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ABSTRACT
Immunotherapy has emerged as a promising strategy for cancer treatment, with bispecific antibodies (BsAbs) 

demonstrating significant therapeutic potential. BsAbs are biological molecules capable of simultaneously binding 

to two distinct antigens, allowing the immune response to target cancer cells precisely. However, despite promis-

ing results in preclinical studies and early clinical trials, immunotherapy based on these antibodies faces several 

significant issues that require careful consideration. One of them is the development of therapy resistance, which 

often leads to a loss of treatment effectiveness. Another challenge is the associated toxicity of immunotherapy. 

While BsAbs are designed to limit adverse effects, there remains a risk of side effects that can impact the qual-

ity of life for patients. Furthermore, it should be noted that the production of BsAbs is burdened with significant 

costs and involves complex processes, negatively affecting the accessibility of this therapy for the majority of 

patients. Hence, continuous efforts are necessary to develop more efficient and cost-effective methods for produc-

ing these antibodies to enable a broader range of patients to benefit from this innovative therapy.
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Introduction

Groundbreaking discoveries in the field of anti-can-
cer therapy using multifunctional synthetic biotherapeu-
tics have significantly influenced the development of 
cancer immunotherapy and research into new antibody 
interaction strategies [1]. Traditional targeted therapies 
and immunotherapeutic agents typically are focused 
on a specific therapeutic target. However, thanks to 
remarkable achievements in antibody engineering, vari-
ous innovative constructs, such as bispecific antibodies 
(BsAbs), have been created [2]. The basic structure of 
an antibody is shown in Figure 1. 

Bispecific antibodies are generated through such 
techniques as chemical conjugation or genetic recom-
bination and exhibit specific structures, compositions, 
and functional, biochemical, and pharmacological prop-
erties [3, 4]. As a result, they exert effector functions 

that go beyond natural functions of antibodies, with 
applications spanning diagnostics, imaging, prophylaxis, 
and therapy [4]. Initially, their action primarily focused 
on redirecting effector cells for anti-cancer therapy. 
However, over the last decade, numerous therapeutic 
strategies based on BsAbs have been developed, in-
cluding retargeting cells, effector molecule delivery, 
and genetic payload carriers, along with investigations 
into pre-targeting, dual targeting, overcoming biological 
barriers, and extending half-life [5–7]. These antibodies 
are considered potential methods of treatment in other in-
dications, including cancer, autoimmune diseases, chronic 
inflammatory conditions, and neurodegeneration [8].

Currently, research is underway on numerous BsAb 
projects, with over a hundred in clinical evaluation for 
cancer treatment. However, the majority of these pro-
jects are still in the early stages of clinical trials, and only 
four bispecific antibodies have received approval from 
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Figure 1. Basic structure of an antibody
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the Food and Drug Administration (FDA) for clinical 
use [9, 10]. In these studies, mechanisms of BsAb action 
are being analyzed, enabling targeted recognition of 
various cancer-related targets, such as cell proliferation 
control, angiogenesis inhibition, prevention of inva-
sion, and modulation of the immune system [11, 12]. 
Nevertheless, the implementation of immunotherapy 
is not without potential side effects, limiting its appli-
cation. Therefore, further research is needed to refine 
these therapies and minimize undesirable effects [13].

Various methods of antibody design

Recombinant antibodies have been used for 
therapeutic purposes for approximately 35 years, 
and currently, many new ones are being discovered. 
Since the advent of recombinant antibody technology, 
there has been a significant increase in interest in their 
production and application, as they possess new mecha-
nisms of action that are typically not achievable with 
conventional monospecific antibodies. Their structural 
diversity can be achieved through chemical recom-
bination, DNA recombination, as well as CrossMab 
technology [14, 15].

Chemical recombination and DNA recombination 
are the two main methods for producing bispecific 
antibodies, which have significantly contributed to ad-
vances in anticancer and autoimmune therapies. The 
first method was introduced in the 1980s and allows for 

the creation of BsAbs by modifying their fragments using 
bifunctional reagents. One variation of this technique 
is the CovX-Body technology, which greatly extends 
the half-life of low molecular weight drugs, enabling less 
frequent administration of BsAbs (Fig. 2A). Meanwhile, 
the second method, developed in the 1990s, enables 
controlled production of chimeric or humanized anti-
bodies using genetic engineering techniques, including 
“knobs-into-holes” (KiH) (Fig 2B) [13, 16–28]. The 
difference between different antibody types is shown 
in Figure 3. However, these methods have certain 
drawbacks, such as high costs, risk of adverse effects, 
and ethical issues that require strict control and regula-
tion [14, 29].

