparator, compliance of study participants). 
Finally, clinical significance of the results should be 
assessed to answer the question of whether the magni-
tude of the observed effect indicates significant clinical 
benefit (taking into account the prognosis in a given 
patient population) and whether it really should lead 
to a change in clinical practice [1].

The individual elements of critical appraisal of 
clinical trials are discussed below. In addition, taking 
into account the specifics of clinical trials in oncology, 
the analysis of “time to event” endpoints is presented 
in more detail.
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Clinical trial methodology

Correctly designed and conducted, blinded, ran-
domised clinical trials (RCTs) provide evidence with the 
highest level of credibility [2]. These are experimental 
tests that assess at least two therapeutic interventions, 
and their use in patients is strictly controlled according to 
a previously developed study protocol. In oncology these 
studies usually have the character of trials with parallel 
groups. In some populations of oncological patients it 
is difficult to carry out a randomised trial, which may 
be due to the low prevalence of some cancers or small 
numbers of patients in specific clinical stages or treat-
ment lines. It these cases it is necessary to conduct the 
study without a control group (single-arm). However, 
the methodological quality of such studies is initially 
lower than that of randomised trials. The same applies 
to cohort studies, which include a control group, but, 
due to the lack of randomisation, the non-random dis-
tribution of disturbing factors is a burden, and inference 
about the observed differences in the effectiveness of 
therapy is limited [1].

Randomisation

Randomisation (random allocation of patients to 
respective groups) is used to obtain as similar as possible 
or almost identical baseline clinical and demographic 
characteristics of patients, which, with an appropriately 
large population, ensures balanced distribution of all po-
tential, as well as unknown, confounding factors. There-
fore, the randomisation procedure cannot be carried out 
on the basis of simple assumptions, such as a medical 
history number or date of birth, because it allows the pre-
diction of which group a patient will be allocated (this is 
called pseudorandomisation). Randomisation methods 
providing full randomness, i.e. unpredictability, include 
those in which the lists of random numbers are created 
with use of a computer or special tables (such a method 
is called simple randomisation). In the case of a small 
target number of patients (sample size) in the study the 
probability of unbalanced number and distribution of 
patients’ characteristics in individual groups is higher; 
in this case more complex randomisation methods can 
be used. Examples of these include: block randomisa-
tion (patients are assigned to individual interventions in 
blocks, or groups with a specific sequence of subsequent 
patients allocation), stratified randomisation (independ-
ent stratification in any previously defined layer, such 
as country origin, gender, or type of previously used 
treatment, especially when differences in the effective-
ness of assessed intervention between these subgroups 
are expected), or adaptive randomisation (in which the 
probability of allocation to a given group changes during 
the study, allowing the control of distribution of indi-
vidual features in particular groups) [3]. In some studies 

unequal distribution to the studied groups is used, e.g. in 
a 2:1 ratio, which may increase the amount of informa-
tion about a new therapy, especially regarding safety as 
well as recruitment capacity (patients are more willing 
to participate in the study due to a greater chance of 
receiving experimental therapy), but it adversely affects 
the statistical power and requires a higher sample size 
compared to allocation with a 1:1 ratio [3].

Allocation concealment and blinding

With random assignment of patients to study arms 
the process of allocation concealment is very impor-
tant, to prevent access to information about the group 
to which the patient was assigned — which is possible 
with use of central randomisation, performed regard-
less of the individuals participating in the study. Ad-
ditionally, allocation concealment allows elimination 
of influence of the researcher on patient assignment 
to particular groups, thereby reducing the risk of selec-
tion bias. The second step that ensures greater cred-
ibility is the introduction of blinding; therefore, the 
patient (single-blinded) or the patient and investigator 
(double-blinded) or patient, investigator, and team 
analysing the results (triple-blinded) are not aware of 
which intervention is received by each patient. It pro-
vides higher credibility of the study due to elimination 
of some confounders — a terminally ill patient, who 
knows that he/she was assigned to a placebo group 
instead of an active intervention group, may present 
much worse results than a patient who is unaware of the 
study assignment [4, 5]. In the case of medicines blind-
ing is ensured through their preparation in the same 
form (e.g. in visually identical vials), and for different 
routes of administration or collation of different treat-
ment methods an additional important role is played by 
proper masking (dummy) of intervention, e.g. simulta-
neous administration of two interventions that differ 
by administration routes, but in each study arm a dif-
ferent intervention is replaced with a placebo. In some 
cases, e.g. different medical procedures it is difficult to 
ensure blinding or it is associated with high burden to 
the patients. It should be remembered that the lack of 
blinding significantly affects primarily the evaluation 
of the subjective endpoints, independently assessed by 
patients (PRO, patient-reported outcome; e.g. scoring 
of symptom severity, quality of life) or safety analysis, 
but does not disturb unambiguously objective endpoints, 
such as death (and hence survival outcomes) [3]. During 
endpoint evaluation with use of pathological or imag-
ing examination, or standardised criteria (e.g. RECIST 
— Response Evaluation Criteria in Solid Tumours) the 
risk of systematic error is ambiguous. On the other side, 
in oncology studies, despite the blinding of imaging 
tests assessing a progression (response to treatment), 
they are centrally confirmed by an independent and 
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blinded committee. However, there is a risk, especially in 
placebo-controlled trial with crossover after disease pro-
gression, that a lack of blinding will result in performing 
imaging examinations faster than planned, even upon 
mild symptoms. There are also clinical trials in which 
blinding of all researchers or patients is not required, 
but instead analysts evaluate the endpoints — these are 
referred to as PROBE (prospective, randomised, open, 
blinded-endpoint evaluation).

Evaluation of study quality

The simplest assessment of study credibility is pos-
sible with the use of the Jadad five-point scale [6]. It 
assesses whether the study was described as randomised, 
whether double blinding was used, and provides infor-
mation on how many patients discontinued the study 
and for what reasons. Additional points can be granted 
or deducted depending on whether randomisation and 
blinding were or were not performed correctly. However, 
this scale allows only for very general assessment of study 
quality and does not take into account other factors that 
could result in systematic error (bias). A more compre-
hensive method is use of the Cochrane Collaboration 
recommendations [7], according to which the following 
aspects are assessed:

—— selection bias — whether the correct method of 
randomisation and allocation concealment was used;

—— blinding of patients and medical staff (perfor-
mance bias);

—— blinding of assessment of results (detection bias) 
— whether investigators were blinded or whether 
the authors of the publication justified that the lack 
of such blinding does not affect the assessment of 
a given endpoint; in the case of assessment of end-
points with different susceptibility to bias resulting 
from the lack of blinding, it is necessary to carry out 
the evaluation for each of them separately;

—— incompleteness of results and loss of patients from 
the study (attrition bias) — the low risk of this type of 
error is when the data lost does not interfere with the 
assessment of endpoints, investigators have applied 
the right method of imputation of missing data (e.g. 
LOCF [last observation carried forward], in which 
for patients lost from observation, the individual 
values of assessed endpoints recorded during the last 
control visit are imputed for each subsequent time 
point until the end of the study), and the percentage 
of patients excluded is not different between the 
groups; in practice, it is assumed that if more than 
10% of patients have been lost from the study, the 
risk of systematic error resulting from data incom-
pleteness is high, unless the frequency of individual 
causes of exclusion is similar and the percentage of 
patients lost to follow-up is small;

—— selective presentation of results (reporting bias) 
— whether the study protocol is available, and 
the publication presents the results for all prede-
fined endpoints;

—— other factors (other bias) — whether no other po-
tential sources of reduced reliability of presented 
results were found (such as incorrect study design 
or the allegation of dishonesty).
It is worth noting that currently multicentre trials are 

preferred with appropriate representation of different 
geographical regions [8], although they are associated 
with the risks of lowering the standardisation of the 
interventions used as well as the results [1].

Defining the studied population

The target study population should be described in 
details and defined based on inclusion criteria. They 
are analysed to conduct an external credibility assess-
ment, e.g. determining the characteristics of patients for 
whom the conclusions of the study may be generalised. 
Too narrow and detailed inclusion criteria may limit 
the possibilities of recruiting patients to the study and 
the possibility of generalisation of conclusions, but too 
general inclusion criteria can cause dispersion of the as-
sessed effect in subgroups with different characteristics, 
making it difficult to randomly distribute confounders 
and preventing subgroup analysis [3].

Defining the comparator

Another key element is the choice of a proper 
comparator (control group), which determines the pos-
sibility of further extrapolation of results on the target 
population and the study’s external reliability. The 
optimal and desirable comparator is the current clinical 
practice, consistent with widely accepted recommenda-
tions and guidelines [9]. However, placebo is often used 
in the control group. This is justified when new therapy 
is an add-on treatment to the current standard (then 
placebo is used only for blinding, and it's the current prac-
tice that is in fact the comparator) or when there is no 
other therapeutic option available in real-life conditions 
except symptomatic treatment, e.g. when the evaluated 
intervention is the very last treatment line. A compari-
son with placebo is usually aimed at demonstrating the 
superiority of the new treatment. The choice of an active 
intervention as a comparator always brings additional 
challenges, also in the context of sample size, but use 
of placebo would be simply unethical. In the case of 
comparison with active treatment, testing of the non-in-
feriority hypothesis may be considered [3]. The rationale 
for the selection of active intervention as a comparator 
should also be assessed in the context of changing clini-
cal recommendations, especially in the case of clinical 
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trials planned a few years before. In oncology, in view 
of diversified chemotherapy regimens and treatment 
methods, the investigator’s choice of therapy is often 
accepted as a comparator. In such a situation, it should 
be assessed which interventions were used in the com-
parator group and how they were distributed, especially 
when symptomatic treatment is an option, and whether 
they reflect clinical practice and possible extrapolation 
of conclusions (external credibility).

Defining the endpoints

Endpoints (outcomes) should be accurately defined 
in the study protocol, with the specification of primary 
(for which sample size and statistical power are esti-
mated) and additional/secondary endpoints. Evaluation 
of clinically relevant endpoints, such as overall survival 
(OS) and quality of life (general and aimed at evalua-
tion of symptoms associated with a given type of cancer) 
is also desirable. The possibilities to assess the impact 
of interventions on overall survival will depend on the 
type of cancer and its clinical stage. This analysis will 
undoubtedly be difficult in the case of assessment of 
early stages of therapy with curative intent (e.g. neo- 
and adjuvant treatment), when the expected further 
survival could last for decades, and additional effects 
of subsequent treatment lines, implemented after later 
recurrences or progression, will have an impact on the 
observed differences in survival. In such cases, surrogate 
endpoints may include disease-free survival (DFS), 
event-free survival (EFS), relapse-free survival (RFS), 
e.g. the time since the date of inclusion to the study to the 
date of occurrence the first documented clinical event 
or death (whichever occurs earlier), for therapies used 
in the early stages of cancer, or progression-free survival 
(PFS), e.g. the time from the date of randomisation 
until the date of progression or death, in the advanced 
stages. Clinical events included in PFS/DFS definition 
are observed earlier than death, therefore the observa-
tion period necessary to show a statistically significant 
difference between the interventions is usually shorter 
than for OS. Hence, the PFS assessment is preferred for 
example when high clinical needs exist (no other effec-
tive treatment available), because the registration of the 
drug in a given indication can be obtained much faster 
(even by several years) than if it would be necessary to 
wait for OS outcome. In addition, the observed differ-
ences in PFS are not affected by successive treatment 
lines and possible cross-over because further treatment 
is not usually introduced before disease progression. 
Progression-free survival is assessed in the majority of 
studies with the treatment of advanced cancer stages; 
nevertheless, it is considered as a surrogate endpoint. 
There are many publications assessing the correlation 
between PFS and OS regarding PFS usefulness as OS 

predictor, although so far the conclusions presented 
by many authors are ambiguous [10]. There are other 
commonly used endpoints such as objective response 
rate (ORR) based on imaging tests for solid tumours 
or haematological remission for haematological malig-
nancies together with the time of duration of response 
(DoR). As the alternative to PFS time to disease pro-
gression (TTP) is sometimes used. It differs from PFS in 
that, that it comprises only events of progression, while 
observation of patients who died before its occurrence 
are censored at the time of death. Related endpoints, 
although much less frequently used in the assessment of 
palliative care effectiveness, include time to treatment 
failure (TTF) and time to next treatment (TTNT).

