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Anti-cancer agents and endothelium 

ABSTRACT
Recent advances in oncology have improved the treatment outcomes and life expectancy of cancer patients; 

therefore, late effects of oncological treatment are of high clinical importance. Recent studies have shown that 

cardiovascular events are among the leading causes of premature morbidity in cancer survivors. Cardiotoxicity 

of some chemotherapeutic agents have been already confirmed; however, this issue seems to be more complex. 

Endothelium dysfunction is one of the first recognisable signs of atherosclerosis, which occurs long before the 

development of overt cardiovascular disease. Thus, it could be considered as an initial step, leading to increased 

risk of cardiovascular events. This process is not easy to recognise; however, there are some laboratory tests 

and imagining techniques that provide an insight into the progression of endothelial dysfunction. In this review 

we discuss the influence of oncological treatment on endothelium, according to the hypothesis that it increases 

cardiovascular morbidity and mortality in cancer survivors. Additionally, we present diagnostic and therapeutic 

measures that could reduce cardiovascular risk in cancer patients. 
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Introduction

There has been tremendous progress in early detec-
tion, treatment, and supportive care in cancer patients, 
which contributes to longer life expectancy. The side 
effects of chemotherapy and radiotherapy have already 
been well defined, but it seems that late consequences 
of cancer treatment are of high clinical importance. 
Cancer survivors have significantly increased risk of 
cardiovascular (CV) events as compared to cancer-free 
individuals [1]. Radiation therapy is associated with 
a three-fold increased risk of myocardial infarction (MI) 
and congestive heart failure [2]. Even more pronounced 
vascular abnormalities are observed in the survivors of 
childhood cancers [3–5]. 

Chemotherapeutic agents with known cardiotoxic ef-
fects include: anthracyclines, taxoids, 5-fluorouracil, cis-
platin, cyclophosphamide, some monoclonal antibodies, 
and multi-kinase inhibitors [6–9]. Most of these cytotoxic 
drugs, as well as radiotherapy, can cause elusive, progres-
sive endothelial damage leading finally to CV events. 

Nonspecific endothelial damage disrupts the homeo-
static balance and leads to a sequence of pathological 
changes including: constriction of blood vessels, leuko-
cyte adherence, platelet activation, thrombosis, impaired 
coagulation, inflammation, and atherosclerosis. In gen-
eral, this is not an easily recognisable process, mainly 
due to late clinical presentation; however, endothelial 
dysfunction can be considered as an initial step increas-
ing CV risk. It is also difficult to distinguish whether 
presented symptoms result from comorbidities or the 
oncological treatment itself [10].

This review discusses the influence of cytotoxic 
agents on endothelium, which could be considered as 
a cause of increased morbidity and mortality in cancer 
survivors. This theory can be integrated into a com-
prehensive conceptual model explaining accelerated 
development of atherosclerosis in cancer-survivors. Ad-
ditionally, strategies of endothelium function monitoring 
in clinical practice will be presented along with methods 
of possible intervention that may modify outcomes in 
high-risk patients. 
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Endothelium and vascular homeostasis

The endothelium plays a key role in maintaining 
vascular homeostasis. It acts not only as a barrier be-
tween tissues and circulating blood but also as a signal 
transducer that regulates vasomotion [11]. 

Vascular homeostasis is based on the balance be-
tween vasoconstrictors and vasodilators. Nitric oxide 
(NO) is an endothelium-derived relaxing factor that 
plays a crucial role in maintaining vascular tone. En-
dothelial NO synthase (eNOS) — the enzyme catalysing 
the production of NO from L-arginine — is activated by 
a shear stress or signalling molecules [12]. Prostacyclin, 
which acts independently from NO and is derived from 
the cyclooxygenase system, also contributes to vasodila-
tation. Conversion of angiotensin I to angiotensin II on 
the endothelial surface, generation of endothelin, and 
vasoconstrictor prostanoids are the factors responsible 
for the increasing of a vascular tone [13]. 

