The use of 67Ga scintigraphy in patients with sarcoidosis

Ewa Malinowska, Anna Doboszyńska, Anna Śliwińska, John R. Buscombe, Grzegorz Kulesza, Beata Moczulska, Jarosław B. Ćwikła

Clinical Department of Pulmonology, University of Warmia and Mazury, Olszyn

[Received 4 XII 2017; Accepted 20 XII 2017]

Abstract

Sarcoidosis is a systemic disease of unknown etiology characterized by the formation of noncaseating granulomas in various organs and tissues. The various imaging modalities that are useful in the investigation of lesions, staging and establishing indications for treatment include: conventional radiography, CT, MRI, and scintigraphy with 67Ga, 201Tl, 99mTc sestamibi, and somatostatin receptor scintigraphy (SRS) as well as 18F-FDG-PET/CT. This paper discusses the most commonly used technique of the scintigraphic, gallium (67Ga) citrate) and its role in the evaluation and monitoring of patients with sarcoidosis.

KEY words: sarcoidosis, 67Ga scintigraphy, SPECT/CT

Background

Sarcoidosis is a systemic disease of unknown etiology characterized by the formation of noncaseating granulomas in various organs and tissues. In about 90% of the patients, mediastinal and hilar lymph nodes and the pulmonary parenchyma are involved [1].

Systemic disease and multiple organs are frequently involved with a prevalence that varies from population to population though this may be related to the ability to identify sites of disease with the technology available to a particular patient group. For example cardiac sarcoidosis is discovered on autopsy in 13–25% of the patients in the USA, while clinical manifestations are present in about 5% of these patients. In Japan, cardiac sarcoidosis is found in as many as 58–85% of patients. Cutaneous involvement is seen in 20–35% of patients, ocular involvement in 10–60%, nervous system involvement in about 5%, and musculoskeletal involvement in about 30%. In autopsy studies, hepatic involvement is seen in about 50–80% of the patients, although its clinical manifestations are much less frequent. In 5% of patients, the pancreas is affected. Renal involvement is reported in 7–23% of subjects [1].

The systemic nature of the disease means that those techniques which allow for whole body imaging are therefore more advantageous than those techniques such as in conventional radiography, ultrasound (US) and MRI, and to some extent CT. Radionuclide studies have the advantage that vertex to toe imaging is easily performed. This allows involvement in organs such as the brain and joints such as the knees and ankles to be assessed with a single investigation. Single photon agents which have been used to identify active sites of sarcoid with radionuclide studies, including conventional scintigraphy with 67Ga citrate, 201Tl chloride, 99mTc sestamibi and somatostatin receptor scintigraphy (SRS) using agents such as 99mTc-HYNICTOC [2–5].

The evaluation of disease activity in patients with suspected or confirmed sarcoidosis is of utmost clinical significance. It allows the establishing of indications for further management and pharmacotherapy and also when such treatment can be stopped as spontaneous remissions are observed in most patients. Though in a small percentage of patients, the clinical course of sarcoidosis may be severe and in some cases lead to death shortly following the diagnosis [6]. An accepted method of monitoring the activity of sarcoid is to look at the plasma angiotensin converting enzyme (ACE) level. When this is elevated at diagnosis this can be a very good method for monitoring disease activity with an expected reduction to a normal level in quiescent disease [7]. The major problem with use of the serum ACE is that in as many as 50% of patients levels are not elevated in active disease [8, 9]. In these patients the best alternate method is scintigraphy and at present the greatest evidence is for the use of 67Ga citrate scintigraphy.

Gallium (67Ga) citrate scintigraphy

In gallium (67Ga) scintigraphy a standard gamma camera is used, however, there are multiple energies emitted including those at 70 keV, 170 keV, 300 keV and 394 keV. Though the 394 keV has only a 4% abundance it can cause significant septal penetration and scatter effect on the image unless a high energy collimator is used. This can reduce count rate, higher activity cannot normally be administered due to the poor dosimetry of 67Ga imaging so that an administered activity of 300 MBq gives an effective dose of 18 mSv which is the greatest radiation dose for any common radionuclide test. However, once injected imaging can be versatile.
with planar, whole-body SPECT (Single Photon Emission Computed Tomography) views being performed and more recently hybrid imaging combining SPECT and CT (SPECT/CT).