Considering the diversity of evaluated endpoints, 
the internal coherence of presented results should be 
highlighted, i.e. demonstrating a significant impact of 
the studied intervention on ORR, PFS, and then on 
OS. However, the following should always be remem-
bered: the differentiation of studied populations in 
terms of type and stage of cancer, prognosis and time 
of expected survival, and even the type of intervention 
used, e.g. demonstration of the impact of immuno-
therapy on OS, in the absence of effects on PFS due to 
pseudoprogression [11]. Regarding studies in oncology, 
particular attention should be paid to safety assessment, 
including undesirable or fatal adverse reactions, which 
in turn should include toxicity specific to the interven-
tion. Finally, the benefit-risk ratio should be evaluated, 
taking into account the prognosis in a specific patient 
population [12, 13].

Information about planned statistical analysis

The scope and type of statistical analysis in a cor-
rectly performed clinical trial should be predefined as 
part of a previously accepted protocol, together with 
predefined matching factors and subgroup analysis.

The initial estimation of sample size (statistical 
power of the study) is one of the key elements of the 
statistical analysis. It allows assessment of whether the 
sample is large enough to confirm or exclude differ-
ences between interventions. The assessment of the 
sample size refers to the main (primary) endpoint (or 
endpoints). It requires the determination of the expected 
frequency of events in the control group, the magnitude 
of the intervention effect that the study is aimed to detect 
(an alternative hypothesis), the assumption of the ability 
to detect the real effect (statistical power of the study), 
and the selection of the statistical significance level. 
In oncological studies with a long observation period 
the expected discontinuation rate should also be taken 
into account. Because statistical power depends on the 
number of patients experiencing a given event during 
observation, in oncological studies it is often assumed 
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that patients will be observed until the occurrence of an 
expected number of events (e.g. deaths or deaths and 
disease progressions in evaluation of OS or PFS) [3].

In the statistical analysis the researchers may adopt 
different analytical approaches — the hypothesis of 
superiority is tested most often, especially in the early 
stages of clinical trials and in placebo-controlled tri-
als. The second approach is based on the assessment of 
whether the intervention is not inferior in terms of clini-
cal efficacy to currently used methods (non-inferiority), 
especially with a better safety profile. In this case, there 
is a need to establish a clinically acceptable variability 
of effectiveness in terms of primary endpoint, and if the 
appropriate confidence interval (CI) for the difference 
between interventions does not exceed the set level, 
the intervention is considered to be no worse than the 
control. The use of the non-inferiority approach reduces 
the required sample size [14, 15]. There are also studies 
assessing the equivalence of interventions, where accept-
able variability is assumed in both directions, but they 
are rarely used to assess clinical endpoints — laboratory 
parameters or pharmacokinetics are used instead. The 
population included in the analysis is also important 
— it may vary depending on the assessed endpoint. 
The ITT (intention-to-treat) population is included in 
the analysis of the results of all randomised patients, 
regardless of whether they received an assigned inter-
vention and regardless of how long they remained in the 
observation (this usually applies to the assessment of OS 
or PFS). Sometimes a modified ITT (mITT) population 
is defined, i.e. randomised patients who have received 
at least one dose of the study drug — a safety analysis 
is usually performed in this population. Population PP 
(per-protocol) refers to patients who additionally did not 
discontinue the treatment, did not violate the protocol, 
and for whom a complete set of information is avail-
able — it is often used to compare the effectiveness of 
interventions in non-inferiority trials [14]. ITT analysis 
is more conservative because it tends to underestimate 
the beneficial clinical effect, whereas PP analysis allows 
a comparison of therapeutic options in conditions of 
a complete observation. If the results obtained in ITT 
and PP analysis clearly differ, this may indicate reduced 
reliability of the study. The evaluation of objective 
response rate is often carried out in the population of 
patients for whom additional imaging results are avail-
able, i.e. there is a possibility to assess the progression.

Evaluation of results

The analysis of results of a clinical study begins with 
a detailed assessment of the description of the popula-
tion included and tables with baseline characteristics, 
which should include basic demographic data, disease 

severity, previous treatment, and other factors that may 
affect the effectiveness of the assessed therapy — their 
scope and type depend on the type of cancer and should 
also be adapted to disease severity. The analysis of these 
parameters can be used to assess the correctness of ran-
domisation and eliminate the influence of confounders 
(analysis of such a table can refer only to those known 
factors, but at the same time it could be assumed that 
random assignment to groups with appropriate sample 
sizes also ensures equal distribution of other, unknown 
prognostic factors). It is necessary to distinguish sub-
groups defined for randomisation with stratification and 
subgroups, within which predefined analysis or possible 
unplanned post-hoc analysis will be performed. This 
information is also helpful in determining the external 
validity of study results. It allows also the assessment 
of whether the analysed population is close to the one 
in which the evaluated intervention is to be applied [8].

Study outcomes in the form of categorical (nominal) 
variables are usually presented as numbers and percent-
ages, while continuous variables are usually presented by 
means of a measure of central tendency and dispersion 
— usually mean and standard deviation (SD) values, 
and in the case of variables that present the normal 
distribution, median and range, possibly interquartile 
range (IQR), are used (see below). In addition, some 
continuous variables can be transformed into ordinal 
variables (e.g. the percentage of patients above a given 
age). Referring to the previously mentioned assessment 
of the accuracy of randomisation, it should be checked 
that there are no significant differences in baseline 
characteristics between the groups — the authors should 
provide P-values in the table or declare no significant 
differences in the publication text [8].

The study should also include detailed informa-
tion (usually on the appropriate diagram) on patient 
flow from the screening period (i.e. from consent to 
participation in the study to inclusion) until a possible 
additional follow-up period. As was already mentioned, 
this is an important element of assessment of study reli-
ability — the size of the loss of patients from observation 
should be assessed, as well as how it can affect reliable 
analysis of results, and the occurrence of differences 
between groups.

The next step involves quantifying the differences 
between interventions, exposing the uncertainty of 
these estimates by means of confidence intervals, and 
evaluating the strength of evidence, i.e. confirming by 
means of P-value (statistical significance test) that the 
observed difference is true and not by chance [8, 16–18].

Because, for obvious reasons, it is not possible to test 
all patients in the considered clinical conditions, a sam-
ple should be selected (a group included into the clini-
cal trial), and, based on observed effects, conclusions 
should be drawn with some approximation about the 
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real overall effectiveness of treatment. In the language 
of statistics, it is said that, based on the selected meas-
ure of the effect determined in a random sample from 
this population, a parameter in the general population 
could be estimated, which in this approach comprises 
all possible results of the experiment.

