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Abstract

BACKGROUND: Tumor hypoxia induces the expression of several genes via the hypoxia-inducible transcription factor-1 alpha 
(HIF-1a). It is associated with the prognosis of several cancers. We studied the immunohistochemical expression of HIF-1a in 
patients with invasive ductal cancer (IDC) of the breast and the possible correlation with the maximum standardized uptake value 
of the primary tumor (pSUVmax) as well as other biological parameters. Prognostic significance of pSUVmax and expression 
of HIF-1a for the prediction of progression-free survival (PFS) was also assessed. 

MATERIAL AND METHODS: Two-hundred seven female patients with IDC who underwent pretreatment fluorine-18 fluoro-
deoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT) were enrolled. The pSUVmax was 
compared with clinicopathological parameters including estrogen receptor (ER), progesterone receptor (PR), human epidermal 
growth factor receptor 2 (HER2), axillary lymph node (LN) metastasis, stage and HIF-1a expression. The prognostic value of 
pSUVmax for PFS was assessed using the Kaplan-Meier method.

RESULTS: pSUVmax was significantly higher in patients with HIF-1a expression ≥ 2 compared to patients with HIF-1a ex-
pression < 2 (5.2 ± 4.5 vs. 3.7 ± 3.1, p = 0.008). pSUVmax was also significantly higher in higher stage (p < 0.000001), 
ER-negative tumors (p < 0.0001), PR-negative tumors (p = 0.0011) and positive LN metastasis (p = 0.0013). pSUVmax 
was significantly higher in patients with progression compared to patients who were disease-free (6.8 ± 4.4 vs. 4.1 ± 3.7,  
p = 0.0005). A receiver-operating characteristic curve demonstrated a pSUVmax of 6.51 to be the optimal cutoff for predicting 
PFS (sensitivity: 53.6%, specificity: 86.0%). Patients with high pSUVmax (> 6.5) had significantly shorter PFS compared to 
patients with low pSUVmax (p < 0.0001).

CONCLUSIONS: pSUVmax on pretreatment F-18 FDG PET/ CT reflect expression of HIF-1a and can be used as a good sur-
rogate marker for the prediction of progression in patients with IDC. The amount of FDG uptake is determined by the presence 
of glucose metabolism and hypoxia in breast cancer cell.

KEY words: HIF-1a, invasive ductal cancer of breast, F-18 FDG PET/CT, SUVmax
Nucl Med Rev 2017; 20, 1: 32–38

Background

Breast cancer is the most frequent malignancy in women 
in the United States and the second most common cause of 
cancer-related mortality. Although it is curable when detected early, 
about one-third of women with breast cancer eventually die of the 

disease. Breast cancer is a remarkably heterogeneous disease. 
Therefore, precise prediction of prognosis and selection of optimal 
treatment are important [1].

Hypoxia is an important cellular stressor that triggers a survival 
program by which cells attempt to adapt to the new environment. 
This involves adaptation of metabolism and/or stimulation of oxy-
gen delivery. These cell-rescuing mechanisms can be conducted 
rapidly by hypoxia-inducible factor-1 (HIF-1), a transcription factor 
that reacts to hypoxic conditions [2]. HIF-1 stimulates processes like 
angiogenesis, glycolysis and erythropoiesis [3] by activating 
genes that are responsible for these processes. The HIF-1 complex 
consists of two subunits, HIF-1a and HIF-1b. Protein concentra-
tions of HIF-1a depend on the cellular oxygen concentration [4, 5]. 
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Cancer cells are able to survive and proliferate in extreme microen-
vironmental circumstances and show changes in oncogenes and 
tumor suppressor genes. Hypoxia and HIF-1 have been implicated 
in carcinogenesis and in clinical behavior of tumors. Up-regulation 
of HIF-1a is noted during breast carcinogenesis, especially in 
the poorly differentiated pathway [6]. Hypoxia is related to poor 
response to therapy in various cancer types. In invasive breast 
cancer, high HIF-1a concentrations have been associated with poor 
survival in lymph node (LN) negative patients [7]. As prognosis in 
breast cancer is closely related to proliferation rate and poorly 
differentiated tumors usually exhibit high proliferation and HIF-1a 
overexpression [8], the prognostic value of HIF-1a might well be 
explained by a close association between HIF-1a and proliferation.

Traditionally, pathological determination of the tumor size, histo-
logical tumor grade, axillary LN involvement, estrogen receptor (ER), 
progesterone receptor (PR) and human epidermal growth factor 
receptor 2 (HER2) status have driven prognostic predictions for 
patients with breast cancer. However, HIF-1a is not recognized 
as a prognostic factor for breast cancer.

