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ABSTRACT
Introduction. Segmentation is one of the main stages of the treatment planning system (TPS), especially in 

nasopharyngeal carcinoma (NPC), because it is very heterogeneous and penetrates the skull bone tissue. An 

automated method to reduce the workload and human error caused by the lack of expertise and perspective 

would be very helpful. This meta-analysis evaluated the ability of convolutional neural networks (CNNs) to plan 

auto-segmentation computed tomography (CT) and magnetic resonance imaging (MRI) modalities. 

Material and methods. Articles published in PubMed, Scholar, and Cochrane databases were examined. The 

risk of bias was evaluated by the QUADAS-2 tool. The dice similarity coefficient (DSC) as the effect size and 

standard error (SE) as the precision index were analyzed by random effects. To calculate the degree of hetero-

geneity and its agent, we used (I2 and τ
2) and meta-regression analysis (p < 0.05). A funnel plot was used to 

check for publication bias.

Results. In general, eight studies on CT and 12 on MRI modalities were selected from 3601 studies. The hetero-

geneity based on (I2 and τ
2) and DSC values (with a 95% confidence interval) for CT and MRI modalities were 

88.7% (τ2 = 0.011), 0.67 (0.62–0.72), and 81.42% (τ2 =0.01), 0.76 (0.72–0.80), respectively.

Conclusions. CNNs’ ability to segment both CT and MRI modalities is at a medium level, and its improvement 

can make it more suitable for clinical use.

Keywords: convolutional neural network, computed tomography, magnetic resonance imaging, nasopharyngeal 

carcinoma, segmentation
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Introduction

Nasopharyngeal carcinoma (NPC) is the most com-
mon type of otolaryngological cancer that grows on the 
walls of the nasopharyngeal cavity. It has a heterogene-
ous distribution in different geographical regions, with 
the highest prevalence observed in Southeast Asia and 

moderate prevalence in South Asia and North Africa [1].  
As the tumor grows and its grade increases to T4, it 
gradually spreads to the skeletal structure of the skull, 
even to the intracranial area [2]. 

The location of the tumor in the head and neck 
region, surrounding vital organs, and high sensitivity 
to radiation are reasons for choosing radiotherapy as 
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the best treatment method [3]. The most important 
step in the treatment planning system (TPS), which is 
performed by an experienced radiation oncology spe-
cialist, is contouring of the tumor tissue (PTV) and the 
organs at risk (OARs) before starting the treatment, 
which can involve two imaging modalities: computed 
tomography (CT), magnetic resonance imaging (MRI), 
or both of them [4]. 

Magnetic resonance imaging can provide the best soft 
tissue contrast for NPC, and it is a painless and non-inva-
sive method that does not require ionizing radiation, which 
makes it possible to repeat it to take different sequences 
(such as T1W, T2W, and T1C). It can also show the shape 
and location of the lesion well [5]. Because of NPC loca-
tion, its spread to bone tissues, and the advantage of CT 
images, including the quality  of imaging with better con-
trast in bony areas and high speed, CT is the best choice. 
In addition, CT scans take less time than MRI and are 
cost-effective and available. Centers may use either of these 
two modalities according to the patient’s condition [6, 7].

Image segmentation is a time-consuming person- 
-dependent task that requires the rendering skill of the 
oncologist; therefore, its correct execution creates a large 
workload, and the smallest error in segmentation affects 
the treatment plan [8]. In addition, segmentation of NPC 
tumors is more difficult due to their greater diversity and 
heterogeneous intensity compared to other tumors. One 
of the other challenges and problems of NPC segmenta-
tion is its metamorphic form, and each stage of treatment 
may require re-segmentation. For this reason, an auto-
matic and accurate method to implement segmentation 
would be of great help [2, 9].

Among alternative methods that have been tested 
in recent years is the use of artificial intelligence for the 
automatic and accurate implementation of all TPS parts 
in various tumors [10]. In recent studies, Convolutional 
Neural Networks (CNNs) are evaluated rapidly in image 
auto-segmentation [11–13]. Therefore, in this study, we 
decided to comprehensively analyze the available lit-
erature on CNN ability to automatically perform NPC 
tumor segmentation in CT and MRI modalities.

Material and methods 

We launched a comprehensive and systematic 
search of reliable sources to learn whether CNNs 
have sufficient ability to perform accurate segmenta-
tion. The study was registered at the beginning of its 
conceptualization in PROSPERO, the international 
open-access Prospective Register of Systematic Reviews 
(CRD42022379228). 

Search strategy

We searched electronic databases, including 
MEDLINE (through PubMed) and Cochrane Library. 
In addition, a Google Scholar search of gray literature 
and publications in the arXiv database was conducted. 
There were no limitations regarding study language. 
Considering that the investigation of CNNs does not 
have a long history and has been evaluated only in recent 
years, no time limit was set for the search (in the year 
2022). The terms used for the search strategy included 
(“Nasopharyngeal carcinoma”) AND (“Segmentation” 
OR “U-Net” OR “U-Res-Net” OR “Res-UNet”) AND 
(“Computed tomography” OR “CT” OR “Magnetic res-
onance imaging” OR “MRI”). PubMed was searched us-
ing the restriction of placing the [Title/Abstract] fields in 
all terms, and no field restriction was placed in Scholar. 

After searching, Endnote software was used to col-
lect articles. First, duplicate articles were excluded from 
the study. The screening of the studies was carried out in 
three steps: title, abstract, and full text. The search and 
screening of articles were performed by two research-
ers. Our assessment overlapped in 95% of cases, and in 
the remaining cases, we resolved differences of opinion 
based on the eligibility criteria.

Study exclusion criteria

All the selected studies investigated the power of all 
CNNs in relation to the NPC tumor segment, and the ex-
amination of OAR segments was excluded from the study. 
In terms of the investigated indicators, studies that reported 
the dice similarity coefficient (DSC) index were included. 
Studies in which the size of the network training samples 
was under 15 and studies that combined positron emis-
sion tomography (PET) images with CT and MRI were 
excluded from this analysis. All study reviews, case reports, 
editorials, and letters were excluded from the study.

Data extraction

The results were classified into two subgroups: CT and 
MRI modalities. The data extracted from the studies includ-
ed the name of the first author, country and year of publi-
cation, network architecture, sample size and classification 
for training, external validation and testing, tumor staging, 
epochs number, learning rate, batch size, type of datasets, 
network dimension, CT contrast type, MRI sequence, fea-
ture extraction software, and processor characterization. 

Furthermore, the indices of network performance 
included the DSC index and Hausdorff distance (HD) 
extracted from the studies. Meta-analysis results were 
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reported using the 2020-PRISMA criteria, and the study 
protocol was written accordingly (Supplementary Tab. S1).

Quality assessment (risk of bias)

The Quality Assessment of Diagnostic Accuracy 
Studies-2 (QUADAS-2) tool was used to evaluate the 
quality of m eta-analyses and the risk of bias. This tool 
evaluates the quality of diagnostic studies and includes 
four key domains: (1) patient selection random sampling, 
(2) index test (assessment blinded for and independent 
of reference test), (3) reference standard (valid reference 
test, assessment independent of index test), and (4) flow 
and timing (sufficient time between index and reference, 
all data points included in the analysis). The set of ques-
tions for each domain had answers on three scores in-
cluding “yes-(1) score”, “no-(0) score”, and “unclear-(0) 
score”. This step was implemented by two persons.

Statistical analysis

Stata software (version 17.0; College Station, TX 
77845, US) was used to perform all statistical calcula-
tions. Excel software (Microsoft 2016) was used to extract 
primary information from the articles and perform some 

basic calculations. One of the most important indices 
for evaluating CNN segmentation results is the DSC 
index, which is used as effect size. The heterogeneity 
studies were calculated by a random effect model, I2, τ2,  
and a level higher than 0.7 (I2 > 0) was considered an in-
dicator of heterogeneity. To predict and investigate the 
effect of a variable on the obvious change in the results, 
the regression method was used, and the existence of pos-
sible publication bias was evaluated using a funnel plot.

Results

Study selection

Among the 3625 studies that were obtained by 
searching PubMed, Scholar, and Cochrane databases, 
20 studies met eligibility criteria. A flow diagram of the 
study selection process is shown in Figure 1.

Study characteristics and quality assessment

The reviewed studies on both modalities were con-
ducted in China in the years 2018–2022. Different CNNs 
included 2D–2.5D-3D UNet [14–26], modified UNet 

The number of articles found (n = 3625) 
— PubMed (n = 70) 
— Google scholar (n = 3550) 
— Cochrone (n = 5) 

The number articles after removing 
duplicate articles (n = 2362) 

Screening by articles title (n = 67) 

Screening by articles full text (n=25) 

Final articles included 
(Qualitative evaluation) (n = 20) 
CT scan (n = 8) 
MRI scan (n =12) 

Non-eligibility articles (n = 5)

Removing irrelevent articles (n = 3532)
— other cancers 
— other networks 
— other imaging protocols
— non-orginal articles   

Duplicate articles (n = 1263) �
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Figure 1. PRISMA flow diagram for study selection; CT — computed tomography; MRI — magnetic resonance imaging 
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Figure 2. Quality assessment of the studies. Part (A) is related to the quality assessment of computed tomography (CT) studies 
and part (B) is related to magnetic resonance imaging (MRI) studies

[17], 3D Res-UNet [17, 27, 28], modified 3D Res-UNet 
[14, 17], a mix of 2D and 3D Res-UNet [29, 30], 3D 
VNet [15], 3D SI-UNet [18], 3D Nested UNet [14, 19, 
31], 3D AttR2-UNet [14, 21, 31], 3D LW-UNet [32], 
and 3D DE-UNet [33].

Magnetic resonance imagining modality studies used 
hospital data [21–24, 26, 28, 29, 31–35], and CT studies 
often used the 2019 MICCAI StructSeg data [14, 15, 
17, 19] and hospital data [16, 18, 27, 30]. Two articles 
were conference papers [22, 30], and one was from the 
arXiv database [26].