At the beginning a research hypothesis should be 
precisely formulated and then tested with statistical 
methods for its acceptance or rejection. By default, 
it is assumed that evaluated interventions influence 
the health effect in a similar way (so-called null 
hypothesis), and the observed differences are a result 
of random variation derived from the limitations of 
the experiment (e.g. the group of patients being too 
small). An alternative hypothesis is that the observed 
differences are true and not just a random observa-
tion. The role of statistics is to indicate which of these 
hypotheses is more likely.

But how will we know that the groups do not differ 
from each other? It could be intuitively said that the 
lack of differences between these groups will be surely 
confirmed by the same percentage of patients with a re-
sponse in the intervention group as in the control group. 
However, if there are any differences, the probability is 
estimated — designated as a P-value — to obtain a dif-
ference in treatment at least as high as that observed (in 
both directions, i.e. in favour or not of the intervention 
being analysed) in a situation in which a null hypothesis 
were real. If the probability of the lack of differences 
between groups is below the statistical significance 
threshold of 5% adopted in the biomedical sciences 
(P < 0.05), it is assumed that these differences exist 
and are not the result of chance, so the null hypothesis 
is rejected with conclusions of significant differences 
between the groups. In other words, this means that 
the probability of obtaining at least such a difference 
as demonstrated is less than 0.05. Thus, the lower the 
P-value for a given estimate, the stronger the evidence 
against the hypothesis of the lack of differences and 
the greater the conviction about the effectiveness of 
the intervention. Obviously, the statistical significance 
of the result indicates only that the observed reliance 
is more likely than would result from a simple random 
case, but it does not mean that the observed effect is 
real. Critical appraisal should also take into account 
internal reliability and the influence of confounders 
related to study methodology and conduction (including 
randomisation, blinding, and loss of patients). In addi-
tion, it is important to distinguish the difference between 
statistical and clinical significance and to further assess 
the magnitude of the observed effect in the context of 
prognosis in a specific population.

The uncertainty of estimates can be assessed by 
analysing the 95% confidence interval (CI), assuming 
there is a 2.5% probability that the real effect is below 

and a 2.5% probability that it is above this range (such 
a confidence interval results from the assumption 
of P-value < 0.05). The accuracy of the estimation 
increases with the sample size: the larger the study, 
the more accurate the estimate and the narrower the 
confidence interval for the assessed parameter. With 
many repeated tests for effect measurement CI can 
be calculated in each of these tests, and 95% of them 
should contain a true value. The designated CI may 
also be used to assess the statistical significance of the 
result if the entire interval indicates a coherent effect, 
i.e. it does not contain a value indicating no differences 
(0 in the case of difference in continuous variables or 
probabilities and 1 when considering the hazard or pro
bability ratio in both groups). The intervals that exclude 
these values indicate significant differences between 
compared groups.

Usually, a statistical evaluation will assess the three 
types of variables in clinical studies: dichotomous (bina-
ry) (e.g. response to treatment/no response), continuous 
(e.g. average body weight), and time-to-event variables 
used in survival analysis (e.g. OS).

Evaluation of dichotomous variables

One of the most common types of variables is the 
number of patients in whom the assessed event occurred 
or not. Usually it is expressed in the form of numbers and 
percentages. It should always be remembered that this is 
the number of cases with the first event being assessed, 
which is not a problem if they are unique (e.g. death) 
or rare. However, if they can be repeated many times, 
such as febrile neutropaenia, assessment of the overall 
number of events can be more informative, preferably 
calculated per observation period (incidence rate per 
patient-year). The number of events can therefore be 
analysed as a continuous or dichotomous variable.

Let us assume that patients in the study were 
randomly assigned to two groups of 100 patients, one 
receiving the active drug and the other placebo. After 
a year of observation, a clinical response was observed 
in 80 patients in the group with active treatment (80%) 
and only 40 (40%) patients in the control group. The 
authors of this illustrative publication presented four 
parameters, reflecting the differences between both 
groups in the frequency of response rate (it should be 
remembered that the event probability is 0.8 in the in-
tervention group and 0.4 in the control group):

—— RB = 2.00 (95% CI: 1.54–2.59); P < 0.0001;
—— OR = 6.00 (95% CI: 3.19–11.29); P < 0.0001;
—— RD = 0.40 (95% CI: 0.28–0.52); P < 0.0001;
—— NNT = 3 (95% CI: 2–4).
The question is how many times the probability (risk) 

of a given event is higher in the intervention group com-
pared to the control group; the answer is then a relative 
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parameter that in the case of a negative event is called 
relative risk (RR), while in case of a positive event it 
is called relative benefit (RB). If the frequencies of 
events (probabilities of their occurrence) are the same 
in both groups, their ratio will be 1 — this is therefore 
a neutral value, indicating lack of differences between 
interventions. Values greater than 1 indicate an increase 
in the probability in the intervention group, while less 
than 1 — the probability being lower. In the presented 
example the RB value is 2, so the probability of response 
is two times higher after using the study drug than with 
the placebo. It is also shown that the confidence interval 
constructed for this value ranges from 1.54 to 2.59 and 
does not contain the value 1, so it could be concluded 
that the differences are statistically significant, which is 
also confirmed by the quoted P-value (< 0.0001).

Instead of probability, the so-called chance of occur-
rence of a given event in each group can be calculated. 
Odds are defined as the ratio of the number of patients 
in whom the event was observed to the number of pa-
tients without such an event and hence determines how 
many times an event could be more frequently observed 
than could not. In the presented example, 80 patients 
responded in the intervention group and 20 did not, so 
the odds is 80/20 = 4 (it could be said that the chance of 
a response in this group is like 4 to 1). On the other side, 
in the control group, the chance of obtaining a response 
was much lower and amounted to 40/60 = 0.67. Then, 
by analogy with the relative benefit, the ratio of these 
odds values in the analysed groups could be calculated. 
Such a parameter is called the odds ratio (OR), and in 
the presented case it was shown that the chance of get-
ting a response was six times higher in the intervention 
group than in the control group, which was statistically 
significant, as shown by the P-value and confidence 
interval not containing a neutral value of 1. Although 
the RR/RB values are more intuitive in interpreta-
tion, the publications often present calculation results 
in the form of ORs, which are a natural result of the 
statistical methods commonly used in the assessment 
of dichotomic endpoints (logistic regression, often also 
taking into account adjusting factors). It is worth noting 
that in the case of very high frequencies of any event 
in both compared arms, the OR calculation may have 
an advantage over RR, which in such situations will be 
close to 1 and will not accurately illustrate the actual 
difference between the groups.