Established cardiovascular risk factors such as: 
smoking, dyslipidaemia, obesity, diabetes, hypertension, 
and chronic inflammation [14] shift the balance between 
vasoconstrictors and vasodilators in favour of vasocon-
strictors and activate endothelium. This condition is 
also considered as “NO-deficiency” due to a leading 
role of this substance in maintaining a proper vessels 
lumen. Subsequently, endothelium starts to produce 
procoagulant and proinflammatory molecules, trigger-
ing a sequence of events that finally lead to development 
of atherosclerosis [15]. 

Assessment of endothelial function 

Endothelial disfunction constitutes a preclinical 
stage of atherosclerosis. It can be detected before 
atherosclerosis plaque formation, when this process 
is still reversible. Hence, it is important to detect 
endothelial dysfunction at an early stage in order to 
prevent its progression and to reduce cardiovascular 
risk. Currently there are many evaluation methods 
available that provide an insight into the condition 
of endothelium.

Exposition to the cardiovascular risk factors leads 
to detachment of endothelial cells and the release of 
several autocrine and paracrine substances. Endothe-
lial cells, which might be detected in the bloodstream, 
known as circulating endothelial cells (CECs), are very 
uncommonly present in healthy individuals. They are 
characteristic for diseases associated with widespread 
vascular damage, including: MI, congestive heart failure, 
stroke, diabetes, systemic vasculitis, systemic lupus ery-
thematous, infectious diseases, and cancers. Moreover, 
CECs could be locally released after coronary angio-
plasty [16].

Endothelial damage leads to higher expression of 
adhesions molecules such as: E-selectin, endothelin-1, 
and vascular cell adhesion molecule-1 (VCAM-1), and 
increased levels of proinflammatory cytokines: inter-
leukin-6 (IL) and C-reactive protein (CRP). Activated 
endothelial cells also release endothelium-derived glyco-
proteins: von Willebrand factor (vWF) as well as other 
molecules, such as soluble thrombomodulin (sTM) and 
tissue plasminogen factor (t-PA), which could be the 
markers of procoagulant activity [9, 13, 17, 18].

Asymmetric dimethylarginine (ADMA) is a novel, 
promising biomarker, which is endogenously synthesised 
through arginine methylation and antagonises the ef-
fect on endothelium-dependent vasodilatation. This is 
achieved by eNOS inhibition and superoxide generation. 
An increased ADMA plasma concentration was found 
in hypertriglyceridaemia, hypertension, diabetes, insulin 
resistance, and chronic heart failure [19, 20]. 

Finally, endothelial-dependent vasomotion, which 
actually means an ability of endothelium to release NO, 
can be determined using a brachial artery flow-mediated 
dilatation (FMD), a noninvasive ultrasound-based test 
developed by Celermayer [21, 22]. This technique as-
sesses endothelium response to reactive hyperaemia 
(shear stress), subsequent nitric oxide release, and 
vasodilatation. The severity of atherosclerosis might be 
assessed by common carotid artery (CCA) intima-media 
thickness (IMT) and aortic stiffness during routine 
transthoracic echocardiography (TTE) [17]. Evaluation 
of the carotid artery enables detection of subclinical 
alterations in the wall structure that precede CV events 
in seemingly healthy individuals. The aforementioned 
tests are non-invasive and relatively easy to perform, 
which makes them clinically useful [14].

The influence of anti-cancer agents on 
endothelial homeostasis

Endothelial dysfunction is very common in the 
course of malignancies [23]. In vitro and in vivo studies 
suggest that some tumour cells may induce apoptosis 
and therefore hamper endothelial integrity. Moreover, 
in order to metastasise, tumour cells need to interact 
with endothelial cells, which promotes their extravasa-
tion into surrounding tissues spaces [24]. This effect is 
even more pronounced in patients treated with cytotoxic 
agents which cause endothelial damage. Anti-endotheli-
al effect is the first step of vascular toxicity [25]. 

Cytotoxic agents affecting endothelium can be 
classified according to their mechanism of action as: 
anti-tumour antibiotic (bleomycin and anthracyclines), 
plant alkaloids (taxanes, vinca alkaloids), alkylating 
agents (cisplatin, cyclophosphamide), antimetabolites 
(5-fluorouracil), and biological therapies (bevacizumab, 



251

Renata Pacholczak et al., Anti-cancer agents and endothelium

sunitinib, sorafenib). Additionally, the role of radiation 
therapy will be further presented. 

Anti-tumour antibiotics such as bleomycin and 
anthracyclines [doxorubicin (Adriamycin) and daunoru-
bicin] are used for patients with different solid tumours 
and haematological malignancies, i.e. sarcomas, breast 
cancer, Hodgkin’s lymphoma, and myeloma. In general, 
they act by the intercalation into DNA and the inhibi-
tion of topoisomerase, which prevents cells from further 
division. Subsequently, it decreases protein synthesis and 
causes ROS generation, directly leading to DNA dam-
age [26]. Anthracyclines are characterised by well-known 
cumulative, dose-dependent, irreversible cardiotoxicity 
that limits their clinical usefulness. However, there are 
only a few studies on their effect on endothelium.

Anthracycline-induced endothelial toxicity seems 
to be a complex process. The most common theory 
assumes that this is a free radical-mediated process 
highly integrated with eNOS. Adriamycin binds to eNOS 
leading to the diversion of an electron from the enzyme’ 
oxygenase domain. It decreases NO concentration and 
leads to the production of superoxide. Diminished NO 
concentration switches endothelium to pro-coagulant 
status and significantly impairs vasodilatation. Moreo-
ver, oxidative stress causes direct damage of endothelial 
cells [6, 8, 27–30]. The organ culture method revealed 
that doxorubicin interferes with DNA of endothelium 
causing dose-depended excoriation of endothelium and 
subsequent apoptosis [31, 32]. This process is enhanced 
by accumulation of anthracyclines in the endothelial 
cells nuclei [33]. Another possible mechanism of doxo-
rubicin-induced vascular toxicity is based on impairment 
of lipid metabolism, which is known to be caused by 
chemotherapy in general [6, 34]. 

Jenei et al. [4] presented in their study that after 
adriamycin administration FMD rapidly decreased to 
4%, which was accompanied by reduction in nitric ox-
ide plasma concentration. Interestingly, anthracyclines 
cause not only acute cardiovascular adverse events but 
also chronic ones, as was observed in long-term survivors 
of childhood cancer [3, 4, 35]. 

Taxanes (docetaxel, paclitaxel) — derivatives of 
plants of the genus Taxus are used in the treatment of 
lung, colon, ovarian, breast, and prostate cancers [36, 
37]. Taxanes are the cell-cycle targeting anticancer 
agents that inhibit mitosis by interfering with the mitotic 
spindle. It promotes formation of abnormal microtu-
bules, which results in apoptosis of mitotically-arrested 
cells [38]. These changes affect cells in G2 and M cell 
cycle, which inhibits completion of division and leads 
to the accumulation of cells in G2 phase [39]. Because 
tubulin cytoskeleton is crucial for maintenance of 
endothelial-barrier function, administration of taxanes 
leads to increased permeability of vessels not only within 
the tumour but also in the whole body [37, 40]. Moreo-

ver, taxanes potentiate the effect of anthracyclines by in-
creasing their plasma concentration [41]. Chemotherapy 
regimens which contain both taxanes and doxorubicin 
have a synergistic effect on endothelial damage [42]. 
Taxanes cause impairment of endothelial cell migration 
and proliferation, which was evaluated by Hotchkiss et 
al. [37] in three in vitro pharmacokinetic assays. They 
reported that inhibition of endothelial cell migration was 
caused by an inhibition of centrosome reorientation at 
lower concentrations than those affecting microtubule 
morphology and causing cell apoptosis. In the study by 
Belotti et al. [43] the authors observed that paclitaxel 
influences endothelial cell proliferation, chemotaxis, 
migration, and cord formation on the Matrigel model 
of angiogenesis. They also detected antiangiogenic 
potential of paclitaxel in vivo.

