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Abstract
Introduction. Chordoma, a rare neoplasm originating from the notochord, poses diagnostic and ther-
apeutic challenges due to its slow growth and complex anatomical locations. The advent of artificial
intelligence (AI) offers promising avenues for improving chordoma management through enhanced
diagnosis, prognostication, and treatment optimization.
Methods. This systematic review adhered to the PRISMA guidelines and focused on AI applications
in chordoma management. A comprehensive literature search was conducted across seven major
databases, and relevant data were extracted, including publication details, study aims, AI techniques
employed, validation methods, and study results.
Results. AI techniques, including machine learning and deep learning, demonstrated efficacy in differ-
entiating chordomas from other neoplasms, segmenting tumor boundaries, predicting patient survival
and recurrence, and guiding therapeutic strategies. Integration of radiomic features, clinical character-
istics, and imagingmodalities facilitated accurate diagnosis and prognostication. Additionally, AI-driven
approaches enabled drug repurposing and optimized treatment planning, particularly in radiation ther-
apy.
Conclusions. The findings highlight the transformative potential of AI in revolutionizing chordoma
management, offering personalized and precise approaches for diagnosis, prognostication, and thera-
peutic intervention. Collaborative efforts between clinicians, researchers, and technologists are essential
to validate AI-driven algorithms and introduce them into clinical practice. Further research is warranted
to address limitations and ensure the ethical deployment of AI technologies in healthcare to improve
outcomes for chordoma patients.

Keywords: artificial intelligence, machine learning, deep learning, LASSO, SVM, chordoma, automated
tumor diagnosis, tumor survival prediction

Introduction
Chordoma, a neoplasm of rare occurrence (incidence
rate of 1:1 000 000), was first identified by Virchow
and Luschka in 1856 [1]. This neoplasm is typically
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characterized as low-grade and exhibits slow growth.
The origin of chordomas can be traced back to the
notochord, an embryonic structure that subsequently
develops into the nucleus pulposus. Despite exten-
sive research, no definitive genetic marker has been
established; however, several factors have been im-
plicated in the tumor’s development, including the
mTOR signaling pathway, PTEN deficiency, INI-1,
PDGFR-beta, and the brachyury gene [2].

In terms of anatomical location, approximately half
of all chordomas are found in the sacral area (50%),
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with one-third located at the skull base, and a minor-
ity (15%) appearing in the vertebral bodies [3–5]. The
diagnostic process for this rare malignant tumor typ-
ically involves biopsy, magnetic resonance imaging
(MRI), and computed tomography (CT). Computed
tomography scans offer superior lesion information,
while MRI provides a more comprehensive analysis
of the extent of this neoplasm.

The primary treatment strategy is complete en-
-bloc resection of the chordoma. However, in cases
where complete resection is not feasible (for instance,
due to the tumor’s complex location), alternative ap-
proaches such as intratumoral resection, piecemeal
resection, and local debulking are employed. Given
the high recurrence rate of chordomas, high-dose ra-
diation therapy is often necessary, as these tumors
exhibit relative resistance to radiation. With a high
mortality rate (5-year survival rate of 50%), proactive
measures are essential to prevent the further progres-
sion of this locally aggressive tumor [6].

The advent of artificial intelligence (AI), a rapidly
evolving technology, has seen its application across
various medical fields, including oncology. It has been
tested in a range of cancers, including gliomas, adeno-
mas, colorectal cancer, and more [7–9]. Artificial in-
telligence holds potential not only in neoplasm detec-
tion from imaging but also in predicting recurrence,
tumor segmentation, biomarker detection, and be-
yond. The implementation of machine learning and
deep learning (DL) techniques has led to increas-
ingly more and more accurate algorithms, potentially
paving the way for comprehensive implementation in
the medical sector in the near future.

This review aims to explore current clinical appli-
cations of AI technology for chordoma. This article
will systematically collate and present literature find-
ings to organize the existing knowledge on this sub-
ject. Our objective is not only to describe the types
of algorithms used in the studies but also to elucidate
the methodology and performance of AI, and how this
technology can AI physicians on chordoma manage-
ment.