There is a variable physiological uptake of 67Ga. Initially there is high blood pool and urinary excretion is seen when the 67Ga is unbound [10, 11]. By 24 hours, however, most of the 67Ga is bound to transferrin and lactoferrin as it is an iron analogue. These proteins act as acute phase proteins and concentrate around the sites of focal infection and inflammation. There is also physiological activity in the liver and large intestine. The colonic activity can be very variable even within the same patients with no evidence that these changes in colonic activity has any pathological consequences. Slightly lower physiological uptake of the radiotracer is evident in the spleen, in the bone marrow (though in patients with activated bone marrow due to anaemia this bone marrow uptake can be intense), oral cavity and perineum. Other variants of physiological radiotracer uptake are associated with the activity of the glandular parenchyma of both breasts during the menstrual cycle, with a particularly high uptake being seen during lactation (such that following the administration of 67Ga breastfeeding should be discontinued). There can be low grade uptake in lacrimal and salivary glands. Due to these physiological constraints image acquisition is usually performed 48 hours after i.v. administration of the radiotracer. In exceptional cases, if unequivocal images are obtained after 48 hours, an additional acquisition should be carried out after 72 hours, although this is not often done. Given the timing of radiotracer administration and the image acquisition that follows 48 hours later, the patient needs to come to the imaging facility twice.

Changes in thoracic lymph nodes and pulmonary parenchyma

In patients with sarcoidosis, the disease process most commonly affects hilar and mediastinal lymph nodes. Involvement is most commonly symmetrical, as is also evident on 67Ga citrate scintigraphy in the form of symmetrical radiotracer uptake over the lymph nodes of both hilar and the upper mediastinum producing the so called lambda sign (Fig. 1, 2) [12, 13]. The disease less frequently affects other local lymph node groups. This pattern of uptake is the most commonly seen in sarcoaid and can be considered diagnostic.

Involvement of lymph nodes other than hilar and mediastinal and unilateral involvement usually suggests a different diagnosis such as a well-differentiated Hodgkin or non-Hodgkin lymphoma, although in some cases it is caused by other rare diseases (e.g. IgG4-related disease) [14]. However as stated previously sarcoaid uptake tends to be symmetrical, if there is doubt, however, biopsy of a 67Ga citrate avid node is diagnostic. The use of SPECT may allow the mediastinal and hilar nodal activity to be seen more clearly (Fig. 4).

Of greater concern because it can carry a much worse prognosis is parenchymal diffuse uptake of 67Ga citrate uptake by the pulmonary parenchyma showing a diffuse (usually) pattern, but in some cases a geographic or even a focal pattern, which may suggest an alternate active inflammation or infectious process [15].

As the intensity of parenchymal lung disease can have an impact on patient survival it has been found useful to quantify the uptake of 67Ga citrate using the 5 point, Kramer scale originally used in patients with HIV but often re-applied to patients with sarcoaid [16] (Table 1).
In 67Ga scintigraphy, increased radiotracer uptake by the lacrimal and parotid glands coupled with uptake by nasopharyngeal structures results in the characteristic “panda” sign (Fig. 2). Although this sign can also be seen in Sjögren syndrome, lymphomas (especially after head and neck radiotherapy), AIDS and IgG4-related disease, the sensitivity of this sign is 80% and 74% in patients with sarcoidosis in stage I and stage II, respectively. According to some authors, the sensitivity of the panda sign is even higher (96%), and in diseases other than sarcoidosis, e.g. IgG4-related disease, is only 62% [14]. At the same time, the presence of the panda sign and of the already discussed lambda sign is very characteristic of sarcoidosis [17–21]. There can be some confusion as there may be normal physiological uptake in the lacrimal and salivary glands and it may need experience to differentiate normal uptake from the elevated uptake seen in sarcoid.