In recent years, the CrossMab technology has 
become increasingly popular, enabling the correct 
pairing of light and heavy antibody chains (Fig. 2C) 
[30, 31]. This method offers advantages in terms of 
stability, production, and versatility compared to other 
techniques. However, research is still ongoing to opti-
mize the manufacturing and quality control of BsAbs 
obtained using this method [15, 32–34].

Description of selected antibodies 
and their applications

Bispecific antibodies were first described in 
the 1960s, and since then, our knowledge about them 
has significantly expanded, as evidenced by the grow-
ing number of studies dedicated to BsAbs, which has 
notably risen over the past 10 years. The particular 
interest in these antibodies stems from their therapeutic 
applications. In the last decade, 14 bispecific antibodies 
have been approved for therapeutic use: 11 for cancer 
treatment and 3 for non-oncological indications [13, 35].

Catumaxomab

One of the early representatives of BsAbs is ca-
tumaxomab, which was approved by the European 
Medicines Agency in 2009. However, it has not been pro-
duced and available for use in Europe since 2017 [36].

The use of this drug in the therapy of cancerous 
ascites proves effective because there is no barrier 
for T lymphocytes or BsAb molecules to penetrate 
the peritoneum. Cancerous ascites consist of individual 
cells floating in fluid. The anticancer action of catumax-
omab stems from its ability to bind both epithelial cells 
using the epithelial cell adhesion molecule (EpCAM) 
and T cells through CD3 (Fig. 4) [37, 38]. Therefore, 
this medication enhances the activation of the patient’s 
immune system. It was administered intraperitoneally 
in small doses ranging from 10 to 100 mg four to five 
times at approximately 2-week intervals. One of the side 
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Figure 3. The evolution of monoclonal antibodies

Figure 2. Chosen methods of bispecific antibody design

effects of this therapy was the development of antibodies 
against mouse and rat Abs [39–41].

Blinatumomab

The second drug representing BsAbs is blinatumom-
ab. Treatment with this antibody leads to a reduction 
in the number of B lymphocytes and their precursors 

in peripheral blood. After the completion of therapy, 
these cells gradually recover. Its efficacy in the treat-
ment of B-cell malignancies was first demonstrated in 
2008 in patients with refractory non-Hodgkin lymphoma. 
In 2014, the U.S. FDA approved blinatumomab for 
the treatment of Philadelphia chromosome-negative 
acute lymphoblastic leukemia as a second-line therapy. 
In the EU, the drug was registered in 2015 [42–44].
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Figure 4. The mechanism of action of catumaxomab

The bispecific molecule of blinatumomab has two 
active targeting domains: one for the CD19 molecule 
present on the surface of B lymphocytes and the other 
for the CD3 receptor located on the surface of cytotoxic 
T lymphocytes (Fig. 5). Consequently, it directs primary 
CD3+ T lymphocytes against CD19+ lymphoma cells, 
providing cytotoxicity even at very low concentrations. It 
also induces an increase in the secretion of anti-inflam-
matory cytokines. The efficacy of treating patients with 
relapsed acute lymphoblastic leukemia was confirmed 
by remission obtained in 72% of patients [45–47].

This drug has a single-chain structure, enabling easy 
expression of the protein in significant quantities, giv-
ing it broad therapeutic potential. Unfortunately, this 
characteristic necessitates continuous intravenous 
administration of the drug as it is rapidly cleared from 
the bloodstream. The use of blinatumomab leads to 
a decrease in the number of B lymphocytes to below 
one cell/µl for 2 days, and they are nearly undetectable 
until the end of the therapy. In contrast to B cells,  
the number of T lymphocytes increases in all patients 
to a maximum level on day 1 and returns to normal 
within a few days. Moreover, within approximately 
2 weeks, the number of T lymphocytes doubles in 
the majority of patients [48, 49].