Methodology

In this systematic review, we adhered to the PRISMA
guidelines for reporting systematic reviews and meta-
-analyses [10]. The literature search process was
conducted across seven major databases, including
PubMed, Embase, Cochrane Reviews, Scopus, Web
of Science, Ovid, and Ebsco. We utilized appropri-
ate medical subject headings (MeSH) terminology to
identify pertinent studies, employing the following
search terms: artificial intelligence OR convolutional
neural network OR deep learning OR machine learn-
ing OR decision tree OR support vector machine OR

lasso OR k-means AND chordoma. The full search
strategy is delineated in Appendix 1.

Our search was confined to original articles that
concentrated on the application of AI technologies to
chordoma. We excluded all review articles, abstract-
-only articles, conference papers, and other non-
-original articles. We included only articles published
in English, without any restrictions on the publication
date. The articles were independently screened by two
reviewers. The entire screening process was facilitated
by the bibliography manager (ZOTERO).

From each included study, we extracted the fol-
lowing data: publication date and origin of the study;
aim of the study; artificial intelligence technique em-
ployed; validation used in the study; and the results.
Given that researchers often employ diverse meth-
ods to assess the performance of the algorithm and
considering that this study did not aim to target spe-
cific applications of AI in chordomas, we did not
establish any stringent criteria for such extraction. We
incorporated all relevant results that described the per-
formance of the algorithm, such as the area under the
receiver operating characteristic curve (AUC), sensi-
tivity, specificity, accuracy, or the concordance index
(C-index), which is analogous to the AUC.

Results
Overview of the studies
The screening process is visualized in Figure 1 [10].
We found 35 articles from PubMed, 68 from Embase,
31 from Web of Science, 41 from Scopus, 27 from Eb-
sco, 95 from Ovid, and 1 from Cochrane reviews. In
total, we have managed to find 298 articles. The bibli-
ography manager, which we have used in the study,
initially marked 148 duplicates for removal. In to-
tal,150 articles underwent the process of screening.
Afterward, we removed 101 articles, as they were
irrelevant to the topic of our study. For full-text screen-
ing, 49 articles were assessed. Finally, for this sys-
tematic review, 25 articles were included [11–35]. We
excluded 24 articles after full-text screening: 12 stud-
ies were not relevant to the topic of the analysis, and
for 11 studies only abstracts were available; we also
excluded 1 review article.

We have found 14 articles related to differentiation,
classification, and segmentation (diagnostics), 9 ar-
ticles related to survival and recurrence prediction,
and finally 2 articles related to drug and dosimetry.
Publication dates ranged from 2018 to 2023 (4 arti-
cles from 2018, 3 from 2019, 3 from 2020, 4 from
2021, 6 from 2022, and 5 from 2023). Publications
also varied by country of origin — the majority
of the articles were from the People’s Republic of
China (15), 5 from the USA, 2 from Italy, and there
was 1 article from each of these countries: Japan,
Canada, and the Netherlands. Studies also varied in
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Figure 1. PRISMA flow diagram [10]

the artificial intelligence used: some studies used ma-
chine learning, others used deep learning, and there
were also studies using both AI methods. Validation
was reported in 23 articles used for this review. More
details about each study included in this review are
provided in Tables 1–3 after each section.

Differentiation, classification, and segmentation
[11–24]
Chordoma, as previously noted, is classified as a rare
neoplasm. Consequently, residents specializing in di-
agnostics, such as radiologists, along with less expe-
rienced physicians from other departments, may face
challenges in differentiating this uncommon tumor.
The application of artificial intelligence can signifi-
cantly enhance the quality of a physician’s work by
eliminating potential life-threatening misdiagnoses,
which is particularly advantageous for junior special-
ists.

