Vertebral photopenia on $[^{67}\text{Ga}]$Ga-citrate and $[^{18}\text{F}]$FDG PET/CT imaging in a patient with non-Hodgkin lymphoma

Georgios Meristoudis1,3, Ioannis Ilias2, Vasilios Giannakopoulos3

1Department of Nuclear Medicine, Hippokration General Hospital, Thessaloniki, Greece
2Department of Endocrinology, Elena Venizelou General Hospital, Athens, Greece
3Department of Nuclear Medicine, Sotiria General Hospital, Athens, Greece

Received: 26 IV 2022; Accepted: 4 IX 2022

Abstract

A cold vertebral defect is an uncommon finding, especially in Gallium-67-citrate ($[^{67}\text{Ga}]$Ga-citrate) — and $[^{18}\text{F}]$fluorodeoxyglucose ($[^{18}\text{F}]$FDG) — avid lymphomas, representing a diagnostic challenge. Here, we present the case of a patient with non-Hodgkin lymphoma (NHL), in whom the $[^{67}\text{Ga}]$Ga-citrate and $[^{18}\text{F}]$FDG scans showed a diffuse skeletal uptake pattern with concomitant appearance of a cold vertebral defect. Awareness of the different causes of such uptake patterns and accurate clinical information is important to avoid misinterpretation of nuclear studies in oncologic patients.

KEY words: cold vertebrae; $[^{67}\text{Ga}]$Ga-citrate; $[^{18}\text{F}]$FDG; PET; vertebral hemangioma

Conflict of interest

The authors declare no conflicts of interest.
Figure 1. (A) Posterior planar \[^{67}\text{Ga}\]Ga-citrate image of the chest shows diffuse increased skeletal uptake and a photon-deficient lesion at the level of the T6 vertebra. (B) Sagittal \[^{18}\text{F}\]FDG PET (i) and PET/CT (ii) slices demonstrate the prominent metabolic activity with slightly heterogeneous distribution within the vertebral bodies and a hypometabolic area in the posterior T6 vertebral body. (C) Posterior planar view of the thorax (i), and posterior view of the maximum intensity projection (MIP) with single-photon emission computed tomography (ii), show that the cold lesion remained unchanged on \[^{67}\text{Ga}\]Ga-citrate scan follow-up.