In studies where CT images were analyzed, types of 
considered images were included without contrast (CT), 
and with contrast (CE-CT). Also, MRI images were 
the collection of different sequences of T1-Weighted 
(T1W), T2-Weighted (T2W), T1-Contrast (T1C), and 
multi-sequence (MS). In most studies of both modali-
ties, full details of the task were not given; however, the 
epoch size was between 40 and 600, batch size was 1–8, 
and the learning rate was 0.01–0.001.

Result of risk of bias evaluation

The quality of the articles in the CT and MRI modal-
ity groups was evaluated using the QUADAS-2 tool, as 
presented in Figure 2. 

Result of meta-analysis

The descriptive characteristics and some perfor-
mance results of NPC segmentation studies on CT scan 
MRI modalities are listed in Tables 1 [15–19, 27, 30, 36] 
and 2 [21–24, 26, 28, 29, 31–33, 35, 37], respectively. 

NPC CT scan segmentation evaluation 

Meta-analysis results of NPC segmentation studies 
of CT scan modality are presented as a forest plot in 
Figure 3. The pooled DSC was 0.67 (CI 95%, 0.62 to 
0.72; I2 = 88.07%, t2 = 0.011) (p = 0.00) for CT scan 
segmentation. 
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Figure 3. Forest plot of computed tomography (CT) modality segmentation studies. The pooled-dice similarity coefficient (DSC) 
value [calculated with the 95% confidence interval (CI) with range for each study is reported]. Studies are sorted by year, and 
all Network type values are indicated (Net: Network type).
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NPC MRI scan segmentation 

The meta-analyses result of NPC segmentation on 
the MRI modality showed that the pooled DSC was 
0.76 (95% CI 0.72 to 0.80; I2= 81.42%) (p = 0.01), and 
its forest plot is presented in Figure 4. 

Subgroup analysis 

The type of networks and their dimensions were 
evaluated in the following subgroups:

	— CT scan: based on the number of network types, 
subgroups were divided into 12 categories. The 
number of six Network types was reported with-
out a meta-analysis evaluation (including one 
study). The DSC index for 2.5D UNet, 2D UNet, 
3D UNet, 2D P-UNet, 3D P-UNet, 3D AttR2-
UNet, 3D Nested UNet, 3D Res-UNet, 3D P-Res-
UNet, 3D ResSE-UNet, 3D SI-UNet, and 3D 
VNet was 0.62 (0.49 to 0.76), 0.67 (95% CI 0.50 to 
0.83; I2 = 84.52%), 0.62 (0.95% CI 0.46 to 0.79; 
I2 = 95.64%), 0.61 (95% CI 0.48 to 0.73), 0.68 (0.95% 
CI 0.53 to 0.83; I2 = 74.68%), 0.74 (0.68 to 0.79), 

0.64 (0.95% CI 0.25 to 1.02; I2 = 41.30%), 0.67 (95% 
CI 0.53 to 0.81; I2 =74.63%), 0.70 (95% CI 0.59 to 
0.81; I2 = 74.68%), 0.79 (0.70 to 0.88), 0.74 (0.67  
to 0.81), and 0.61(0.48 to 0.75), respectively.
Furthermore, the pooled DSC values for Network 
dimensions including 2D, 2.5D, and 3D were 
0.65 (95% CI 0.54 to 0.76; I2 = 75.96%), 0.62 (0.49 to 
0.76), and 0.68 (95% CI 0.62 to 0.74; I2 = 89.20%), 
respectively;

	— MRI scan: in this modality, network types were di-
vided into ten categories (10 network types) which 
nine categories were reported without a meta-analy-
sis evaluation (including one study). The DSC index 
on 2D UNet, 3D UNet, 2D AttR2-UNet, 3D AttR2-
UNet, 2D Nested-UNet, 2D SE-UNet, 2D+3D Res-
UNet, 3D Res-UNet, 3D DE-UNet, and 3D LW-
UNet was 0.64 (0.57 to 0.72), 0.76 (95% CI 0.68 to 0.84; 
I2 = 87.20%), 0.78 (0.70 to0.87), 0.81 (0.77 to 0.86), 
0.79 (0.71 to 0.87), 0.79 (0.70 to 0.87), 0.79 (0.67 to 
0.91), 0.79 (0.77 to 0.81), 0.66 (0.52 to 0.80), and 
0.81 (0.73 to 0.89), respectively. 
The pooled DSC analysis for the subgroups of 

Network Dimensions including 2D, 2D + 3D, and 
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Figure 4. Forest plot of magnetic resonance imagining modality segmentation studies. The pooled dice similarity coefficient 
(DSC) value (calculated with a 95% confidence interval) with range for each study is reported. Studies are sorted by year, and 
all Network type values are indicated (Net: Network type)
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Figure 5. Funnel plot on computed tomography (A) and magnetic resonance imagining (B) modalities for evaluation of publication 
bias. The dice similarity coefficient (DSC) index was calculated as the effect size [95% confidence interval (CI)]

3D achieved 0.75 (95% CI 0.68 to 0.82; I2 = 67.92%), 
0.79 (0.67 to 0.91) and 0.77 (95% CI 0.71 to 0.82; 
I2 = 86.87%), respectively. 