In their study on the classification of nasopharyn-
geal tumors, Song et al. experimented with varying
sizes of MRI images (112 × 112, 224 × 224, and
512 × 512), as well as different proportions of datasets
used for model training (25%, 50%, and 100%) [13].
Among the models trained with the full dataset, the
model using 112 × 112 image size achieved the high-
est AUC performance of 0.94, while the model using

512 × 512 image size yielded the lowest score of
0.935. A similar trend was observed in the models
trained with the 25% dataset: the highest performance
was achieved with the 112 × 112 model (0.823),
and the 512 × 512 model achieved the lowest score
in the study (0.640). Another study by Yamawaza
et al. demonstrated that the application of radiomic
features from multiple types of scans leads to higher
AUC performance than extraction from only one type
of MRI scan [22]. Meanwhile, Yin et al. [20] com-
pared the performance of algorithms between stan-
dard CT scans and iodine-contrast CT scans in the
differentiation of sacral tumors. Models differentiat-
ing chordomas on the enhanced scans achieved greater
performance (AUC 0.875–0.984) than those on stan-
dard CT scans (AUC 0.639–0.883) on the validation
set.

To further improve the performance of the DL
model, Liu et al. [14] incorporated patient clinical
characteristics into the XGBoost machine classifier,
such as age, erythrocyte sedimentation rate, sex, or
pain information. In the three-category testing set for
the differentiation of bone tumors, the model incorpo-
rating these characteristics (fusion model) was supe-
rior (AUC of 0.872) to the standard MRI-based-only
classification model (AUC of 0.813). This allowed
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Table 1. Differentiation, classification, and segmentation studies reported in this review

Study Aim of the study AI technique Validation Results

Boussioux
2023, USA [11]

Segmentation of sacral
chordoma & surrounding
muscles (CT)

DL— 3D U-Net and residual 3D
U-Net with Dice loss, standard
cross-entropy loss, and
class-weighted cross-entropy loss
functions

Random split Dice: 85.5% (gross tumor
volume)

Li 2019,
China [12]

Differentiating skull base
chordoma and chondrosarcoma
(MRI)

ML—SVMmodel with a radial
basis function kernel

10-fold AUC: 0.872
Sensitivity: 89.47%
Accuracy: 72.85%

Song 2022,
China [13]

Classification and segmentation
of tumors in the nasopharyngeal
area (MRI)

DL— U-net and the Deeplabv3
(segmentation); EfficientNet-B0,
Legacy SE-ResNet34,
MobileNetV3 Large100, and
DenseNet121 (detection)

N/A AUC: 0.935–0.949 (100%
dataset used), 0.64–0.823
(25% dataset used)

Liu 2022,
China [14]

Classification of benign,
malignant, and intermediate
bone tumors (MRI)

DL— inception_v3 with XGBoost
classifier; developed with PyTorch

Random split AUC: 0.813 (radiological
model), 0.872 (fusion model)

Nie 2023,
China [15]

Nomogram for differentiating
chordoma from giant cell
tumor (CT)

ML— LASSO and RadCloud
(feature extraction)

10-fold cross AUC: 0.830 (radiomics),
0.980 (nomogram)

Sun 2021,
China [16]

Differentiating between benign
and malignant bone
tumours (CT)

ML— LASSO Random split AUC: 0.781 (radomics),
0.823 (nomogram)

Yin 2018,
China [17]

Differentiation of primary
chordoma, giant cell tumor, and
metastatic tumor of sacrum (MRI)

ML— analysis of variance
(ANOVA), LASSO regression with
Pearson correlation, and RF

Random split AUC: 0.773
Accuracy: 71.1%

Yin 2019,
China [18]

Differentiation of sacral
chordoma and sacral giant cell
tumor (CT)

ML— LASSO with GLM and
Spearman correlation

10-fold cross AUC: 0.942 (combined
radiomics), 0.948 (nomogram)

Yin 2021,
China [19]

Differentiation of the types of
pelvic and sacral tumors (CT)

ML— GBDT and Spearman
correlation

10-fold cross AUC: 0.923

Yin 2018,
China [20]

Differentiation of sacral
chordoma and sacral giant cell
tumour (CT)

ML— relief, LASSO, RF, GLM, SVM N/A AUC: 0.984 (LASSO + classifier
GLM for CT enhanced),
0.889 (RF + GLM for
standard CT)

Yin 2020,
China [21]

Differentiation between benign
and malignant sacral tumors (CT)