In addition to the relative parameters presented 
above, absolute parameters can also be estimated, which 
are considered more informative, because they addition-
ally show the real frequency of events — whether they 
are extremely rare or occur in a significant percentage 
of the population. Risk difference (RD) or absolute 
risk reduction (ARR) — in the presented case it could 
be called absolute benefit increase (ABI) — is a simple 

difference between probabilities in particular groups. In 
the presented example this difference is 0.40, and it 
could be concluded that the probability increases by 
40 percentage points in the intervention group in rela-
tion to the control group. In practice, this means that for 
every 100 patients receiving intervention a response to 
treatment will be recorded in an additional 40 patients 
compared to the control treatment. In the presented 
example a confidence interval constructed for the 
calculated risk difference and P-value is also provided. 
Hence, the range (0.28–0.52) does not contain the value 
0, so it could be assumed that the observed differences 
between groups are statistically significant.

This relationship can be also reversed, and the ques-
tion could be asked, for how many treated patients one 
more event will occur. Such a parameter is called the 
number needed to treat (NNT) in respect of beneficial 
effect of treatment, and number needed to harm (NNH) 
when the event is unfavourable. The ratio shows that this 
number will be 1/0.40 (NNT = 1/RD), i.e. 2.5; because 
it refers to a number of patients, the result should be 
rounded up to the total number, so it shows that pro-
viding three patients with an intervention instead of 
control for a given time (year), one additional response 
could be expected [16–18]. Interpreting the results for 
dichotomous variables, in particular the values of ab-
solute parameters, the observation period for a given 
endpoint should be taken into account. For example, 
NNT obtained in studies of different duration may not 
be directly comparable because the NNT value may vary 
with the observation period.

Evaluation of continuous variables

In clinical trials, the parameters determining the 
severity of disease symptoms, laboratory tests, or quality 
of life on a certain scale are often assessed. In each of 
these situations, the obtained results have a continu-
ous nature, i.e. they take any value expressed in a real 
number from a given range. For example, patients may 
be asked to indicate their well-being on a scale from 0 to 
100, from the worst to the best. We also have continu-
ous results when measuring body mass, height, blood 
pressure, average white blood cell count, haemoglobin 
concentration, etc.

Such results for the studied groups of patients are 
usually summarised by presenting the central measure 
— mean or median value — as a reminder, the mean 
(arithmetic) is the sum of the results obtained for each 
patient in the group divided by the number of patients 
in this group, while the median is the middle value that 
divides a group of patients into half (i.e. half of the 
patients have a score below the median value and the 
other half, above). The set of results of a given effect 
expressed in a continuous variable is also characterised 



96

Oncology in clinical practice 2019, Vol. 15, No. 2

by a certain variability that can be represented graphi-
cally as a spread of observed values around the mean. 
The parameter indicating the magnitude of this variation 
is the standard deviation (SD) — lower values indicate 
a small spread of results around the mean, while higher 
values indicate a large variability and large differences 
between the results and the mean value.

As in the case of event frequency analysis, also in 
the analysis of continuous data, the overall effect is 
assessed based on a sample from the general popula-
tion. Because such sampling results in different mean 
values distributed around the mean value in this general 
population, an additional measure of this distribution 
can be introduced, precisely defining the distribution of 
the mean values from samples around the mean value 
in the general population; this parameter is called the 
standard error (SE) and is equal to the standard de-
viation in the sample divided by the square root of the 
sample size. Standard error decreases with increased 
sample size, and the lower its value, the better the ap-
proximation of the true value in the general population 
by the given sample.

If the study results are presented in the form of medi-
ans, the range in which the observed results are found is 
also usually given. As already mentioned, the “median” 
is a median value, i.e. which divides a series of data into 
two equal parts. However, we can determine several such 
“aliquots” of the data set, depending on the adopted 
criteria — in general they are called quantiles, and the 
median is a special case of such a quantile. The set can 
be also divided into four parts — then the “aliquots” 
are called quartiles (it is worth noting that the median 
is also the second quartile of the set), and in the case of 
dividing the set into 100 equal parts — percentiles (the 
median is the 50th percentile of the set). Sometimes the 
authors present median values along with the so-called 
interquartile range (IQR), i.e. the distance between the 
first and third quartiles.

The reasoning when assessing the statistical sig-
nificance of differences between groups for continuous 
variables is analogous to that carried out when describ-
ing the difference in the frequency of events in two 
groups — in general, average values of a given param-
eter should be determined in the analysed groups, and 
then their difference and the confidence intervals or 
P-value should be calculated. In case of variables with 
a normal distribution (also after the appropriate data 
transformation), Student’s t- or ANOVA test is usually 
used to assess the differences, and in other cases, one of 
the non-parametric tests is used, e.g. U Mann-Whitney. 
Because in patients with higher values of a given param-
eter major changes can be expected during the test, an 
analysis of covariance (ANCOVA) is also used, which 
compares the mean values adjusted with the baseline 
values. As in the case of the risk difference described 

earlier, statistical significance can be assessed based on 
confidence intervals, where “0” is a value indicating no 
differences between groups.

The parameter most often presented in the study 
is the mean difference (MD) between the analysed 
groups. Assessment of the results should be carried out 
carefully because the authors of the study can present 
them in several ways. For example, when assessing the 
quality of life, the average score can be determined at 
the end of the observation period in both groups, and 
then the difference in mean values between them can be 
calculated (it is important always to make sure that no 
significant differences in the measurements were initially 
observed). It is also possible to assess the mean score 
change during treatment with respect to the baseline 
and to calculate the mean differences for such changes 
— this approach is used more often because it allows 
assessment of the effect of treatment with matching in 
regard to an already existing effect.

In clinical trials the least square mean (LSM) is 
also commonly used; this is simply an average adjusted 
for additional factors. For example, in a given group of 
people the average age can be calculated by summing 
the years of life of each person and dividing this amount 
by the number of persons in the sample; a simple mean 
value is then obtained. However, if there are many older 
women in this group, it could lead to overestimation 
of the average — in this case, the average age can be 
calculated first among women, then among men, and 
only averaging the age value for both groups the aver-
age value in the whole cohort could be obtained, with 
matching for gender [16–18].