Other approved bispecific antibodies

Among the registered immunoglobulins are ami-
vantamab and tebentafusp. They demonstrate promis-
ing results and represent a significant advancement in 
combating locally advanced or metastatic non-small 
cell lung cancer (NSCLC) with exon 20 insertions in 
the EGFR gene after treatment with platinum-based 
chemotherapy, and uveal melanoma (UM) [50, 51].

Amivantamab is a bispecific IgG1 antibody with 
an active Fc region, consisting of two arms. One arm 
binds to the extracellular domain of EGFR, blocking 
the binding between the receptor and its ligand epider-
mal growth factor (EGF), while the other arm blocks 
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Figure 5. Mechanism of action of blinatumomab

the binding of the hepatocyte growth factor (HGF) 
ligand to the mesenchymal-epithelial transition factor 
(MET) receptor. This immunoglobulin leads to a reduc-
tion in the number of EGFR and MET receptors on 
the cell surface, both in vitro and in vivo. Additionally, 
amivantamab maintains its effectiveness even when 
binding to the EGFR or MET receptor alone. This 
results in the inhibition of protein signaling pathways, 
which hampers the growth and survival of cancer cells 
[52, 53]. It is noteworthy that in combination with 
chemotherapy (carboplatin-pemetrexed), with or with-
out the addition of lazertinib, amivantamab significantly 
increases progression-free survival (PFS) compared 
to chemotherapy alone, reducing the risk of disease 
progression or death by 52% and 56%, respectively. 
However, in the case of a modified chemotherapy regi-
men using amivantamab and lazertinib longer monitor-
ing is required [54].

Tebentafusp is an approved therapy for uveal 
melanoma. It is a fusion protein of modified T-cell re-
ceptors. It acts by binding to peptide-HLA complexes 
specific to CD3 on the surface of target cells, enabling 
redirection of T cells to gp100+ cells in the tumor. 
Tebentafusp induces recruitment and activation of 
various T cells, leading to cytokine secretion by them 
and promoting their migration from the bloodstream 
to the tumor. Studies have shown that this bispecific 
antibody is effective in treating uveal melanoma, with 
an overall survival (OS) rate of 73% in the teben-
tafusp-treated group compared to 59% in the control 
group after one year. The FDA has approved these 
BsAbs for use in adult patients who test positive for 
HLA-A*02:01 and suffer from unresectable or meta-
static uveal melanoma [55, 56].

Investigational bispecific antibodies

The remarkably rapid progress in this field has 
resulted in numerous studies on bispecific antibod-
ies. Currently, many BsAbs are being analyzed, and some 
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of them are already in the final phase of clinical trials or 
have achieved registration. Examples of such antibodies 
include bintrafusp alfa, erfonrilimab, linvoseltamab, 
and zanidatamab [57–59].

Bintrafusp alfa is the first-in-class bifunctional fu-
sion protein consisting of the extracellular domain of 
the human tumor growth factor beta receptor (TGF-βR) 
fused to a human monoclonal antibody of immunoglobu-
lin G1 against programmed death ligand 1 (PD-L1). 
Consequently, this drug can simultaneously inhibit 
the PD-L1 and TGF-β pathways, aiding in the activation 
of the immune response against cancer cells. Bintrafusp 
alfa showed clinical activity and manageable safety in 
treatment of human papillomavirus (HPV)-associated 
cancers [57].

Erfonrilimab acts on the immune checkpoint 
proteins PD-L1 and cytotoxic T lymphocyte antigen 4  
(CTLA-4), allowing it to modulate the immune re-
sponse to cancer cells by enhancing the activity of  
T lymphocytes. Research is being conducted to evaluate 
the effectiveness, safety, and tolerance of erfonrilimab 
in combination with first-line chemotherapy for patients 
with non-small cell lung cancer [58].

Linvoseltamab is a bispecific antibody that engages  
T cells directed against B cell maturation antigen 
(BCMA) and CD3 and thus may be used to combat 
multiple myeloma. Currently, studies are underway to 
determine the optimal dose for patients with relapsed 
and refractory multiple myeloma (RRMM) who have 
undergone at least three previous lines of treatment [58].

Zanidatamab is an antibody that acts as an inhibi-
tor by promoting antigen internalization and clearance 
and triggering antibody-dependent cell-mediated cy-
totoxicity (ADCC). It is designed against two epitopes 
of HER2. This BsAb demonstrates tolerance within 
the body and antitumor activity in patients with biliary 
tract cancer who are resistant to traditional treatment 
methods. This could provide significant clinical benefits, 
particularly due to its potentially favorable safety profile, 

which may be manageable in patients with this type of 
cancer [59, 60].