ML— LR, RF, SVM, k-nearest
neighbor (KNN); DL — DNN

10-fold cross AUC: 0.84 (LR model)
AUC: 0.83 (DNN model)

Yamazawa
2022,
Japan [22]

Differentiating skull base
chordoma and chondrosarcoma
(MRI)

ML— LR, SVM 2-fold cross AUC: 0.87–0.95 (LR model)
AUC: 0.86–0.92 (SVM model)

Herrgott 2022,
USA [23]

Differentiation between pituitary
neuroendocrine tumors from
other CNS tumors or conditions

ML— RF 10-fold cross Accuracy: 93%

Zuccato 2021,
Canada [24]

Identification of epigenetic
chordoma subtypes with plasma
methylome-based biomarkers

ML— k-means clustering Cox
regression model

10-fold cross AUC: 0.84

AI — artificial intelligence; AUC — receiver operating characteristic curve; CT — computed tomography; DL — deep learning; DNN — deep neural network; GBDT —
gradient boosting decision tree; GLM— generalized linear model; LASSO — Least Absolute Shrinkage and Selection Operator; LR — logistic regression; ML — machine
learning; MRI —magnetic resonance imagining; N/A— not applicable; RF — random forest; SVM— support vector machine

the fusion model to achieve performance compara-
ble with senior radiologists. A similar procedure was
conducted by Nie et al. in their study differentiating
chordoma from the giant cell tumor; the combina-

tion of age, tumor location, and Rad-score in the
nomogram model allowed for superior performance
compared to the standard radiomics model (AUC of
0.98 and 0.83, respectively) on the 48 patients in the
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Table 2. Survival and recurrence prediction studies reported in this review

Study Aim of the study AI technique Validation Results

Buizza 2021,
Italy [25]

Predicting local control after
carbon-ion radiotherapy in
skull-base chordoma

ML— linear survival support
vector machines (s-SVM), Cox
proportional hazards model with
elastic net penalty (r-Cox)

5-fold cross C-index: 0.73–0.80

Cheng 2023,
China [26]

Prediction of cancer-specific
survival in patients with spinal
chordoma

DL— DeepSurv and NMLTR 3-fold cross C-index: 0.830 (DeepSurv)
C-index: 0.804 (NMLTR)

Peng 2023,
China [27]

Predicting overall survival in
chordoma

DL— DeepSurv and NMLTR;
ML— RSF

5-fold cross C-index: 0.79 (DeepSurv)

Karchade
2018, USA [28]

Predicting 5-year survival in
spinal chordoma

ML— boosted Decision Tree,
SVM, bayes point machine;
DL— Unnamed Neural Network

10-fold cross C-index: 0.80 (Bayes Point
Machine)
AUC: 0.801 (Bayes Point
Machine)

Morelli 2022,
Italy [29]

Prediction of local recurrence in
sacral chordomas after
carbon-ion radiotherapy

ML— s-SVM, r-Cox with LASSO
regression

5-fold cross C-index: 0.80–0.86 (r-Cox
models)

Wei 2019,
China [30]

Characterization and local
recurrence prediction in particle
therapy of skull-base chordoma
from microstructure

ML— radiomics, ridge
regression-based Cox
proportional hazards model

3-fold cross C-index: 0.745

Zhai 2022,
China [31]

Prediction of progression-free
survival in patients with clival
chordomas

ML— radiomics, LASSO,
Elastic-Net, Cox regression

5-fold cross AUC: 0.582 (1-year),
0.852 (3-years), and
0.914 (5-years)

Li 2020,
China [32]

Prediction of clinical outcome of
patients with spinal chordoma

ML— LASSO Cox regression 10-fold cross AUC: 0.763 (1-year local
relapse-free survival),
0.797 (5-year overall
survival)

Ghaith 2023,
USA [33]

Prediction of recurrence after
clival and spinal chordoma
resection

ML – DT, RF 10-fold cross Accuracy: 77%
Specificity: 83%
Sensitivity: 75%

AI — artificial intelligence; AUC — receiver operating characteristic curve; DL — deep learning; DT — decision tree; LASSO — Least Absolute Shrinkage and Selection
Operator; ML—machine learning; NMLTR— neural network multitask logistic regression; RSF— random survival forest

Table 3. Dosimetry and drug studies reported in this review

Study Aim of the study AI technique Validation Results

Dinkla 2018,
Netherlands [34]

Accurate calculations of MRI-based
dose in the brain with DNN and
synthetic computed tomography
(sCT)

DL— dCNN 2-fold cross Mean dose deviations: 0.00%± 0.02%
(dose within the body contours),
0.13% ± 0.39% (inside the planning
target volume)

Anderson 2020,
USA [35]

Drug repurposing with synergistic
drug combinations for chordoma

ML— BayesianML 5-fold cross AUC: 0.67–0.81 (see subchapter)

AI — artificial intelligence; dCNN— dilated convolutional neural network; DL — deep learning; DNN— deep neural network; ML—machine learning; MRI —magnetic
resonance imagining; sCT— synthetic computed tomography

test cohort [15]. Sun et al. [16] reported the use of
age, ground-glass appearance, rim sclerosis, cortical
integrity, residual bony ridge, and the presence or ab-
sence of a soft tissue mass as clinical features for the
nomogram; this again allowed for better performance
than the standard radiomics model (AUC of 0.823 vs.
0.781) from the CT scans for bone tumor classifica-
tion.

Researchers are not confined to deep learning tech-
niques alone; Li et al. [12], with multiparametric
machine-learning-based (support vector machine) ra-
diomics, analyzed the differentiation performance of
chordoma and chondrosarcoma. On the validation set
with 70 MRI images, the algorithm yielded an AUC
of 0.8242, allowing for accurate differentiation. Other
machine learning (ML) techniques include least ab-
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solute shrinkage and selection operator (LASSO),
analysis of variance (ANOVA), k-nearest neighbor
(KNN), or random forest [15–22].

In the study conducted by Yin et al. [20], an assess-
ment was made of various combinations of machine-
-learning techniques. The researchers implemented
a diverse array of ML techniques, including relief,
LASSO, random forest (RF), generalised linear mod-
els (GLM), and support vector machine (SVM). The
combination of GLM and LASSO was the only one
to achieve an AUC performance exceeding 0.91 in the
differentiation of neoplasms from contrast-enhanced
CT scans, with a score of 0.984. The second high-
est performance was achieved by the combination of
GLM with Relief (0.908), followed by the double
RF combination (0.904). In the case of standard CT
scans, the superior performance was again attributed
to GLM, but this time in combination with RF and
a score of 0.889.

Herrgott et al. [23] undertook an analysis of methy-
lation markers to distinguish pituitary neuroendocrine
tumors from other central nervous system (CNS) tu-
mors or conditions. A RF ML model was employed,
utilizing 59 methylation signatures identified in serum
and 49 in plasma, profiled with the cfDNA methy-
lome EPIC array. Following a 10-fold cross-validation
in the independent cohort, the RF model achieved an
accuracy of 93% in distinguishing these neoplasms.
Zuccato et al. [24] also utilized methylation pro-
files in their efforts to distinguish between chordoma
subtypes. Employing a Cox regression model, they
achieved an AUC of 0.84 for the algorithm in the test-
ing set.

Furthermore, AI has been applied to the procedures
of neoplasm segmentation. Boussioux et al. developed
3D U-Net deep-learning architectures to perform this
automated operation on sacral chordoma CT scans
[11]. Six models were trained on a set of 30 images
and subsequently validated on a new set of 5 im-
ages. The automated segmentation of the neoplasm
yielded an expert-level Dice segmentation score of
85.5%. The continued development of AI in this field
will undoubtedly enhance the accuracy of the algo-
rithms, thereby optimizing the process of this highly
time-consuming manual segmentation.

Survival and recurrence [25–33]
The prediction of survival and recurrence prognosis
can be particularly beneficial for the patient, as it can
guide the subsequent steps of treatment. At present,
numerous proportional hazard prediction models,
such as the Cox model, are being utilized. While
these models are not considered machine-learning al-
gorithms in themselves, when coupled with LASSO,
Elastic net, or Ridge, they form a comprehensive
model capable of accurately analyzing hazard predic-
tion.