Evaluation of “time-to-event” variables — survival 
analysis

Analysis of time-to-event data (e.g. death from any 
cause in OS analysis, death or tumour progression in 
PFS analysis) is associated with several problems. In 
general, the survival analysis is performed because 
during a sufficiently long period of observation the 
clinical events (progression/death) will occur in all or 
almost all patients. In this case, estimation of a sim-
ple parameter like RR will be useless (probabilities 
of events will be close to 100% in both groups). Ad-
ditionally, in the long-term observation, apart from 
the cases marked as “with an event” or “without an 
event”, there will also be patients who will be lost to 
follow-up during the study, whose state will remain 
unknown, or at statistical analysis they are still in 
observation but their future status is hard to predict. 
Finally, taking into account the different recruitment 
periods and the dates of inclusion of patients in the 
study, the observation will include patients with dif-
ferent periods of study [18–22].
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The solution to these limitations is the survival 
analysis, considering not only the occurrence of an 
event, but also the time to its occurrence, and ena-
bling the cutting-off (censoring) of patients lost to 
follow-up or with unknown further fate at the time of 
data analysis. It should be noted that the term “survival 
analysis” is not reserved exclusively for the assessment 
of overall survival (i.e. time to death) but applies also 
to all time-to-event endpoints (e.g. time to response, 
progression-free survival).

The simplest form of survival analysis is plotting 
of the Kaplan-Meier curves, based on which the 
probabilities of survival to a given time point and the 
median survival could be assessed. Then, by means of 
an appropriate statistical test (usually a log-rank test), 
a comparative assessment of time differences to the 
occurrence of an event between groups takes place. 
More advanced analysis, allowing us to take into ac-
count the matching factors (independent explanatory) 
affecting the survival time, is carried out using regres-
sion models, most often the Cox proportional hazard 
model (it should be remembered that Kaplan-Meier 
curves, as well as median time-to-event are still not 
adjusted in this situation). In general, the analysis of 
the magnitude and direction of differences in survival is 
based on the assessment of hazard ratio (HR), median 
survival time (until an event), and survival probability 
at a specific time point (e.g. 12-month survival). The 
HR value summarises the relative differences in survival 
between groups over the entire observation period. The 
assessment of differences in survival, consisting only of 
a simple comparison of median survival time in groups, 
is not sufficient to depict differences in the horizon of 
the entire study and can be quite misleading, especially 
in the case of lack of hazard proportionality (this issue 
is discussed later in this article).

The Kaplan-Meier curve is drawn based on the 
results of the study for individual patients, e.g. whether 
and when death occurred. However, it should be remem-
bered that some patients “fall out” from the study for 
other reasons, and information about how long they live 
is lost. So, at the time of statistical analysis, it includes 
patients who live, patients who have died, and those who 
left the study some time ago and it is not known whether 
they are still alive, which is called censored observation.

The risk (hazard) determines the probability of an 
event occurring at a given time, assuming that the event 
has not occurred so far. The ratio of the hazard values 
estimated for the intervention and control group at 
a given time is called the hazard ratio (HR). Conceptu-
ally, in a simplified interpretation the HR is close to the 
RR, but it should be remembered that the HR includes 
data from the entire period of observation for survival 
in the study and censored cases, while the RR is car-
ried out at a predefined time point (e.g. deaths after 

12 months of treatment). Interpreting the HR value 
presented in the study, it is assumed that this ratio is 
approximately constant at any time point during the 
observation (assuming proportionality of hazards), i.e. 
if, for example, the HR value is 0.61, it is assumed that 
for patients in the intervention group the risk of death 
is approximately 39% lower than in the control group at 
each time point during the follow-up. This relationship 
can also be presented as the average prolongation of 
survival time by 64% (1/0.61 = 1.64) in the interven-
tion group compared to control [18–22]. It should be 
noted that HR values cannot easily be translated into 
absolute differences in survival time — for example, in 
a population with low mortality, a 30% reduction of the 
risk of death (i.e. HR = 0.70) may be accompanied by an 
increase in the average survival time of 12 months, while 
the same relative reduction in death risk (HR = 0.70) 
in a high-mortality population may be associated with 
a much lower absolute effect (e.g. three months).

The simplest way to confirm the assumption about 
the proportionality of hazards is visual analysis of the 
course of Kaplan-Meier curves, assessing whether the 
difference between them is approximately constant 
and persists over time. Small deviations (decrease or 
increase in time differences in the course of curves) are 
acceptable (Fig. 1). With sufficiently long observation, 
especially in the final lines of treatment of advanced can-
cers, when events occur in all patients (with very mature 
data, when only a few patients remain in observation), 
after the initial period of maintaining differences in the 
course of curves their convergence can be observed (Fig. 
2A). The opposite situation may occur in a population 
with low risk of death and expected long-term survival, 
when the curves can reach a flat course (plateau) due 
to very few deaths (Fig. 2D). Sometimes, at the very 
beginning of the observation, the curves intersect, which 
may happen because in the intervention group in the 
initial period the risk of complications may increase 
(especially if there is a significant difference between the 
observed procedures — e.g. surgery with chemotherapy 
vs. conservative treatment and chemotherapy), and the 
expected clinical benefit is only observed in the further 
period when the curves separate (Fig. 2B). In general, if 
the variability of the course of curves during the obser-
vation relates to the magnitude of the effect, but not its 
direction, it could be considered that the deviation from 
the assumption of hazard proportionality is insignificant, 
and the presented interpretation of HR could remain. 
However, if there is a significant change in the direction 
of action (Fig. 2C), the calculated HR value cannot be 
interpreted because it changes significantly over time. 
One solution is an attempt to perform subgroup analysis 
in order to detect the cause of differences in effective-
ness over time, with some objections related to such an 
analysis (see below) [18–22].
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Figure 1. The Kaplan-Meier chart is located on the plane bordered by the Y-axis describing the probability of overall survival and 
the X-axis, on which the time from the beginning of treatment (observation) in the study is presented. While constructing the 
Kaplan-Meier curve, the subsequent time intervals take into account the number of patients with the possibility of measurement 
at the beginning of the interval (at-risk), the number of patients with the event, and the number of patients lost to observation. 
The graph shows the cumulative probability at a given time. At the start of observation ( ) all patients are alive (OS = 100%). 
In fact, this is not the same moment in time (date of randomisation) for each of the participants, because they enter the study 
in different centres at different times. Then a decrease in the likelihood of overall survival in both arms over time is observed; 
however, it is always higher in group A (despite some variability in the size of differences between groups, the direction of the 
effect is consistent and it could be concluded that the deviation from the assumption of proportionality is slight — see text). 
Below the graph the number of patients in the observation at regular intervals should be given (at-risk) at the beginning of the 
given time interval ( ). If at the end of the graph they are small (< 10% of the baseline value), the inference from the curves 
is limited in this section. Looking at the Kaplan-Meier graph, values from both curves can be compared horizontally, looking for 
a difference in time when the cumulative probability of survival reaches 50% — ( ) and ( ), and they provide median survival 
values for groups A and B, respectively (median OS in the A group, median OS in the B group), and the median difference is 
8.7 months. Differences in survival can also be assessed vertically, comparing the survival values at a given time point. In our 
example, the two-year survival rate (rate of overall survival at 24 months) is 79.7% in the intervention group and 69.5% in the 
control group ( ). This is the cumulative probability for this period; often its value is given with the confidence interval (which 
allows us to assess the accuracy of the estimation), and in the text a statistical evaluation of the result will usually find (P-value 
for differences in cumulative survival at this time point). Concluding the differences in survival throughout the observation period 
gives the relative hazard ratio ( ); it can be seen that at a given time point the risk of an event (death) is lower in the group with 
intervention, and the result is statistically significant (looking at both the confidence interval and the given P-value)