Evaluation of possible causes of heterogeneity 

In regression evaluation, coefficients of variables 
caused heterogeneity for CT studies based on the train-
ing number, external validation, and epoch number, 

which were (0.00073, p = 0.014), (–0.13648, p = 0.008), 
(–0.00109, p = 0.041), respectively, and for MRI studies 
based on batch size (–0.02199, p = 0.010).

Publication bias

We used a funnel plot to evaluate the publication 
bias in the studies that evaluated CNNs in image seg-
mentation of both CT and MRI modalities (Fig. 5).
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Discussion

The automatic system for the segmentation of 
heterogeneous NPC tumors is very valuable because 
it reduces the workload and speeds up diagnosis and 
treatment. It is necessary to know how successful deep 
learning networks have been so far, thus the results of 
this study will be very helpful in decision-making. The 
DSC index value was selected as the effect size param-
eter, and a meta-analysis was performed along with SE.

Convolutional neural networks as a subgroup of deep 
learning were initially tested as 2D in 2018 for CT scans 
and then in 2019 for MRI. After introducing innovative 
3D networks, more studies have been devoted to these 
networks (Tab. 1, 2). However, 3D networks require 
a higher volume of calculations and more complex 
hardware for processing [39]. Recently, the expansion 
of network layers to improve network performance has 
been considered. AttR2-UNet and Nested-UNet are 
examples of such networks [40, 41].

Overall, considering the classification of the DSC 
index into three levels: good (0.8 ≤ DSC ≤ 1), medium 
(0.6 ≤ DSC < 0.8), and poor (0 ≤ DSC < 0.6)] [38], both 
MRI image (0.76) and CT image (0.67) segmentation 
networks achieved medium results, while MRI studies 
obtained better results than NPC CT image segmenta-
tion studies. However, due to the different characteris-
tics of the networks and the heterogeneous distribution 
of the studies in the two categories, it is not possible to 
draw definitive conclusions in this regard. The includ-
ed studies were performed in the past five years, which 
indicates that this field is very new and will gain more 
success with further investigations.

In addition, the pooled DSC of both CT and MRI 
modalities for different dimensions of networks (2D– 
–2.5D–3D), reported almost similar values  (~0.02 dif-
ference). In detail, the highest value of the DSC index for 
CT and MRI modalities was observed in 3D-ResSe-UNet 
(0.79), AttR2-UNet, and LW-UNet (0.81), respectively.

The limitation of analysis based on the results of the 
evaluated networks was the difference in details and per-
formance of networks, such as the used loss function and 
epoch number even in similar networks. In addition, there 
was heterogeneity regarding the training of the networks 
using CT (with and without contrast) and MRI in differ-
ent sequences. Due to the dependence of deep learning 
on the dataset, the heterogeneous distribution of patients, 
and the small number of patients in some geographical 
areas, may have affected the results of studies. Almost 
half of the CT scan segmentation studies used the same 
dataset presented in the 2019 MICCAI StructSeg, which 
reduces the impact of data type on the results and makes 

their comparison more valid. What is characteristic of 
these studies is that external validation was not performed 
in more than half of both modalities. Overall, we were 
able to reduce the heterogeneity analysis of the dimen-
sions and type of the network subgroups.

Notably, all eligible studies were conducted in China, 
and on the other hand, the highest prevalence of NPC 
cancer was reported in China (~80%) [42]. Probably, 
the number of appropriate datasets, compared to other 
countries, and prioritizing this cancer in research facili-
tated the implementation of studies.

Since it is not easy to determine the margin of small 
tumors in magnetic resonance (MR) images, it may af-
fect the ability of the network [43]. Therefore, more em-
powerment of networks to segmentation of MR images 
should be given more attention in future studies. Due 
to the impossibility of using contrast agents for patients 
with renal failure and the possibility of long-term com-
plications [44], using images with contrast is likely to be 
used less in the future, thus it is better to enable networks 
to use non-contrast images. 

Conclusions

The medium capability level of CNNs was observed 
in both CT and MRI modalities, while this capability 
was better in MRI segmentation. By improving CNNs, 
their clinical application can be made more practical.

Article Information and Declarations

Ethics statement

This article does not involve any studies with human 
participants or animals performed by any of the authors.

Author contributions

I.A. and M.Z. were equally involved in the design, lit-
erature review, and analysis of the study.

Funding

None.

Acknowledgments

None.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Supplementary Table S1.



ONCOLOGY IN CLINICAL PRACTICE 2024, Vol. 20, No. 1

36

References

1.	 Chang ET, Ye W, Zeng YX, et al. The Evolving Epidemiology of Na-
sopharyngeal Carcinoma. Cancer Epidemiol Biomarkers Prev. 2021; 
30(6): 1035–1047, doi: 10.1158/1055-9965.EPI-20-1702, indexed in 
Pubmed: 33849968.