Cheng et al. [26] developed deep-learning mod-
els for the prediction of patient survival with spinal
chordoma. These models were developed using basic
demographic information (ethnicity, adjuvant ther-
apy, sex) as well as more specific tumor information
(size of the tumor at diagnosis, extent of invasion,
presence of metastasis). A 5- and 10-year survival
prediction resulted in AUC of 0.843 and 0.880, re-
spectively, as well as a C-index of 0.830 with the
use of the DeepSurv model. In a study conducted
by Peng et al. [27], researchers compared the stan-
dard Cox proportional hazards model with two deep
learning and one machine learning model. The DL
DeepSurv model was superior to the standard CoxPH
as well as the other two models, yielding an AUC of
0.84 and 0.88 for 5-year and 10-year survival predic-
tion, respectively. The Bayes point machine used in
the Karchade et al. [28] study showed a comparable
C-index but lower AUC values for 5-year prediction
compared to the Peng study.

Zhai et al. [31] assessed progression-free survival
for less than five years. Utilizing machine learning
methods (LASSO, Elastic-Net), seven radiomic fea-
tures from the MRI images, as well as clinical factors,
a nomogram was constructed to predict survivability.
In the test cohort of 53 cases, the nomogram achieved
excellent results for 5-year and 3-year survivabil-
ity, with an AUC of 0.914 and 0.852, respectively.
However, survival prediction for 1 year showed poor
performance of the algorithm (0.582), nearly equiva-
lent to random guessing. Li et al. [32] also conducted
a study for short-term prediction with the ML LASSO
Cox regression. With the use of four immune features
(sCD8+, sFoxp3+, tFoxp3+, and tPD-1+ TILs), in the
validation cohort of 60 patients, they achieved signifi-
cantly better 1-year local relapse-free survival (LRFS)
prediction (AUC of 0.763); however, the performance
of the algorithm in predicting 3-year LRFS as well as
3- and 5-year overall survival was lower than in the
Zhai study.

Buizza et al. [25] implemented imaging (CT +
+ MRI), dosiomic features [heterogeneity at different
spatial scales, shape properties (elongation, flatness)],
and clinical characteristics of the patients (anatomical
location, optic pathway involvement, or sex) to pre-
dict the local control after carbon-ion radiotherapy.
With all these features combined, the models achieved
a C-index of 0.73–0.80. Additionally, in the study,
the r-Cox model showed better performance than the
sSVM algorithm in the testing set (n = 12). These
results, while promising, still require further develop-
ment before full-scale application in clinical practice.

Ghaith et al. [33] applied the ML decision tree al-
gorithm combined with immunohistochemical mark-
ers for the prediction of recurrence. A multivariate
analysis showed that S100 and pan-cytokeratin were
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more likely to predict the increased risk of recur-
rence [odds ratio = 3.67; 95% confidence interval
(CI) 1.09–12.42; p = 0.03; and OR = 3.74; 95% CI
0.05–2.21; p = 0.02, respectively]. With the use of pa-
tient age, type of surgical treatment, location of the
tumor, S100, epithelial membrane antigen (EMA),
and pan-cytokeratin markers, the algorithm yielded an
accuracy of 77%, specificity of 83%, and sensitivity of
75% on the testing set. The ML model was also tested
without the markers, yielding a significantly lower ac-
curacy of 62.5%.

Drug and dose delivery [34, 35]
Drug repositioning, also known as repurposing,
is a prevalent strategy in pharmaceutical research,
wherein a drug developed for one condition is tested
for its efficacy in treating other diseases. Ander-
son et al. employed a machine learning Bayesian
model in their research [35]. This model was trained
on several studies that focused on the compounds
screened against chordoma cell lines. The Bayesian
model evaluated the activity of these compounds
against chordoma based on their chemical features
and known activities from previous screenings. This
trained Bayesian model was subsequently utilized to
score and predict the activity of new compounds that
were not part of the training sets. Three molecules,
namely AZD2014, RDEA119, and AZD4054, were
selected for testing based on the predictions of the
model. The scores provided by the Bayesian model
were used to assess the potential activity of these
compounds against chordoma. The authors then pro-
ceeded to conduct in vitro testing against chordoma
cell lines (U-CH1 and U-CH2). The performance of
the Bayesian model was evaluated based on its pre-
dictive accuracy of the activity of these molecules in
the experimental set. AZD2014 was identified as the
most potent against chordoma cell lines, with IC50
values of 0.35 μM for U-CH1 and 0.61 μM for U-CH2.
Additionally, substantial synergy was observed be-
tween afatinib and palbociclib (EGFR and CDK4/6
inhibitors, respectively), as well as between afatinib
and AZD2014.