Cisplatin is an alkylating agent that is used in 
the curative setting of testicular [5], ovarian [44, 45], 
urological [46], lung, and head and neck cancers [47]. 
Because it is accumulated in plasma, administration of 
cisplatin-based regimens results in prolonged damage of 
endothelial cells. Cisplatin might be detected in plasma 
even years [20] after the treatment of testicular cancer 
[48]. The most common side effects associated with this 
agent include: nausea, emesis, myelosuppression, and ne-
phrotoxicity. Typical vascular toxicities include Reynaud 
phenomenon, as presented in recent reports, myocardial 
infarct, stroke, and hypertension [5, 44, 45, 49]. 

Damage of endothelial cells with subsequent hyper-
coagulation may explain the cisplatin-related vascular 
toxicity. Cisplatin may inhibit proliferation of endothelial 
cells in vitro and cause apoptosis, which was assessed on 
the human dermal microvascular epithelial cell line [50]. 
Cisplatin also inhibits endothelial cell motility in vitro on 
the Matrigel model of angiogenesis, but it occurs only in 
doses that inhibit cell proliferation [43]. Platinum deriva-
tives induce the endothelial release of IL-1 and IL-6 as 
a result of inflammatory reaction (e.g. production of 
hydrogen peroxide) [47]. Treatment with cisplatin-based 
chemotherapy resulted in increased vWF serum level 
immediately after chemotherapy of germ cell tumour 
patients and in patients with testicular cancer, which 
normalised in several months after the treatment [51, 
52]. Because vWF is released from endothelial cells after 
injury, these findings confirm cisplatin-induced endothe-
lial toxicity. Additionally, cisplatin increases platelet 
aggregation via the arachidonic acid pathway on human 
platelet-rich plasma, which explains the pathogenesis of 
thrombotic complications after cisplatin administration 
[53]. However, there is an interesting concept, which is 
that cisplatin-related vascular events might be provoked 
not only by endothelial damage but also by vasospasm 
caused by cisplatin-induced hypomagnesaemia. Cisplatin 
causes a tubular injury and decreases reabsorption of 
magnesium ions in renal tubules, which subsequently 
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increases calcium ions flux into the cellular matrix, which 
in turn triggers muscular contractions [44, 45]. 

Another alkylating agent, cyclophosphamide has 
been found to be clinically useful in the treatment of 
haematological malignancies (lymphoma, leukaemia, 
multiple myeloma), breast cancer, and in an immuno-
suppressive setting for the treatment of autoimmune 
diseases [54]. It is thought that cyclophosphamide directly 
injures endothelial cells, leading to subsequent leakage of 
plasma to the extravascular environment [55]. Colleoni 
et al. [56] observed a significant decrease in vascular 
endothelial growth factor level in breast cancer patients 
after oral administration of cyclophosphamide in low 
doses, which is associated with its anti-angiogenic effect. 
This finding was also confirmed by Folkman et al. [57], 
who found that systematic administration of cyclophos-
phamide, anthracyclines, or paclitaxel (but not others 
drugs) inhibits neovascularisation in the mouse cornea. 
Acrolein, which is the principal metabolite of cyclophos-
phamide, has been found to be involved in direct injury 
of pulmonary artery endothelial cells evaluated on an 
in vitro model (51Cr-labelled bovine artery pulmonary 
endothelial cell line) [58]. Bocci et al. [59] reported 
that the first active metabolite of cyclophosphamide 
(4-hydroxycyclophosphamide) inhibited human umbili-
cal vein endothelial cell line (HUVEC) proliferation in 
concentrations that did not cause cells apoptosis. 