2.	 Guo R, Mao YP, Tang LL, et al. The evolution of nasopharyngeal 
carcinoma staging. Br J Radiol. 2019; 92(1102): 20190244, doi: 
10.1259/bjr.20190244, indexed in Pubmed: 31298937.

3.	 Blanchard P, Biau J, Huguet F, et al. Radiotherapy for nasopharyngeal 
cancer. Cancer Radiother. 2022; 26(1-2): 168–173, doi: 10.1016/j.
canrad.2021.08.009, indexed in Pubmed: 34953699.

4.	 Minniti G, Goldsmith C, Brada M. Radiotherapy. Handb Clin Neurol. 
2012; 104: 215–228, doi: 10.1016/B978-0-444-52138-5.00016-5, 
indexed in Pubmed: 22230446.

5.	 King AD. MR Imaging of Nasopharyngeal Carcinoma. Magn Reson Im-
aging Clin N Am. 2022; 30(1): 19–33, doi: 10.1016/j.mric.2021.06.015, 
indexed in Pubmed: 34802578.

6.	 Choopani MR, Abedi I, Dalvand F. Quality Assessment of Computed 
Tomography Images using a Channelized Hoteling Observer: Optimiza-
tion of Protocols in Clinical Practice. Adv Biomed Res. 2023; 12: 8, doi: 
10.4103/abr.abr_353_21, indexed in Pubmed: 36926443.

7.	 Patel PR, De Jesus O. CT Scan. In: De Je. ed. StatPearls. StatPearls 
Publishing LLC, Treasure Island (FL) 2022.

8.	 Schaue D, McBride WH. Opportunities and challenges of radiotherapy 
for treating cancer. Nat Rev Clin Oncol. 2015; 12(9): 527–540, doi: 
10.1038/nrclinonc.2015.120, indexed in Pubmed: 26122185.

9.	 Claude L, Jouglar E, Duverge L, et al. Update in pediatric na-
sopharyngeal undifferentiated carcinoma. Br J Radiol. 2019; 
92(1102): 20190107, doi: 10.1259/bjr.20190107, indexed in Pubmed:  
31322911.

10.	 Wang C, Zhu X, Hong JC, et al. Artificial Intelligence in Radiotherapy 
Treatment Planning: Present and Future. Technol Cancer Res Treat. 
2019; 18: 1533033819873922, doi: 10.1177/1533033819873922, 
indexed in Pubmed: 31495281.

11.	 Shen G, Jin X, Sun C, et al. Artificial Intelligence Radiotherapy Planning: 
Automatic Segmentation of Human Organs in CT Images Based on 
a Modified Convolutional Neural Network. Front Public Health. 2022; 
10: 813135, doi: 10.3389/fpubh.2022.813135, indexed in Pubmed: 
35493368.

12.	 Liu Z, Liu F, Chen W, et al. Automatic Segmentation of Clinical Target 
Volume and Organs-at-Risk for Breast Conservative Radiotherapy 
Using a Convolutional Neural Network. Cancer Manag Res. 2021; 
13: 8209–8217, doi: 10.2147/CMAR.S330249, indexed in Pubmed: 
34754241.

13.	 Liang S, Tang F, Huang X, et al. Deep-learning-based detection and 
segmentation of organs at risk in nasopharyngeal carcinoma com-
puted tomographic images for radiotherapy planning. Eur Radiol. 
2019; 29(4): 1961–1967, doi: 10.1007/s00330-018-5748-9, indexed 
in Pubmed: 30302589.

14.	 Yang G, Dai Z, Zhang Y, et al. Multiscale Local Enhancement Deep 
Convolutional Networks for the Automated 3D Segmentation of 
Gross Tumor Volumes in Nasopharyngeal Carcinoma: A Mul-
ti-Institutional Dataset Study. Front Oncol. 2022; 12: 827991, doi: 
10.3389/fonc.2022.827991, indexed in Pubmed: 35387126.

15.	 Mei H, Lei W, Gu R, et al. Automatic segmentation of gross target 
volume of nasopharynx cancer using ensemble of multiscale deep 
neural networks with spatial attention. Neurocomputing. 2021; 438: 
211–222, doi: 10.1016/j.neucom.2020.06.146.

16.	 Li S, Xiao J, He L, et al. The Tumor Target Segmentation of Naso-
pharyngeal Cancer in CT Images Based on Deep Learning Meth-
ods. Technol Cancer Res Treat. 2019; 18: 1533033819884561, doi: 
10.1177/1533033819884561, indexed in Pubmed: 31736433.

17.	 Bai X, Hu Y, Gong G, et al. A deep learning approach to segmentation 
of nasopharyngeal carcinoma using computed tomography. Biomedi-
cal Signal Processing and Control. 2021; 64: 102246, doi: 10.1016/j.
bspc.2020.102246.