It should be remembered that HR is a relative value 
that allows the assessment of the statistical significance 
of observed differences in survival, but, as mentioned, 
when making a therapeutic decision it is also necessary 
to assess the clinical relevance, also in relation to prog-
nosis in a given population. The absolute impact of the 
intervention compared to the control can be assessed by 
analysing the differences in the medians or by comparing 
the probability of survival at a given time (e.g. an annual 
or two-year survival).

During the RCT, especially with a long period of 
observation, preliminary (interim) analyses carried 
out by independent researchers in an unblinded but 
confidential manner are necessary. An independent, 
committee with no affiliation to the study may decide to 
prematurely terminate the study, e.g. due to safety con-
cerns or the spectacular effect of the new intervention 
(in this situation the decision to stop should be assessed 
carefully, because the clear effect is often overestimated 
in the short period of observation and the differences 
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Figure 2 B. Early intersection of the Kaplan-Meier curves. In the initial period of observation, the curves intersect, and for a short 
period the survival is lower in the group with intervention compared to the control — e.g. when the intervention is associated 
with higher risk of complications ( ), but then there are clear differences in survival in further observation ( ). In this situation, 
it is also a permissible deviation from the assumption about the proportionality of hazards

Figure 2 A. Kaplan-Meier curves converging at the end of the observation period. From the very beginning of the observation, 
there are differences in survival ( ). The curves clearly “separate”, but at the end of the observation period ( ) the cumulative 
probability of death is practically the same in both arms of the study. Such a situation may occur, for example, at the terminal 
stages of cancer, where ultimately, regardless of the treatment used, an event (death) will occur in almost all patients. This is 
a permissible deviation from the assumption about the proportionality of hazards. Convergence of curves in the final observation 
period may also be caused by a high percentage of censored observations (i.e. a small number of at-risk patients), as a consequence 
of which the Kaplan-Meier estimation in the “tail” of the curve is impaired

between interventions become less visible in the longer 
period of observation) [14]. In statistical protocols of 
oncology studies further interim analyses are also prede-
fined (when the statistical power calculation depends on 
the occurrence of a given number of events). Because of 
repeatedly testing the hypothesis, the risk of accidentally 
observed “statistically significant” results increases (the 
greater, the more pre-planned interim analyses, e.g. ac-
cording to the O’Brien-Fleming criteria); it is worth noting 
that significant results will not refer to P-values of < 0.05, 
but assume a much lower threshold, e.g. < 0.001.

Finding significant OS differences between interven-
tions according to the assumed statistical power may 
enable patients after disease progression to move from 
a control to an intervention group (cross-over, treat-
ment switching), which acts in a conservative direction, 
overestimating the effectiveness of control intervention 
and reducing the estimated effect of the study drug. 
Obviously, this only matters for OS assessment, and 
PFS assessment itself is unaffected. In this case, it is 
possible to use appropriate methods of correction of 
the cross-over impact on OS, the simplest of which is 
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C. Kaplan-Meier curves intersecting in the later period of observation
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Figure 2 D. Kaplan-Meier curves for an observation period that was too short. Mortality persists at a relatively low level, and 
it is difficult to conclude about the fate of patients and differences between groups (assessment in the early stages of cancer, 
with expected long-term follow-up). Despite the initial differences with a longer observation period, when more observed events 
accumulate, the course of these curves may approach any of the previously described situations

Figure 2 C. Kaplan-Meier curves intersecting in the later period of observation. The initial advantage of intervention ( ) 
disappears unexpectedly during the observation ( ), and the survival remains higher in the comparator arm until the end of 
the observation period. In this case, the proportionality of hazards criterion is not met, and no differences can be indicated 
between the groups. Probably there was an unknown confounder in the study that reversed the inference, and a detailed 
subgroups analysis is needed to identify it

the censoring of observations in patients changing the 
treatment [24, 25].

Adjusted results and subgroup analysis

Analysis of results with adjustment to baseline 
characteristics within logistic regression (when OR 
values are presented as adjusted or multivariate) or 
Cox proportional hazard model (in the case of survival 
analysis) can be presented as primary or sensitivity 
analysis. It is worth noting that the adjustment should 
primarily include prognostic factors and — unless it 
usually affects the accuracy of the estimate — can 

modify the central measure of the estimate. However, 
taking into account the characteristics not related to the 
prognosis, although even including stratification factors 
(e.g. geographical location), does not significantly affect 
the results. Post-hoc selection of matching factors (not 
defined in the statistical plan) may raise the suspicion 
of purposeful data selection to achieve the desired ef-
fect; in this case it should always be expected to display 
adjusted and not adjusted results [23].