The Table 1 provides an overview of selected in-
vestigational bispecific antibodies used in anti-cancer 
therapy. It presents key information about these prom-
ising molecules, including their target, application, 
and clinical trial phase [57–65].

Evaluation of the immunogenicity risk 
in bispecific antibody therapy

One of the significant challenges in developing new 
biologic drugs with multifunctional domains is immuno-
genicity. Bispecific antibodies are genetically modified 
antibodies that combine different functional domains, 
allowing for targeting of two distinct cells. However, 
the fusion of diverse domains in a single drug may lead 
to the creation of novel formats, contributing to the ex-
posure of cryptic epitopes or the formation of neoanti-
gens triggering immunogenicity. Additionally, various 
factors related to the product, patient, or the complexity 
of conditions in anticancer BsAb studies can also influ-
ence immunogenicity. Therefore, the early assessment 
of immunogenic risk is crucial to enhance the chances 
of therapeutic success [4, 66–68].

Methods

The risk associated with using bispecific antibod-
ies arises from the fact that these molecules contain 
a functional domain different from monoclonal an-
tibodies (mAb). This domain includes sequences or 
structures resembling their endogenous counterparts, 
such as cytokines or hormones, which may contribute to 
the formation of neutralizing antibodies. These antibod-
ies cross-react with the endogenous proteins, leading to 
a deficiency or disruption of their function. To address 
these challenges, tools for assessing immunogenic risk, 

Table 1. Bispecific antibodies in clinical trials

Name Target Application Clinical Trial Phase

Bintrafusp alfa PD-L1, TGF-β Non-small cell lung cancer Phase 3

Erfonrilimab PD-L1, CTLA-4 Non-small cell lung cancer Phase 3

Linvoseltamab BCMA, CD3 Multiple myeloma Phase 3

Zanidatamab HER2, HER2 Biliary tract cancer Phase 3

KN046 PD-L1, CTLA-4 Triple-negative breast cancer Phase 2

Plamotamab CD20, CD3 Hematologic malignancy Phase 2

Lorigerlimab (MGD019) PD-1, CTLA-4 Advanced solid tumors Phase 1

Tebotelimab PD-1, LAG-3 Hematologic malignancy Phase 1

Volrustomig (MEDI5752) PD-1, CTLA-4 Advanced renal cell carcinoma, Non-small cell lung cancer Phase 1

BCMA — B cell maturation antigen; CTLA-4 — cytotoxic T lymphocyte antigen 4; PD-1 — programmed cell death protein 1; PD-L1 — programmed death 
ligand 1; TGF-β — tumor growth factor beta receptor
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such as in silico algorithms and in vitro T-cell-based as-
says, have been implemented [69].

The use of in silico algorithms aims to determine 
the primary ability of the therapeutic protein’s amino 
acid sequence to bind to the major histocompatibility 
complex class II (MHC II). However, this method tends 
to exhibit overpredictability. Therefore, one should 
not expect a direct correlation between in silico results 
and clinical immunogenicity [70].

Another tool for estimating this risk is the in vitro 
T-cell assay. This method relies on sequencing, evalu-
ating the magnitude and speed of T-cell responses 
to the therapeutic protein. Typically, this analysis is 
performed on peripheral blood mononuclear cells 
(PBMCs) incubated with the test molecule, followed 
by measuring T-cell proliferation or cytokine produc-
tion. If the tested molecules have immunomodula-
tory effects, dendritic cells (DCs) proliferation assay 
is recommended. In this case, the tested molecules are 
incubated with DCs, and co-cultured with autologous 
CD4+ T cells, and T-cell proliferation is measured in 
the final stage [71, 72].

Achieving a more comprehensive assessment of 
sequence-based immunogenic risk may require the use 
of a test panel, considering various aspects of potential 
responses to anti-drug antibodies. Relying on single tests 
might be limited in providing information regarding 
this risk. Therefore, an integrated approach is recom-
mended, combining two or more tests, enabling a holistic 
and comprehensive understanding of immunogenic risk 
assignment [73].