18.	 Xue X, Qin N, Hao X, et al. Sequential and Iterative Auto-Segmentation 
of High-Risk Clinical Target Volume for Radiotherapy of Nasopharyn-
geal Carcinoma in Planning CT Images. Front Oncol. 2020; 10: 1134, 
doi: 10.3389/fonc.2020.01134, indexed in Pubmed: 32793483.

19.	 Liu Y, Yuan X, Jiang X, et al. Dilated Adversarial U-Net Network for 
automatic gross tumor volume segmentation of nasopharyngeal car-
cinoma. Applied Soft Computing. 2021; 111: 107722, doi: 10.1016/j.
asoc.2021.107722.

20.	 Wong L, Ai Qy, Mo F, et al. Non contrast-enhanced imaging as 
a replacement for contrast-enhanced imaging for MRI automatic 

delineation of nasopharyngeal carcinoma. medRxiv. 2020, doi: 
10.1101/2020.07.09.20148817.

21.	 Cai M, Wang J, Yang Q, et al. Combining Images and T-Staging Infor-
mation to Improve the Automatic Segmentation of Nasopharyngeal 
Carcinoma Tumors in MR Images. IEEE Access. 2021; 9: 21323–21331, 
doi: 10.1109/access.2021.3056130.

22.	 He Yu, Yu Xi, Liu C, et al. A 3D Dual Path U-Net of Cancer Segmenta-
tion Based on MRI. 2018 IEEE 3rd International Conference on Image, 
Vision and Computing (ICIVC). 2018, doi: 10.1109/icivc.2018.8492781.

23.	 Wang Y, Zu C, Hu G, et al. Automatic Tumor Segmentation with Deep 
Convolutional Neural Networks for Radiotherapy Applications. Neural 
Processing Letters. 2018; 48(3): 1323–1334, doi: 10.1007/s11063-
017-9759-3.

24.	 Guo F, Shi C, Li X, et al. Image segmentation of nasopharyngeal carci-
noma using 3D CNN with long-range skip connection and multi-scale 
feature pyramid. Soft Computing. 2020; 24(16): 12671–12680, doi: 
10.1007/s00500-020-04708-y.

25.	 Qi Y, Yin Y, Li T, et al. A Computer Aided System for Nasopharyngeal 
Carcinoma Segmentation and Visualization Based on CT Images. 2018 
2nd International Conference on Robotics and Automation Sciences 
(ICRAS). 2018, doi: 10.1109/icras.2018.8443238.

26.	 Chen H, Qi Y, Yin Y, et al. MMFNet: A multi-modality MRI fusion network 
for segmentation of nasopharyngeal carcinoma. Neurocomputing. 
2020; 394: 27–40, doi: 10.1016/j.neucom.2020.02.002.

27.	 Wang X, Yang G, Zhang Y, et al. Automated delineation of nasophar-
ynx gross tumor volume for nasopharyngeal carcinoma by plain CT 
combining contrast-enhanced CT using deep learning. Journal of 
Radiation Research and Applied Sciences. 2020; 13(1): 568–577, doi: 
10.1080/16878507.2020.1795565.

28.	 Lin Li, Dou Qi, Jin YM, et al. Deep Learning for Automated Contouring 
of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma. 
Radiology. 2019; 291(3): 677–686, doi: 10.1148/radiol.2019182012, 
indexed in Pubmed: 30912722.

29.	 Wang D, Gong Z, Zhang Y, et al. Convolutional Neural Network Intel-
ligent Segmentation Algorithm-Based Magnetic Resonance Imaging 
in Diagnosis of Nasopharyngeal Carcinoma Foci. Contrast Media Mol 
Imaging. 2021; 2021: 2033806, doi: 10.1155/2021/2033806, indexed 
in Pubmed: 34456649.

30.	 Jin Z, Li X, Shen L, et al. Automatic Primary Gross Tumor Volume 
Segmentation for Nasopharyngeal Carcinoma using ResSE-UNet. 
2020 IEEE 33rd International Symposium on Computer-Based Medical 
Systems (CBMS). 2020, doi: 10.1109/cbms49503.2020.00116.

31.	 Zhang J, Gu L, Han G, et al. AttR2U-Net: A Fully Automated Model 
for MRI Nasopharyngeal Carcinoma Segmentation Based on Spatial 
Attention and Residual Recurrent Convolution. Front Oncol. 2021; 
11: 816672, doi: 10.3389/fonc.2021.816672, indexed in Pubmed: 
35155206.

32.	 Liu Yi, Han G, Liu X. Lightweight Compound Scaling Network for 
Nasopharyngeal Carcinoma Segmentation from MR Images. Sensors 
(Basel). 2022; 22(15), doi: 10.3390/s22155875, indexed in Pubmed: 
35957432.

33.	 Ye Y, Cai Z, Huang B, et al. Fully-Automated Segmentation of 
Nasopharyngeal Carcinoma on Dual-Sequence MRI Using Con-
volutional Neural Networks. Front Oncol. 2020; 10: 166, doi: 
10.3389/fonc.2020.00166, indexed in Pubmed: 32154168.