Subgroup analysis should also be predefined in the 
statistical plan. Considering the diversity of the general 
study population, it allows the assessment of whether 
the general results refer to all patients or whether there 
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are differences in the effectiveness of the interven-
tion. If it is the case, it should be remembered that 
reliable evaluation of statistical differences leads to 
loss of statistical power. On the other hand, multiple 
defined subgroups and repeated testing increase the 
risk of completely random occurrence of statistically 
significant results. Above all, statistical significance or 
lack thereof in one of the subgroups is not sufficient 
to conclude real differences in the effectiveness of 
intervention. Usually a coherent effect is observed in 
individual subgroups, although with some variability of 
the central measure, and in smaller groups the confi-
dence intervals become wider and, in some cases, may 
exceed the value of 1 (loss of statistical significance). 
In this situation attention should be paid to the sig-
nificance of the interaction test (statistical analysis of 
whether the impact of interventions on an observed 
result depends on other factors) to assess whether there 
is a difference in the effectiveness of the intervention 
in a given subgroup (remembering, however, the pos-
sibility of obtaining false results in repeated testing). 
Subgroup analysis may also be helpful in seeking a nar-
rowing target population with no significant result in 
the general cohort. However, it should be remembered 
that subgroup analysis is more exploratory and serves 
to create further hypotheses rather than make final 
conclusions [23].

Summary

Translating the results of clinical trials into clinical 
daily practice is the established method of EBM. For this 
purpose, however, many elements should be assessed, 
which together provide evidence of the reliability of the 
study and significance of its results (Fig. 3). It is not easy, 
especially since most of the publications are written in 
English, and the authors often assume in advance that 
the recipient is fluent in terms of statistics and detailed  
explanations are unnecessary. In addition to assessment 
of the methodology and the reliability of the clinical 
study, it must be ensured that the population being 
evaluated is representative, i.e. it has characteristics 
similar to those for which a therapeutic decision is to 
be made, and if there are discrepancies (e.g. different 
age of patients or presence of comorbidities), what is 
their meaning. Then, if the comparator in the study 
is not widely used or not available but has a similar 
mechanism of action to the current treatment stand-
ard, it should be assessed whether there is evidence of 
similar effectiveness, which would allow transferral of 
the inference from the study to clinical practice in this 
aspect. The sample size of the study is significant — if 
it was small and it was not due to the low prevalence 
of the disease, then it should be assessed whether the 
study had statistical power to indicate the differences.  

Methodology Primary results Additional analysis Others

• Baseline characteristics

• Allocation, intervention, con-
trol

• Comparator and local clinical 
practice

• Research hypothesis

• Randomization method, blind, 
open label, unmasked

• Drop-out, discontinuation

• Internal credibility

• Statistical significance, hazard 
ratio for progression-free sur-
vival, overall survival — P-value 
and confidence interval

• Course of Kaplan-Meier curves

• Median OS and PFS

• Other end points 

— convergence of inference 
with primary endpoints

— internal consistency (time 
to treatment discontinu-
ation, objective response, 
complete response)

• Quality of life, safety, adverse 
event

• Intention-to-treat, per protocol 
analysis
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	 — convergence of inference

	 with the ITT population

• Statistical significance in sub-
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• Interim analysis, cross-over

• 	Subsequent treatment

• 	The authors’ conclusions  
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• 	Consistency of results with 
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• The possibility of transferring 
conclusions to clinical practice 
(external credibility)

Figure 3. Aspects to which attention should be paid, making a critical evaluation of the methodology and results of a clinical 
trial in oncology
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It is also necessary to pay attention to possible differenc-
es in baseline characteristics between groups — if they 
were significant, they may indicate a selection bias. An 
incorrect randomisation method can cause imbalanced 
distribution of confounders. In the absence of blinding, 
the assessment of differences in subjective endpoints is 
subject to the limitations. In the case of significant dif-
ferences in the lost patient rate, it is important to know 
whether this could be related to the treatment applied. 
It is also worth checking the type of the research hypo
thesis tested. In oncology the primary endpoint will be 
the survival analysis — PFS and OS. If consistent, statis-
tically significant, and clinically relevant differences are 
observed in favour of the intervention, there are strong 
premises about the superiority of the evaluated therapy. 
If, however, the significance of the results was observed 
only for PFS, it should be decided whether a further 
(final) assessment of the OS is planned, in which, with 
more matured data, the result could reach statistical 
significance. For some cancers, especially when assessing 
their early stages, it may be difficult to show differences 
in survival due to the expected follow-up, sometimes 
even decades. Such a long observation is an additional 
challenge, because during this time patients may be 
subjected, for example, to many different lines of further 
treatment, and the evaluation of ultimate survival dif-
ferences is limited (in this situation, such endpoints as 
DFS or pathological response are of higher importance). 
It is important whether the possibility of changing the 
treatment after the progression (cross-over) was al-
lowed, which could lead to OS overestimation in the 
control group. When HR for both OS and PFS didn't 
reach the significance level, the question should be asked 
whether this is not due to the lack of study statistical 
power, immaturity of published results (interim analy-
sis), or high lost-patient rate. If none of these factors 
is relevant, there are probably no differences between 
the interventions. Assessing the consistency of results 
with other publications for a similar population may 
be very helpful. If PFS/OS medians differ from similar 
studies, the characteristics of the population should be 
carefully analysed. A valuable source of information 
is also subgroup analysis. Sometimes the result for the 
subpopulation becomes statistically significant, despite 
the lack of significance in the total population — this 
may be a premise of higher treatment effectiveness only 
in a specific subgroup, but on the other hand, one should 
bear in mind the exploratory nature of such analysis. If 
a similar trend in the results is observed depending on 
the presence or absence of a given criterion, but one 
of the subgroups lacks relevance, it is worth checking 
whether the size of this subgroup is not too small, as 
well as checking the result of the interaction test. If any 
therapeutic options are available in the analysed indica-
tion, the safety issues of the therapy being evaluated are 

extremely important. In oncology, treatment with higher 
efficacy is often associated with increased toxicity; this 
situation may be acceptable with clear clinical profit, 
such as prolonged survival.

In conclusion, the evaluation of a clinical trial con-
sists of many elements discussed briefly in this paper. 
The authors hope, however, that they have addressed the 
most important aspects of the evaluation of clinical trial 
results and the terminology used, and that the article 
managed to show the complexity of the interpretation 
process. In the second part of the work, examples of 
clinical trials will be presented along with an assessment 
of their credibility and impact on clinical practice.
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