Risk factors associated with the antibody

A crucial aspect influencing the risk of drug immu-
nogenicity is its mechanism of action. It may contribute 
to the occurrence of immune complexes, nonspecific im-
mune activation through anti-drug antibodies, and syn-
ergistic immune activation. BsAbs stimulate the immune 
system to generate a robust anti-tumor response, which 
may lead to undesired reactions. Nevertheless, immu-
notherapy is the standard treatment for selected types 
of cancers [67, 74, 75].

The formation of immune complexes between bispe-
cific antibodies and multimeric soluble targets has not 
yet been confirmed with examples in oncology. However, 
there are associations between the formation of immune 
complexes and the immunogenicity of anti-inflammatory 
drugs. This is due to the increased capture of the thera-
peutic agent by antigen-presenting cells. Large immune 
complexes can also directly crosslink B cell receptors, 
leading to their activation and the production of an-
tibodies. The stoichiometric relationships of the drug 
are crucial and can influence the formation of immune 
complexes [75–77].

Non-specific immune activation targeted at cell 
surface receptors, to mitigate unintended stimulation 
of the immune system, requires their dimerization or 
higher-order crosslinking. There is also the potential 
for using agonistic products to activate receptors, af-
ter crosslinking by anti-drug antibodies with the drug 
and the target, to lead to immune activation. Similarly, 
in the case of antagonistic products, this can activate 
receptors and release cytokines [78].

Immunostimulatory drugs may more frequently in- 
duce immunogenicity compared to drugs with known 
immunosuppressive effects. Despite this, therapy with im-
mune checkpoint inhibitors has shown a low frequency of 
anti-drug antibodies. Recently, bispecific antibodies with 
a synergistic immunostimulatory effect, inhibiting dual 
checkpoints and activating immune cells, have been devel-
oped. Many of these bispecific antibodies are still in the de-
velopmental stage, however, increased immunogenicity 
has been observed with selected therapies combined with 
checkpoint inhibitors. Therefore, the occurrence of this 
risk should be considered before initiating therapy with 
specific antibodies [79, 80].

Patient-related risk factors

Previous treatments with bispecific antibodies can 
lead to the development of anti-drug antibodies that 
may cross-react with a related product, resulting in 
the presence of pre-existing antibodies against the new 
drug. Therefore, high titers may occur early on. Taking 
this phenomenon into account, before changing treat-
ment, it is important to consider the patient’s history, 
specifically the status and specificity of anti-drug an-
tibodies, and conduct screening tests for pre-existing 
antibodies [81]. 

Factors that can influence immunogenicity and are 
associated with the patient’s body include the route, 
site of administration, and dose of the drugs. In some 
cases, a lower sporadically administered dose may 
correlate with increased immunogenicity compared 
to a higher dose given continuously. Moreover, other 
studies indicate that intravenous administration is less 
immunogenic than subcutaneous administration. It 
is also worth mentioning premedication with immu-
nosuppressants. This involves using a glucocorticoid, 
such as dexamethasone, before administering bispecific 
antibodies to dampen the immune response. However, 
it has not been demonstrated whether this is effective 
in mitigating the formation of anti-drug antibodies in 
bispecific antibody immunotherapy [82–84].

In conclusion, a comprehensive assessment of the pa-
tient’s anti-drug antibody profile becomes a key element. 
This involves a thorough analysis of both the anticipated 
effective exposure and the recommended dosing regi-
mens. This allows for better customization of therapy to 
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enhance its effectiveness and minimize potential adverse 
effects. Throughout this process, various factors such as 
the patient’s genetic predispositions, the state of their 
immune system, and overall health status should be 
taken into account [69].

Adverse effects and their treatment

With advancements in the field of biological thera-
pies, bispecific antibodies represent a promising group 
of drugs. However, their use comes with potential risks 
associated with adverse effects. The most common 
adverse effects include skin lesions, fatigue, nausea, 
vomiting, abdominal pain, as well as the occurrence of 
leukopenia and thrombocytopenia. A frequent effect 
of therapy is also the occurrence of a “cytokine storm”. 
Symptoms related to cytokine release are also side 
effects of monoclonal antibodies. Some patients may 
experience hepatotoxicity, fever and chills, in addition to 
the aforementioned symptoms. Moreover, neurological 
side effects may occur, which are entirely reversible after 
the completion of therapy [46, 85–87].