34.	 Wong LM, Ai QiY, Mo FKF, et al. Convolutional neural network in naso-
pharyngeal carcinoma: how good is automatic delineation for primary 
tumor on a non-contrast-enhanced fat-suppressed T2-weighted MRI? 
Jpn J Radiol. 2021; 39(6): 571–579, doi: 10.1007/s11604-021-01092-x, 
indexed in Pubmed: 33544302.

35.	 Qi Y, Li J, Chen H, et al. Computer-aided diagnosis and regional 
segmentation of nasopharyngeal carcinoma based on multi-modal-
ity medical images. Int J Comput Assist Radiol Surg. 2021; 16(6): 
871–882, doi: 10.1007/s11548-021-02351-y, indexed in Pubmed:  
33782844.

36.	 Yang B, Chen X, Li J, et al. A feasible method to evaluate deformable 
image registration with deep learning-based segmentation. Phys 
Med. 2022; 95: 50–56, doi: 10.1016/j.ejmp.2022.01.006, indexed in 
Pubmed: 35091332.

37.	 Wong ML. Applications of Deep Learning in MRI of Nasopharyngeal 
Carcinoma. The Chinese University of Hong Kong, Hong Kong 2021.

38.	 Velker VM, Rodrigues GB, Dinniwell R, et al. Creation of RTOG 
compliant patient CT-atlases for automated atlas based contour-
ing of local regional breast and high-risk prostate cancers. Radiat 
Oncol. 2013; 8: 188, doi: 10.1186/1748-717X-8-188, indexed in 
Pubmed: 23885662.

39.	 Nguyen D, Long T, Jia X, et al. A feasibility study for predicting optimal 
radiation therapy dose distributions of prostate cancer patients from 

http://dx.doi.org/10.1158/1055-9965.EPI-20-1702
https://www.ncbi.nlm.nih.gov/pubmed/33849968
http://dx.doi.org/10.1259/bjr.20190244
https://www.ncbi.nlm.nih.gov/pubmed/31298937
http://dx.doi.org/10.1016/j.canrad.2021.08.009
http://dx.doi.org/10.1016/j.canrad.2021.08.009
https://www.ncbi.nlm.nih.gov/pubmed/34953699
http://dx.doi.org/10.1016/B978-0-444-52138-5.00016-5
https://www.ncbi.nlm.nih.gov/pubmed/22230446
http://dx.doi.org/10.1016/j.mric.2021.06.015
https://www.ncbi.nlm.nih.gov/pubmed/34802578
http://dx.doi.org/10.4103/abr.abr_353_21
https://www.ncbi.nlm.nih.gov/pubmed/36926443
http://dx.doi.org/10.1038/nrclinonc.2015.120
https://www.ncbi.nlm.nih.gov/pubmed/26122185
http://dx.doi.org/10.1259/bjr.20190107
https://www.ncbi.nlm.nih.gov/pubmed/31322911
http://dx.doi.org/10.1177/1533033819873922
https://www.ncbi.nlm.nih.gov/pubmed/31495281
http://dx.doi.org/10.3389/fpubh.2022.813135
https://www.ncbi.nlm.nih.gov/pubmed/35493368
http://dx.doi.org/10.2147/CMAR.S330249
https://www.ncbi.nlm.nih.gov/pubmed/34754241
http://dx.doi.org/10.1007/s00330-018-5748-9
https://www.ncbi.nlm.nih.gov/pubmed/30302589
http://dx.doi.org/10.3389/fonc.2022.827991
https://www.ncbi.nlm.nih.gov/pubmed/35387126
http://dx.doi.org/10.1016/j.neucom.2020.06.146
http://dx.doi.org/10.1177/1533033819884561
https://www.ncbi.nlm.nih.gov/pubmed/31736433
http://dx.doi.org/10.1016/j.bspc.2020.102246
http://dx.doi.org/10.1016/j.bspc.2020.102246
http://dx.doi.org/10.3389/fonc.2020.01134
https://www.ncbi.nlm.nih.gov/pubmed/32793483
http://dx.doi.org/10.1016/j.asoc.2021.107722
http://dx.doi.org/10.1016/j.asoc.2021.107722
http://dx.doi.org/10.1101/2020.07.09.20148817
http://dx.doi.org/10.1109/access.2021.3056130
http://dx.doi.org/10.1109/icivc.2018.8492781
http://dx.doi.org/10.1007/s11063-017-9759-3
http://dx.doi.org/10.1007/s11063-017-9759-3
http://dx.doi.org/10.1007/s00500-020-04708-y
http://dx.doi.org/10.1109/icras.2018.8443238
http://dx.doi.org/10.1016/j.neucom.2020.02.002
http://dx.doi.org/10.1080/16878507.2020.1795565
http://dx.doi.org/10.1148/radiol.2019182012
https://www.ncbi.nlm.nih.gov/pubmed/30912722
http://dx.doi.org/10.1155/2021/2033806
https://www.ncbi.nlm.nih.gov/pubmed/34456649
http://dx.doi.org/10.1109/cbms49503.2020.00116
http://dx.doi.org/10.3389/fonc.2021.816672
https://www.ncbi.nlm.nih.gov/pubmed/35155206
http://dx.doi.org/10.3390/s22155875
https://www.ncbi.nlm.nih.gov/pubmed/35957432
http://dx.doi.org/10.3389/fonc.2020.00166
https://www.ncbi.nlm.nih.gov/pubmed/32154168
http://dx.doi.org/10.1007/s11604-021-01092-x
https://www.ncbi.nlm.nih.gov/pubmed/33544302
http://dx.doi.org/10.1007/s11548-021-02351-y
https://www.ncbi.nlm.nih.gov/pubmed/33782844
http://dx.doi.org/10.1016/j.ejmp.2022.01.006
https://www.ncbi.nlm.nih.gov/pubmed/35091332
http://dx.doi.org/10.1186/1748-717X-8-188
https://www.ncbi.nlm.nih.gov/pubmed/23885662