Skeletal muscle

Muscles involvement in sarcoidosis is often asymptomatic and laboratory tests do not provide any indication of the possibility of this pathology either. Gallium scintigraphy is characterised by a high sensitivity in imaging superficial changes (located in skeletal muscles and skin) [12]. The increased radiotracer uptake by skeletal muscles observed on 67Ga scintigraphy is confirmed on MRI, which reveals changes consistent with sarcoid granulomas in locations with increased radiotracer uptake [22]. Skeletal muscle involvement combined with the involvement of hilar and mediastinal lymph nodes, lacrimal glands and skin is manifested on 67Ga scintigraphy by a pattern that is sometimes called the dappled-body sign or leopard-man sign [23]. Remission of skeletal muscle changes as a result of glucocorticosteroid treatment is also visible on 67Ga scintigraphy [24].

Central nervous system

Central nervous system (CNS) involvement in sarcoidosis patients may manifest clinically by cranial nerve palsies, aseptic meningitis, peripheral neuropathy (e.g. Guillain-Barre syndrome [25]) or myopathy. The diagnostic criteria for neurosarcoidosis published in 1999 are still in use [26].

The diagnosis of definite neurosarcoidosis (presence of non-caseating granulomas on histopathological examination of nerve tissue) is only possible in few patients [27]. Most cases carry the diagnosis of probable neurosarcoidosis, which depends on the clinical symptoms and signs and the diagnosis of sarcoid made from a non CNS site by biopsy or characteristic extra CNS lesions seen 67Ga scintigraphy coupled with changes on MRI or in the cerebrospinal fluid suggestive of sarcoidosis. At the same time, histopathological examination of lesions outside the CNS reveals non-caseating granulomas that confirm the presence of sarcoidosis.

67Ga scintigraphy is therefore an auxiliary investigation in the diagnosis of sarcoidosis. In some cases, especially where no clinical manifestations are found outside the CNS, increased radiotracer uptake may indicate the optimal biopsy site and provide the highest likelihood of establishing the final pathological diagnosis [28, 29].
Bones and joints

Involvement of joints, which may be acute or chronic, is reported in 15–25% of sarcoidosis patients. Acute articular involvement most commonly occurs in the early stages of the disease and may be its first manifestation. Clinically, it takes the form of arthralgia, arthritis or polyarthritis. Both wrists and ulnar joints are most commonly affected. The changes may migrate and are often accompanied by erythema nodosum [30].

Chronic joint disease associated with sarcoidosis is much less common or less frequently diagnosed due to its chronic nature and relatively mild clinical manifestations compared to other symptoms of active sarcoidosis. It may be accompanied by skeletal muscle and bone involvement. It shows predilection for sacroiliac joints and spondyloarthritis [31, 32].

On 67Ga citrate scintigraphy, joint changes appear as areas of usually increased diffuse radiotracer uptake over the affected joint, usually including the articular capsule and synovium, usually with its hypertrophy and mild inflammation (Fig. 5).

Bone changes in sarcoidosis are often asymptomatic, although in some patients, they can cause severe pain. Bones of the hands and feet are most commonly affected [31]. Radiographic and CT images reveal osteosclerotic or osteolytic lesions (the so-called lacey pattern) and are not specific for sarcoidosis. It should...
be emphasised that 67Ga scanning reveals any infectious and inflammatory changes, including tuberculosis in the lungs and other organs [32].

Heart

Cardiac involvement is the most common cause of death in patients with sarcoidosis in Japan (58–85% of the cases). The death rate in other countries is lower (eg. 13–25% in the United States) [1]. Cardiac sarcoidosis may manifest clinically as rhythm and conduction disorders (ventricular tachycardia [VT] or atrioventricular [AV] block) and congestive heart failure [33]. Cardiac involvement most commonly occurs before the age of 50 years and is more common in women. While clinical manifestations of cardiac involvement occur in 2–7% of the patients, autopsy studies reveal sarcoid granulomas in 50% of the patients. It is therefore recommended that patients with both histologically detected extracardiac changes suggestive of sarcoidosis and clinical manifestations suggestive of cardiac involvement should be evaluated for this possibility [34].