To minimize cytokine release, two therapeutic 
strategies can be employed: corticosteroids (such 
as methylprednisolone) and tocilizumab, which is 
an interleukin-6 (IL-6) receptor antagonist [88–90]. 
Additionally, temporarily discontinuing BsAb treat-
ment until the resolution of grade three or four 
symptoms and then gradually resuming therapy with 
dose escalation can be considered. According to FDA 
recommendations, the occurrence of a grade 4 cytokine 
release syndrome should result in permanent treatment 
discontinuation [91].

However, it should be noted that the number of 
reported cases resulting from the use of BsAbs is sig-
nificantly lower compared to the quantity of immune-re-
lated adverse events (irAEs) associated with immune 
checkpoint inhibitor (ICI) therapy [92]. Adverse effects 
related to ICI are organ-specific, with skin-related issues 
being the most common, followed by gastrointestinal 
toxicity [93, 94]. Endocrinologic symptoms, such as pi-
tuitary inflammation, thyroid dysfunction, and adrenal 
insufficiency, represent the third group [95]. Adverse 
effects on the musculoskeletal system and eyes are also 
frequently reported [96]. Other serious side effects of 
this therapy include myocarditis, pneumonitis, nephritis, 
neurotoxicity, and hematologic toxicity. However, they 
are not very common. In most patients experiencing 
irAEs, the mortality rate ranges from 10% to 17%, 
and for myocarditis, it is as high as 39.7%. Neurotoxicity 
is typically more severe and can lead to brain inflamma-
tion resulting in death [97].

Treatment of immune-related adverse events begins 
with effective education of patients and caregivers, both 

before starting immune checkpoint inhibitor therapy 
and throughout its duration. This includes a detailed 
explanation of the mechanism of action of immune 
checkpoint inhibitors and the principles of managing 
immune-related adverse events. Additionally, continu-
ous monitoring of the level of immune-related adverse 
events is essential. If they occur, consideration should 
be given to discontinuing or completely stopping ICI 
therapy, depending on the degree of toxicity. For most 
grade II irAEs, initiation of corticosteroid therapy is 
considered. In grade III, corticosteroid therapy is also 
necessary but in high doses, gradually tapering over 
4-6 weeks. However, if symptoms do not resolve within 
a few days, immunosuppressive drugs may also be con-
sidered [96, 98].

To avoid potential adverse effects, a crucial element 
is an individualized approach to each patient. Regular 
monitoring, both clinically and through laboratory tests, 
allows for early detection of any abnormalities. Patient 
education regarding reporting any symptoms and con-
sulting with the medical team is an integral part of 
the strategy to avoid adverse effects of bispecific anti-
body therapy. It is worth emphasizing that continuous 
scientific research and the development of monitoring 
methods are essential to refine this innovative form 
of therapy, aiming to minimize, as much as possible, 
potential risks for patients [99, 100].

Summary

The development of new technologies for obtain-
ing bispecific antibodies has enabled the construction 
of various formats, increasing therapeutic efficacy 
and safety in the treatment of cancer. These antibodies 
play a significant role in regulating signaling pathways, 
counteracting angiogenesis, and controlling the tumor 
microenvironment. Despite promising advances in 
the application of BsAbs in certain types of cancer, 
achieving greater effectiveness in the treatment of 
solid tumors still requires intensive research, as their 
development is much more complex compared to mono-
clonal antibodies. With the introduction of increasingly 
diverse BsAbs into preclinical and clinical studies, vari-
ous challenges arise, complicating the development of 
these substances.

A crucial step in designing bispecific antibodies 
is the selection of an optimal combination of targets, 
followed by choosing the appropriate format and de-
veloping the molecule in line with therapeutic goals 
and disease biology. Additionally, improper clinical 
design and dosing regimens can expose patients to 
increased toxicity, which can be somewhat minimized 
through the optimization of treatment strategies, dos-
ing, and administration sequences. It is believed that 
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many issues arising during research and development 
processes will be gradually resolved over time.

Dynamic progress in the field of bispecific antibodies 
is considered a key revolutionary factor in cancer treat-
ment. Continuous innovations in design, technology, 
and the understanding of cancer biology mechanisms 
will significantly contribute to more effective and per-
sonalized therapeutic strategies. Therefore, bispecific 
antibodies have substantial potential to transform 
the approach to cancer treatment.
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