Maryam Zamanian, Iraj Abedi, Auto-segmentation of nasopharyngeal carcinoma tumor

37

patient anatomy using deep learning. Sci Rep. 2019; 9(1): 1076, doi: 
10.1038/s41598-018-37741-x, indexed in Pubmed: 30705354.

40.	 Zhu N, Liu C, Forsyth B, et al. Segmentation with Residual Atten-
tion U-Net and an Edge-Enhancement Approach Preserves Cell 
Shape Features. Annu Int Conf IEEE Eng Med Biol Soc. 2022; 2022: 
2115–2118, doi: 10.1109/EMBC48229.2022.9871026, indexed in 
Pubmed: 36085725.

41.	 Kundu S, Karale V, Ghorai G, et al. Nested U-Net for Segmentation of 
Red Lesions in Retinal Fundus Images and Sub-image Classification 
for Removal of False Positives. J Digit Imaging. 2022; 35(5): 1111–1119, 
doi: 10.1007/s10278-022-00629-4, indexed in Pubmed: 35474556.

42.	 Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. 
CA Cancer J Clin. 2016; 66(2): 115–132, doi: 10.3322/caac.21338, 
indexed in Pubmed: 26808342.

43.	 Spicer GJ, Kazim M, Glass LR, et al. Accuracy of MRI in defining tu-
mor-free margin in optic nerve glioma surgery. Ophthalmic Plast Recon-
str Surg. 2013; 29(4): 277–280, doi: 10.1097/IOP.0b013e318291658e, 
indexed in Pubmed: 23715516.

44.	 Pasquini L, Napolitano A, Visconti E, et al. Gadolinium-Based 
Contrast Agent-Related Toxicities. CNS Drugs. 2018; 32(3): 
229–240, doi: 10.1007/s40263-018-0500-1, indexed in Pubmed:  
29508245.

http://dx.doi.org/10.1038/s41598-018-37741-x
https://www.ncbi.nlm.nih.gov/pubmed/30705354
http://dx.doi.org/10.1109/EMBC48229.2022.9871026
https://www.ncbi.nlm.nih.gov/pubmed/36085725
http://dx.doi.org/10.1007/s10278-022-00629-4
https://www.ncbi.nlm.nih.gov/pubmed/35474556
http://dx.doi.org/10.3322/caac.21338
https://www.ncbi.nlm.nih.gov/pubmed/26808342
http://dx.doi.org/10.1097/IOP.0b013e318291658e
https://www.ncbi.nlm.nih.gov/pubmed/23715516
http://dx.doi.org/10.1007/s40263-018-0500-1
https://www.ncbi.nlm.nih.gov/pubmed/29508245


ONCOLOGY IN CLINICAL PRACTICE 2024, Vol. 20, No. 1

38

Supplementary material

Table S1. PRISIMA 2020 checklist (based on: Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: 
an updated guideline for reporting systematic reviews. BMJ. 2021; 372: n71)

Section  
and topic

Item

#

Checklist item Location 
where item 
is reported

TITLE

Title 1 Identify the report as a systematic review Page 1

ABSTRACT

Abstract 2 See the PRISMA 2020 for Abstracts checklist Page 2, P1

INTRODUCTION

Rationale 3 Describe the rationale for the review in the context of existing knowledge Page 3, P4, 5, 6

Objectives 4 Provide an explicit statement of the objective(s) or question(s) the review addresses Page 3, P7

METHODS

Eligibility 
criteria

5 Specify the inclusion and exclusion criteria for the review and how studies were 
grouped for the syntheses

Page 4, P4

Information 
sources

6 Specify all databases, registers, websites, organizations, reference lists and other 
sources searched or consulted to identify studies. Specify the date when each source 
was last searched or consulted

Page 4, P2

Search 
strategy

7 Present the full search strategies for all databases, registers and websites, including any 
filters and limits used

Page 4, P1

Selection 
process

8 Specify the methods used to decide whether a study met the inclusion criteria of the review, 
including how many reviewers screened each record and each report retrieved, whether they 
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RESULTS
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Fig 1
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24a Provide registration information for the review, including register name and 
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prepared
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