5-fluorouracil (5-FU) and its orally administered 
pro-drug (capecitabine) are the antimetabolites used in 
treatment of gastrointestinal adenocarcinoma, breast, 
gynaecological, as well as head and neck tumours. The 
effect on endothelium was studied in rabbits using trans-
mission electron microscopic evaluation of endothelium 
in small arteries after exposure to 5-FU. It has been 
discovered that 5-FU has a direct cytotoxic effect on 
endothelial cells, leading to its damage and subsequent 
thrombus formation [60, 61]. The study on human and 
bovine endothelial cells in a cell culture model showed 
an increased release of prostacyclin by bovine endothe-
lial cells after 48-h incubation with 5-FU, which indicates 
leakage secondary to endothelial cell injury [62]. Focac-
ceti et al. [63] discovered that in the xenograft model of 
colon cancer, 5-FU induces ultrastructural changes in 
the endothelium of various organs. Endothelial damage 
is enhanced by elevation of ROS concentration and an 
autophagic process in cells [63]. After administration 
of 5-FU in 10 patients receiving 5-FU as a constant 
intravenous infusion over a four-day or five-day period 
the level of fibrinopeptide A (peptide cleaved from 
fibrinogen by thrombin) in blood samples was elevated. 
Most of the patients had a marked increase in the level 
of fibrinopeptide A 24 hours after infusion, compared 
with their pre-infusion levels, with normalisation by the 
end of the infusion. This result shows the effect of 5-FU 
on activation of intravascular coagulation [64]. 

Several reports described patients who developed 
myocardial ischaemia after infusion of 5-FU [64, 65]. 
The possible explanation is that 5-FU causes protein 
kinase C-mediated vascular smooth muscle constriction 
[66]. In the study of Südhoff et al. [67] 50% of patients 
after 5-FU infusion presented contraction of the bra-
chial artery associated with an increased endothelin 
plasma level. 

Endothelial damage is also an adverse event of 
novel targeted therapies, especially inhibiting vascular 
endothelial growth factor (VEGF) [36, 38, 54, 68]. This 
group of drugs includes monoclonal antibodies: bevaci-
zumab — a humanised monoclonal antibody targeting 
VEGF, which is used in the treatment of breast, lung, 
colorectal, and renal cancers, as well as multiple kinase 
inhibitors: sunitinib, sorafenib — a multi-targeted in-
hibitor approved for treatment of metastatic renal cell 
carcinoma and gastrointestinal stromal tumours (GIST) 
[36, 54]. VEGF inhibitors are usually associated with 
hypertension, which is the most common side effect, 
with an overall incidence of 32% (in patients treated 
with bevacizumab) [69–71]. The risk of thromboembolic 
events seems to be moderately increased [68, 72]. The 
mechanism leading to VEGF inhibitor-induced hyper-
tension is still poorly understood. Veronese et al. [73] did 
not observe any changes in the level of VEGF receptor 
expression after three weeks of treatment with sorafenib, 
despite detected hypertension. Based on this, it could be 
concluded that hypertension is independent of VEGF 
receptor levels. Moreover, the authors stated that hy-
pertension is not related to sodium retention, increased 
level of catecholamine, renin, aldosterone, and any of 
the renovascular pathologies. The other theory proposed 
by Mir et al. [74] states that VEGF-inhibitors increase 
the risk of cholesterol embolism syndrome, and thus 
lead to acute CV complications. In another study [75] 
the authors did not observe any changes in a vascular 
tone after intravenous administration of bevacizumab. 
Microvascular dysfunction was also observed in the 
dermal capillary densities in the dorsal surface of fingers 
using intravital video capillaroscopy [76]. 