The lesions in the heart are most commonly located in the interventricular septum and the inferior wall of the left ventricle. The scintigraphic diagnosis no longer depends on the use of 67Ga citrate scintigraphy in detecting cardiac lesions as the sensitivity is low (0–36%) [35], although in symptomatic patients with episodes of VT or AV block, it can be up to 80% [36]. The specificity

Figure 6. Whole-body (WB) 67Ga scintigraphy in the AP (A) and the PA (B) views and a SPECT/CT scan in the transverse (C) and the coronal (D) views with SPECT and CT image fusion. Active sarcoidosis in a 38-year-old male. Evident involvement of the salivary glands, nasopharynx and lacrimal glands (the panda sign). Additionally, evident pathology in the mediastinum and both pulmonary hili: nodal lesions (the lambda sign). Diffuse, slightly increased radiotracer uptake over both lung zones. Bilateral involvement of inguinal lymph nodes. Additionally, involvement of sacroiliac joints in the course of sarcoidosis, more on the left than on the right.
is, however, very high (94–100%) [34]. Increased 67Ga uptake by sarcoid granulomas may predispose to a good response to corticosteroids [37].

67Ga scans performed in patients during treatment of sarcoidosis with systemic steroids reveal a decrease in radiotracer uptake by the lesions as a result of the treatment. This can be seen as early as 30 days into treatment [31, 32]. Such differences are not observed in heart scintigraphy with 99mTc or 99mTc MIBI [37–39].

The recommended method for diagnosis of cardiac sarcoid is to perform 18F-FDG, though this needs preparation with a low carbohydrate high glucose diet for 48 hours post scan. Focal uptake of 18F FDG is seen in the presence of cardiac sarcoid but can only be used in the presence of normal myocardial perfusion.

Kidneys

Renal involvement in sarcoidosis may manifest by nephrocalcinosis, nephrocalcinosis, nephrogenic diabetes insipidus, acute interstitial nephritis, granulomatous pseudotumour, and renal failure [1, 40]. There is little published data on the role of 67Ga scintigraphy in the evaluation of renal changes. Isolated case reports indicate that patients with renal involvement do not reveal increased renal uptake of 67Ga, which is contradicted by our yet unpublished findings of increased radiotracer uptake over the affected kidneys [40, 41].

Pathologically increased 67Ga uptake by the kidneys in a female patient with sarcoidosis is illustrated in Figures 6A and 6B.

Has 67Ga citrate imaging a future in the time of PET

There is increasing evidence that 18F-FDG may be more accurate than 67Ga citrate and pick up unsuspected sites of disease [42–44]. In a prospective comparative study 18 patients with sarcoid was imaged with both 18F-FDG and 67Ga citrate. The sensitivity of 67Ga in the lungs was 84% compared to 100 with 18F-FDG. In extra-pulmonary disease the sensitivity of 67Ga citrate was 48% compared to 90% with 18F-FDG [45]. 18F-FDG was also noted to predict clinical response to treatment faster than changes in 67Ga citrate. European and North American guidelines confirm that the overall accuracy of 18F-FDG PET in studies including 173 patients [46]. Whilst 18F-FDG seems the more accurate test in many countries there is no reimbursement for PET in sarcoidosis so until that time it is unlikely to replace 67Ga citrate imaging.

Conclusion

67Ga citrate scintigraphy has been used is sarcoidosis for over 30 years. Imaging is improved by the use of SPECT and SPECT-CT and can find and determine the activity of the patient’s sarcoid in all but some cases of neurosarcoid and may be essential when the serum ACE is unhelpful. Many recent publications have compared the sensitivity and specificity of 18FDG-PET/CT with those of 67Ga, revealing superiority of the former. Until PET imaging in sarcoid is reimbursed, 67Ga citrate scintigraphy remains the scintigraphic method of choice in sarcoid.

References

