open access

Vol 6, No 2 (2003)
Published online: 2003-10-10
Submitted: 2012-01-23
Get Citation

Application of artificial neural network algorithm to detection of parathyroid adenoma

Bogusław Stefaniak, Witold Cholewiński, Anna Tarkowska
Nucl. Med. Rev 2003;6(2):111-117.

open access

Vol 6, No 2 (2003)
Published online: 2003-10-10
Submitted: 2012-01-23

Abstract

Background: The most common radionuclide procedures for parathyroid imaging are 99mTc-MIBI/ 99mTc pertechnetate subtraction scintigraphy and 99mTc-MIBI double-phase imaging, with estimation of MIBI wash-out rate. Those two methods are by some authors regarded as complementary techniques, yielding the best evaluation of parathyroid gland if performed conjointly. By such an approach it seems reasonable to substitute the visual assessment of neck scintigrams and semiquantitative evaluation of MIBI wash-out rate with a single, common procedure. The aim of this study was application of the Artificial Neural Network (ANN) simulated by the computer program to detection and localisation of pathological parathyroid tissue in the planar neck scintigrams.
Material and methods methods: The applied algorithm was based on simultaneous data processing in sets of 3 single pixels, each of them belonging to one of the three consecutive neck scintigrams generated 20 min. after 99mTcO4 - administration, 10 min. after 99mTc-MIBI injection and 120 min. after 99mTc-MIBI injection, respectively. Those scintigrams were aligned which each other according to the same vertical and horizontal co-ordinates. The training patterns were obtained from 25 patients by searching for maximum count numbers within small ROIs drawn in selected scintigraphic areas, arbitrarily classified and coded in a numerical scale. In 10 pts the results of ANN simulation were compared with those obtained by common conventional assessment of two radionuclide parathyroid examinations: subtraction method and 99mTc-MIBI double-phase imaging.
Results: The training patterns processed by the neural network showed a close relationship with the results of visual assessment of original neck scintigrams, with R square coefficient R2 = 0.717, and standard error equal to 0.243. Similar comparison between original data and results of multidimensional regression analysis yielded weaker relationship, with R2 = 0.543 and standard error 0.567. Parametric images obtained by the neural network presented regions with homogeneously distributed, relatively high activity, greater than or equal to 750 cts/pixel, visualized in areas of confirmed abnormal parathyroid location. In all 10 patients with suspected parathyroid adenoma results obtained by ANN simulation agreed with those by conventional methods. In five of these cases no parathyroid abnormalities were found. In the remaining 5 subjects results of both approaches were positive but the abnormalities were depicted more distinctly and visualised more clearly in parametric images received by ANN than in original scans.
Conclusions: Application of trained ANN enables objective and quantitative detection and localisation of parathyroid adenoma and is a good alternative for conventional radionuclide imaging procedures used in diagnosing parathyroid abnormality. Including in neural network simulation not only scintigraphic data, but also clinical symptoms and/or some other indicators of parathyroid abnormality, parathormone level first of all, should be a next step in developing a procedure for assessing parathyroid abnormality, of high diagnostic accuracy.

Abstract

Background: The most common radionuclide procedures for parathyroid imaging are 99mTc-MIBI/ 99mTc pertechnetate subtraction scintigraphy and 99mTc-MIBI double-phase imaging, with estimation of MIBI wash-out rate. Those two methods are by some authors regarded as complementary techniques, yielding the best evaluation of parathyroid gland if performed conjointly. By such an approach it seems reasonable to substitute the visual assessment of neck scintigrams and semiquantitative evaluation of MIBI wash-out rate with a single, common procedure. The aim of this study was application of the Artificial Neural Network (ANN) simulated by the computer program to detection and localisation of pathological parathyroid tissue in the planar neck scintigrams.
Material and methods methods: The applied algorithm was based on simultaneous data processing in sets of 3 single pixels, each of them belonging to one of the three consecutive neck scintigrams generated 20 min. after 99mTcO4 - administration, 10 min. after 99mTc-MIBI injection and 120 min. after 99mTc-MIBI injection, respectively. Those scintigrams were aligned which each other according to the same vertical and horizontal co-ordinates. The training patterns were obtained from 25 patients by searching for maximum count numbers within small ROIs drawn in selected scintigraphic areas, arbitrarily classified and coded in a numerical scale. In 10 pts the results of ANN simulation were compared with those obtained by common conventional assessment of two radionuclide parathyroid examinations: subtraction method and 99mTc-MIBI double-phase imaging.
Results: The training patterns processed by the neural network showed a close relationship with the results of visual assessment of original neck scintigrams, with R square coefficient R2 = 0.717, and standard error equal to 0.243. Similar comparison between original data and results of multidimensional regression analysis yielded weaker relationship, with R2 = 0.543 and standard error 0.567. Parametric images obtained by the neural network presented regions with homogeneously distributed, relatively high activity, greater than or equal to 750 cts/pixel, visualized in areas of confirmed abnormal parathyroid location. In all 10 patients with suspected parathyroid adenoma results obtained by ANN simulation agreed with those by conventional methods. In five of these cases no parathyroid abnormalities were found. In the remaining 5 subjects results of both approaches were positive but the abnormalities were depicted more distinctly and visualised more clearly in parametric images received by ANN than in original scans.
Conclusions: Application of trained ANN enables objective and quantitative detection and localisation of parathyroid adenoma and is a good alternative for conventional radionuclide imaging procedures used in diagnosing parathyroid abnormality. Including in neural network simulation not only scintigraphic data, but also clinical symptoms and/or some other indicators of parathyroid abnormality, parathormone level first of all, should be a next step in developing a procedure for assessing parathyroid abnormality, of high diagnostic accuracy.
Get Citation

Keywords

parathyroid adenoma; artificial neural networks; parametric image

About this article
Title

Application of artificial neural network algorithm to detection of parathyroid adenoma

Journal

Nuclear Medicine Review

Issue

Vol 6, No 2 (2003)

Pages

111-117

Published online

2003-10-10

Bibliographic record

Nucl. Med. Rev 2003;6(2):111-117.

Keywords

parathyroid adenoma
artificial neural networks
parametric image

Authors

Bogusław Stefaniak
Witold Cholewiński
Anna Tarkowska

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By "Via Medica sp. z o.o." sp.k., Świętokrzyska 73 street, 80–180 Gdańsk, Poland

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl