Vol 22, No 2 (2019)
Research paper
Published online: 2019-07-31

open access

Page views 900
Article views/downloads 896
Get Citation

Connect on Social Media

Connect on Social Media

Lung perfusion scintigraphy in the assessment of pulmonary circulation after completion of surgical treatment of a hypoplastic left heart syndrome (HLHS)

Katarzyna Kovaćević-Kuśmierek1, Anna Mazurek-Kula2, Tomasz Moszura2, Jadwiga Moll2, Anna Płachcińska1, Jacek Kuśmierek3
DOI: 10.5603/NMR.2019.0018
Pubmed: 31482561
Nucl. Med. Rev 2019;22(2):81-84.

Abstract

INTRODUCTION: Hypoplastic left heart syndrome (HLHS) is an inborn complex heart malformation. A multi-stage treatment is initiated in a neonatal period with a Norwood surgery. The next step is Glenn surgery — a bidirectional superior cavo-pulmonary anastomosis. At the last stage anastomosis of inferior vena cava (IVC) with the right pulmonary artery (RPA) is formed as a result of a Fontan surgery. The aim of this study was to assess lung perfusion in patients with HLHS after completion of a surgical therapy, using a scintigraphic method.

MATERIAL AND METHODS: In 92 patients with HLHS a planar lung scintigraphy in anterior and posterior projections after administration of 99mTc-macroaggregates in activity 18-111MBq was carried out twice (in several day intervals). At first, a radiopharmaceutical was administered to the right extremity in order to assess the lung distribution of blood flowing through the anastomosis of superior vena cava (SVC) with RPA. In the next study, after administration of the tracer to the right lower extremity, the distribution of blood flowing through the anastomosis of IVC with RPA was assessed. The relative percentage of each lung in the total lung perfusion was calculated on a Xeleris workstation using the “Lung perfusion analysis” program. Lung perfusion was considered close to symmetrical when the proportion was in the range of 40–60%.

RESULTS: In spite of the fact that mean relative values of distribution of blood flowing through the anastomosis of SVC with RPA to the left lung (LL) and right lung (RL) in the entire study group did not differ significantly: LLmean = 47%; RLmean = 53%, p = 0.14, relative values of perfusion of both lungs were differentiated — in 26% of patients LL was better perfused, in 38% RL was better perfused and in 36% a perfusion of both lungs was similar. The analysis of blood distribution by anastomosis of IVC with RPA showed that the mean relative perfusion of RL was significantly higher than that of LL (70% vs. 30%, p < 0.0000001). No signs of pulmonary emboli were detected. In 13% of studied patients, uptake of the radiopharmaceutical in kidneys was shown indicating the presence of shunt “from right to left”.

CONCLUSIONS: After completion of surgical treatment of patients with HLHS, differentiated blood supply of the lungs was observed through SVC with RPA anastomosis and a tendency to higher blood supply of RL than LL by anastomosis of IVC with RPA. No signs of pulmonary embolism were detected. The study revealed a “right to left” shunt in some patients.

Article available in PDF format

View PDF Download PDF file

References

  1. Gobergs R, Salputra E, Lubaua I. Hypoplastic left heart syndrome: a review. Acta Med Litu. 2016; 23(2): 86–98.
  2. Greenleaf CE, Urencio JM, Salazar JD, et al. Hypoplastic left heart syndrome: current perspectives. Transl Pediatr. 2016; 5(3): 142–146.
  3. Fruitman DS. Hypoplastic left heart syndrome: Prognosis and management options. Paediatr Child Health. 2000; 5(4): 219–225.
  4. Tamir A, Melloul M, Berant M, et al. Lung perfusion scans in patients with congenital heart defects. J Am Coll Cardiol. 1992; 19(2): 383–388.
  5. Fathala A. Quantitative lung perfusion scintigraphy in patients with congenital heart disease. Heart Views. 2010; 11(3): 109–114.
  6. Itani M, Matesan M, Ahuja J, et al. The Role of Pulmonary Scintigraphy in the Evaluation of Adults with Congenital Heart Disease. Semin Nucl Med. 2017; 47(6): 660–670.
  7. Wu MT, Huang YL, Hsieh KS, et al. Influence of pulmonary regurgitation inequality on differential perfusion of the lungs in tetralogy of Fallot after repair: a phase-contrast magnetic resonance imaging and perfusion scintigraphy study. J Am Coll Cardiol. 2007; 49(18): 1880–1886.
  8. Boothroyd AE, McDonald EA, Carty H. Lung perfusion scintigraphy in patients with congenital heart disease: sensitivity and important pitfalls. Nucl Med Commun. 1996; 17(1): 33–39.
  9. Yin Z, Wang H, Wang Z, et al. Radionuclide and angiographic assessment of pulmonary perfusion after Fontan procedure: comparative interim outcomes. Ann Thorac Surg. 2012; 93(2): 620–625.
  10. Glass T, Heyman S, Seliem M, et al. Use of Tc-99m MAA in Determining the Etiology of Increasing Cyanosis Following SVC-PA Anastomosis for the Hypoplastic Left Heart Syndrom. Clinical Nuclear Medicine. 1991; 16(6): 410–412.
  11. Torso S, Milanesi O, Bui F, et al. Radionuclide evaluation of lung perfusion after the Fontan procedure. International Journal of Cardiology. 1988; 20(1): 107–116.
  12. Varma C, Warr MR, Hendler AL, et al. Prevalence of "silent" pulmonary emboli in adults after the Fontan operation. J Am Coll Cardiol. 2003; 41(12): 2252–2258.
  13. Fratz S, Hess J, Schwaiger M, et al. More accurate quantification of pulmonary blood flow by magnetic resonance imaging than by lung perfusion scintigraphy in patients with fontan circulation. Circulation. 2002; 106(12): 1510–1513.
  14. Casella SL, Kaza A, Del Nido P, et al. Targeted Increase in Pulmonary Blood Flow in a Bidirectional Glenn Circulation. Semin Thorac Cardiovasc Surg. 2018; 30(2): 182–188.
  15. Matsushita T, Matsuda H, Ogawa M, et al. Assessment of the intrapulmonary ventilation-perfusion distribution after the Fontan procedure for complex cardiac anomalies: relation to pulmonary hemodynamics. J Am Coll Cardiol. 1990; 15(4): 842–848.
  16. Viswanathan S. Thromboembolism and anticoagulation after Fontan surgery. Ann Pediatr Cardiol. 2016; 9(3): 236–240.
  17. Bartolome BF, Martinez PF, Zurita BM. Pulmonary thromboembolism after Fontan operation. Rev Esp Cardiol. 2002; 55: 449–451.
  18. Cloutier A, Ash JM, Smallhorn JF, et al. Abnormal distribution of pulmonary blood flow after the Glenn shunt or Fontan procedure: risk of development of arteriovenous fistulae. Circulation. 1985; 72(3): 471–479.
  19. Pruckmayer M, Zacherl S, Salzer-Muhar U, et al. Scintigraphic assessment of pulmonary and whole-body blood flow patterns after surgical intervention in congenital heart disease. J Nucl Med. 1999; 40(9): 1477–1483.
  20. Rosenbaum RC, Reiner BI, Bidwell JK, et al. Right-to-left shunting via persistent left superior vena cava identified by perfusion lung scintigraphy. J Nucl Med. 1989; 30(3): 412–414.