In light of the current exponential growth in the
importance of MRI in intracranial tumor diagnosis,
Dinkla et al. [34] investigated one of the challenges
associated with this technology. While MRI provides
superior soft-tissue contrast, it lacks electron density
information, which is crucial for precise dose calcu-
lation. The generation of synthetic CT scans (sCT)
can be used for accurate dose calculation for radiation
therapy. To address this issue, a dilated convolutional
neural network, a deep-learning technique, was em-
ployed to create sCT scans. The algorithm was tested
on a cohort of 26 patients. Dosimetric analysis showed
mean deviations of 0.00% ± 0.02% for dose within

the body contours and 0.13% ± 0.39% inside the plan-
ning target volume. The network demonstrated low
deviations in the dose calculations as well as rapid
sCT scan generation — approximately one minute for
each scan — thus facilitating fast and accurate treat-
ment planning.

Discussion

Chordoma presents a significant clinical challenge
due to its rarity, slow growth, and complex anatomical
locations, often necessitating intricate surgical ap-
proaches. The integration of artificial intelligence into
chordoma management holds substantial promise,
offering avenues for improved diagnosis, treatment
planning, and prognostication. To our knowledge, this
is the very first systematic review describing the ap-
plication of artificial intelligence to this rare tumor
management.

Artificial intelligence has the potential to enhance
the accuracy and efficiency of chordoma diagno-
sis and segmentation. Various machine-learning and
deep-learning techniques have been applied to dif-
ferentiate chordomas from other neoplasms, lever-
aging diverse imaging modalities and clinical data.
Notably, the integration of radiomic features and clin-
ical characteristics has demonstrated superior per-
formance compared to traditional imaging-based ap-
proaches. Artificial intelligence-driven segmentation
algorithms, such as 3D U-Net architectures, offer au-
tomated and precise delineation of chordoma bound-
aries, mitigating the subjectivity and time constraints
associated with manual segmentation. Both machine
learning and deep learning models show promising re-
sults in the diagnostic sector of rare neoplasms. Some
studies reported that the major limitation of this tech-
nology is the small dataset of chordoma scans publicly
available, which currently hinders the improvement
of the accuracy of the networks. Such an increase in
scans would be significantly beneficial, especially for
deep-learning networks.

Accurate prediction of survival and recurrence
is paramount for guiding treatment decisions and
optimizing patient outcomes. Artificial intelligence
models, particularly deep learning approaches, have
shown promise in prognosticating patient survival and
disease recurrence based on demographic data, tu-
mor characteristics, and radiomic features. Despite
promising results, challenges remain in achieving ro-
bust predictions, particularly in short-term survival
prognosis. Further refinement of AI models through
incorporating additional clinical variables and vali-
dation of predictive performance in diverse patient
cohorts is warranted.

Artificial intelligence-driven approaches have the
potential to guide therapeutic strategies for chordoma,
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including drug repurposing and treatment optimiza-
tion. Machine learning models have been utilized to
predict the efficacy of existing compounds against
chordoma cell lines, facilitating the identification of
novel therapeutic candidates. Moreover, deep learn-
ing techniques enable the generation of synthetic CT
scans from MRI data, addressing the challenge of
accurate dose calculation in radiation therapy plan-
ning. These advancements highlight the transforma-
tive potential of AI in tailoring personalized treatment
regimens and optimizing therapeutic outcomes for
chordoma patients.

Despite the promising findings, several limitations
and avenues for future research should be acknowl-
edged. The majority of the reviewed studies were
retrospective, emphasizing the need for prospective
validation of AI-driven algorithms in clinical set-
tings. Additionally, the generalizability of AI models
across diverse patient populations and healthcare set-
tings warrants further investigation. Algorithms still
need to be developed in larger testing sets; in the ma-
jority of our articles, they were tested on datasets
of fewer than 70 patients. Furthermore, not all the
articles implemented validation procedures in their
analyses, which could have affected the reliability
of the results. Ethical considerations, including data
confidentiality, algorithm transparency, and bias miti-
gation, are paramount in developing and deploying AI
technologies in healthcare. Future randomized trials
could showcase the effectiveness of this technology,
compared to conventional methods.

Conclusions
Using artificial intelligence holds immense poten-
tial in revolutionizing the management of chordoma,
ranging from accurate diagnosis and segmentation
to prognostication and therapeutic optimization. Col-
laborative efforts between clinicians, researchers, and
technologists are essential to harness the full capa-
bilities of AI and translate these advancements into
tangible clinical benefits for chordoma patients. As AI
continues to evolve, its role in empowering precision
medicine approaches for rare cancers like chordoma is
poised to expand, offering renewed hope for improved
patient outcomes and quality of life.
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SUPPLEMENTARY MATERIAL

Appendix 1. Search strategy used in this
systematic review

PubMed: ((artificial intelligence) OR (convolutional
neural network) OR cnn OR (deep learning) OR (ma-
chine learning) OR (decision tree) OR (neural net-
work) OR (support vector machine) OR lasso OR
(k-means) OR knn) AND (chordoma)
Embase: (‘artificial intelligence’/exp OR ‘artificial in-
telligence’ OR (artificial AND (‘intelligence’/exp OR
intelligence)) OR ‘convolutional neural network’/exp
OR ‘convolutional neural network’ OR (convolutional
AND neural AND (‘network’/exp OR network))
OR cnn OR ‘deep learning’/exp OR ‘deep learn-
ing’ OR (deep AND (‘learning’/exp OR learning))
OR ‘machine learning’/exp OR ‘machine learn-
ing’ OR ((‘machine’/exp OR machine) AND
(‘learning’/exp OR learning)) OR ‘decision tree’/exp
OR ‘decision tree’ OR ((‘decision’/exp OR de-
cision) AND (‘tree’/exp OR tree)) OR ‘neural
network’/exp OR ‘neural network’ OR (neural AND
(‘network’/exp OR network)) OR ‘support vector
machine’/exp OR ‘support vector machine’ OR
((‘support’/exp OR support) AND (‘vector’/exp
OR vector) AND (‘machine’/exp OR machine)) OR

‘lasso’/exp OR lasso OR ‘k means’/exp OR ‘k means’
OR knn) AND (‘chordoma’/exp OR chordoma)
Web of Science: ((artificial intelligence) OR (convo-
lutional neural network) OR cnn OR (deep learning)
OR (machine learning) OR (decision tree) OR (neural
network) OR (support vector machine) OR lasso OR
(k-means) OR knn) AND (chordoma)
Scopus: ((artificial intelligence) OR (convolutional
neural network) OR cnn OR (deep learning) OR (ma-
chine learning) OR (decision tree) OR (neural net-
work) OR (support vector machine) OR lasso OR
(k-means) OR knn) AND (chordoma)
Cochrane Reviews: ((artificial intelligence) OR (con-
volutional neural network) OR cnn OR (deep learn-
ing) OR (machine learning) OR (decision tree)
OR (neural network) OR (support vector ma-
chine) OR lasso OR (k-means) OR knn) AND (chor-
doma)
Ebsco: ((artificial intelligence) OR (convolutional
neural network) OR cnn OR (deep learning) OR (ma-
chine learning) OR (decision tree) OR (neural net-
work) OR (support vector machine) OR lasso OR
(k-means) OR knn) AND (chordoma)
Ovid: (chordoma and (artificial intelligence or deep
learning or machine learning)).mp. [mp=tx, bt, ti, ab,
ct, sh, ot, nm, hw, fx, kf, ox, px, rx, an, ui, ds, on, sy,
ux, mx]
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