The antiangiogenic multiple kinase inhibitors (suni-
tinib and sorafenib) target a range of different receptor 
tyrosine kinases and other intracellular kinases, and 
thus their effect on endothelial damage is much more 
complex [38]. Thijs et al. [77] proved that in an animal 
model exposure to high concentrations of sunitinib di-
minishes FMD by reducing endothelial release of nitric 
oxide. However, they did not observe any reduction in 
FMD before hypertension developed in patients treated 
with sunitinib. Therefore, according to their hypothesis, 
sunitinib-induced hypertension does not depend on 
endothelium, and is probably due to decreased arte-
rioles diameters. Recent data suggest that inhibition 
of platelet-derived growth factor receptor (PDGFR) 

http://europepmc.org/abstract/med/8714749/?whatizit_url_Species=http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=9986&lvl=0
http://europepmc.org/abstract/med/8714749/?whatizit_url_Species=http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1118549&lvl=0
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causes coronary microvascular dysfunction due to loss 
of pericytes, supporting the mechanical stability of the 
capillary wall in some tissues [78, 79]. Both sunitinib and 
sorafenib are also known to inhibit the stem cell growth 
factor receptor (c-Kit or CD117), which is expressed on 
the surface of precursors of endothelial progenitor cells, 
and therefore debilities mobilisation of these cells to the 
sites of injury [80]. 

It should be highlighted that not only chemothera-
peutic agents contribute to endothelial damage in cancer 
patients. Radiation therapy (RTH) is the other factor 
potentiating the harmful effect on endothelial cells. It 
has been confirmed that RTH directly causes arterio-
sclerosis in various mechanisms. Irradiation increases 
concentration of ROS with subsequent lipoprotein 
oxidation and vascular inflammation [81], causes inti-
mal fibrous thickening [82] and damages endothelium 
and vasa vasorum, which finally leads to arterial wall 
necrosis [83]. In the animal model (rabbit ear artery) 
endothelial response to acetylcholine was decreased 
after irradiation, and some morphological changes 
were observed in endothelial cells (cellular shrinking, 
widened cellular junctions, detachment of endothelial 
cells) due to reduction in eNOS expression [84]. In the 
literature there are many case reports and research 
studies describing arterial occlusive disease in regions 
previously exposed to radiation [82, 83, 85–87]. Beck-
man et al. [88] revealed that external-beam radiation 
therapy impairs endothelium-dependent vasodilata-
tion, measured as a decline in FMD of the axillary 
artery in patients treated for breast cancer. In young 
individuals without CV risk factors, IMT signifi-
cantly increased (0.46 mm vs. 0.41 mm) after neck 
irradiation. In addition, arteriosclerotic plaque was 
detected in 18% of treated patients [89]. Therefore, 
it is possible to assume that RTH impairs endothe-
lial function mostly by reduction of bioavailability 
of endothelium-derived NO, which is followed by 
acceleration of atherosclerosis development, increased 
CV risk, and arterial occlusions.

Endothelial protection 

Lifestyle modification

Endothelial protection might be achieved by a range of 
non-pharmacological strategies known to reduce CV risk 
such as: physical exercise, weight control, smoking cessa-
tion, and Mediterranean diet [90]. In a recent pilot study, 
Jones et al. [91] investigated the effects of aerobic exercise 
training on brachial artery FMD in women with newly 
diagnosed breast cancer. They reported an improvement 
in FMD in the exercise training group. However, the dif-
ference in FMD between the two groups did not achieve 
statistical significance due to the small sample size.

Antioxidant therapy

Most of the chemotherapeutics and RTH impair en-
dothelial function via ROS. According to this, free radi-
cal scavengers have been used in clinical trials in order to 
diminish side effects, but the results were not satisfactory 
[6]. However, dexrazoxane — an iron chelating molecule 
— has been approved for anthracycline-induced cardio-
toxicity. It hampers ROS formation in cardiomyocytes, 
but its effect on endothelium needs further evaluation 
[92]. Some studies indicated a beneficial effect of vita-
min D supplementation on endothelium by an increase 
in FMD of the brachial artery [93]. Vitamin D may be 
particularly useful in an oncological setting due to its 
demonstrated in vivo and in vitro antiangiogenic prop-
erties [94]. According to meta-analysis [93] vitamin D 
supplementation significantly decreases mortality due 
to cancer and CV events. The effect of vitamin D on 
endothelium still needs further evaluation, especially 
to establish a proper supplemented dosage. Heitzer 
et al. [95] showed that vitamin E improves endothelial 
function in patients with multiple CV risk factors. Some 
animal studies revealed that deficiency of dietary 
vitamin C is associated with increased atherogenesis 
[96]. Although vitamin E and C supplementation has 
recently attracted a lot of attention, clinical trials have 
not shown any benefits, especially in patients already 
diagnosed with coronary artery diseases [97]. Because 
chemotherapeutic agents cause endothelial injury via 
various mechanisms, antioxidants may be just one part 
of the strategy of endothelial protection; however, they 
may be insufficient in this setting. 

Lipid-lowering therapy

There is strong evidence that lipid-lowering therapy 
restores endothelial function. This aim may be achieved 
by diet modification or by HMG CoA reductase inhibi-
tors (statins). Despite the fact that they prevent athero-
sclerotic plaque formation and stabilise the already 
existing plaques, statins have been shown to decrease 
the incidence of adverse CV events. Furthermore, statins 
and angiotensin converting enzyme inhibitors (ACEi) 
cause vasodilatation by increasing plasma NO avail-
ability [38, 98]. This pleiotropic effect on endothelial 
NO synthase is also relevant. 

Other medications

Several commonly used cardiac drugs have a protec-
tive effect on the endothelium. The third generation 
of beta-blockers (carvedilol, nebivolol) have shown 
a strong anti-oxidant activity and additional properties 
such as b3 receptor stimulation. This receptor is known 
to activate eNOS and increase NO release [90, 99, 
100]. Ticlopidine reduces thromboxane and increases 
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prostacyclin production, thus preventing atherosclerotic 
plaque formation [23]. ACEi reduce the production of 
angiotensin II, decrease NADPH synthesis (NADPH 
synthesis is stimulated by angiotensin II), and therefore 
hinder production of ROS. Additionally, ACEi promote 
stabilisation of bradykinin, which induces the release of 
NO and prostacyclin [90, 101]. 

In patients with a decrease in LVEF from 60% to 
40% after administration of cardiotoxic chemotherapeu-
tics (anthracyclines, trastuzumab, and tyrosine kinase 
inhibitors) ACEi, beta-blockers, and statins significantly 
restore myocardial function and increase LVEF up to 
53% [102]. ACEi have been confirmed to be useful in 
prevention of anthracycline-related cardiac dysfunc-
tion [103]. Chemotherapeutic agents in combination 
with ACEI/ARB can improve the survival outcome in 
patients with different types of cancer [104].

Vasospasm caused by cisplatin has been successfully 
treated with calcium channel blockers [105]. Discontinu-
ation of 5-FU infusion together with administration of 
a calcium channel blocker and nitrate usually gives a good 
outcome in the case of signs of myocardial ischaemia [65].

Newer interventions

Räsänen et al. [106] analysed the effect of vascular 
endothelial growth factor-B (VEGF-B) gene therapy in 
doxorubicin-treated mice. The results are very promising 
in terms of cardio and endothelial protection. VEGF-B 
pretreatment inhibited doxorubicin-induced endothelial 
dysfunction in a test of aortic relaxation to acetylcholine 
after phenylephrine-induced contraction. Despite the 
good preliminary results of such methods in animals, 
their use in humans is still a long way off.

Conclusions

The integrity of endothelium plays a crucial role 
in maintaining vascular homeostasis. Hampering its 
function leads to development of atherosclerosis and 
subsequently increases CV risk with all possible con-
sequences (e.g. stroke, myocardial ischaemia, heart 
failure). Cancer patients are at high risk of CV events 
due to endothelial dysfunction caused by chemothera-
peutic agents (most of them generate free radicals). 
The endothelial function might be assessed using a wide 
range of laboratory tests and imaging techniques; how-
ever, their implementation in routine clinical practice 
is not easy and requires the establishment of reference 
ranges. Patients may benefit from early interventions 
preventing endothelial damage and restoring endothe-
lial function. These strategies not only reduce CV risk 
but also diminish adverse effects of oncological treat-
ment, thus enabling its continuation.
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