F-18 fluorodeoxyglucose positron emission tomography/com-
puterized tomography (PET/CT) is widely used in clinical practice 
for the diagnosis, staging, treatment monitoring and detection 
of disease recurrence in breast cancer patients [9]. PET/CT 
provides quantitative data on the level of metabolic activity by 
calculating the degree of F-18 FDG uptake, known as the stand-
ardized uptake value (SUV). PET/CT also has been suggested to 
have a considerable prognostic utility in various cancers [10–13]. 
In a previous study, primary tumor maximum SUV (pSUVmax) 
exhibited a strong relationship to known prognostic parameters of 
invasive ductal cancer (IDC) of the breast and could be used 
as a good surrogate marker for the prediction of progression in 
patients with IDC [14]. But the relationship between HIF-1a and 
pSUVmax was not clearly reported in IDC. 

Therefore, we investigated the relationship between the maxi-
mum SUV of the primary tumor (pSUVmax), HIF-1a and known 
prognostic parameters of breast cancer. Prognostic value of pSU-
Vmax was evaluated for the prognosis of progression-free survival 
(PFS) in patients with newly diagnosed primary IDC. 

Materials and methods

Subjects
A total of two-hundred seven IDC female patients (age 25–90 

years, mean age; 52.4 ± 9.5 years) who underwent F-18 FDG 
PET/CT before any cancer treatment from May 2005 to November 
2010 were enrolled in this study. Primary breast cancer was di-
agnosed histopathologically with fine-needle aspiration cytology 
(FNAC) and/or core-needle biopsy (CNB). Patients with a history 
of insulin-dependent diabetes mellitus or who were diagnosed with 
excision biopsy were excluded. Primary tumor features included 
tumor size, ER, PR, HER2 status and HIF-1a status (Table 1). To 
obtain the tumor size, the longest diameter of the tumor was care-
fully measured from the ultrasonography (USG). Mammography, 
breast USG, magnetic resonance image, CT, whole body bone 
scan, and F-18 FDG PET/CT were used for the diagnosis of 
disease recurrence, metastasis, or progression, and all suspi-
cious lesions were confirmed histologically by FNAC. Progression 
was defined as progression of disease to a more advanced TNM 

stage, a more advanced clinical stage, or relapse noted on im-
ages with histological confirmation.

F-18 FDG PET/CT
All patients fasted for at least 6 h before the administration 

of F-18 FDG, and blood glucose concentration was confirmed to 
be < 150 mg/dl in all subjects. Approximately 8.1 MBq of F-18 FDG 
per kg body weight was injected intravenously, and patients were 
advised to rest for an hour before acquisition of the PET/CT im-
age. PET/CT scans were performed using a Discovery STE (GE 
Healthcare, Milwaukee, WI; 6-slice CT). First, a low-dose CT scan 
was obtained for attenuation correction, and the PET scan was fol-
lowed at 3 min per bed position. PET data were reconstructed 
iteratively using an ordered-subset expectation maximization al-
gorithm with the low-dose CT data sets for attenuation correction. 
An SUV was measured for all primary breast cancer lesions and 
presented as the SUVmax. The PET/CT images were interpreted by 
two experienced nuclear medicine physicians and a final consen-
sus reached for all patients. A region of interest (ROI) was placed 
manually over all breast tumors in attenuation corrected images, 
and the SUVmax within the ROIs was recorded.

Construction of tissue microarrays (TMA)
Representative paraffin tumor blocks were selected accord-

ing to the primary evaluation of hematoxylin and eosin (H & E) 
stained slides before they were prepared for TMA. Two tumor tissue 
cores (2 mm in diameter) were taken from each of the donor breast 
cancer tissue blocks with a Quick-RayTM manual punch arrayer 
(Uni-Tech Science, Seoul, South Korea). The cores were placed in 
a new recipient paraffin block that ultimately contained 46 tissue 
cores. Totally 18 TMA blocks are used, each array block contained 
both tumor and control tissue samples. Multiple sections (5 μm 
thickness) were cut from the TMA blocks and then mounted onto 
microscope slides. The TMA H & E stained sections were reviewed 
under light microscopy to confirm the presence of representative 
tumor areas.

Immunohistochemical staining and interpretation
Immunohistochemistry was conducted on 5 μm-thick TMA 

tissue sections using the Bond Polymer Intense Detection Sys-
tem (Leica Microsystems, Nusslock, Germany) according to the 
manufacturer’s instructions with minor modifications. Briefly, the 5 
μm thick sections of formalin-fixed and paraffin-embedded TMA 
tissues were deparaffinized with Bond Dewax Solution (Leica Mi-
crosystems), and an antigen retrieval procedure was performed 
using Bond ER Solution (Leica Microsystems, Nusslock, Germany) 
for 30 min at 100oC. The endogenous peroxidase was quenched 
by 5-min incubation with hydrogen peroxide. Sections were incu-
bated for 15 min at ambient temperature with commercially avail-
able primary monoclonal antibodies for ER (1:100, clone 6F11, 
Novocastra, Newcastle, United Kingdom), PR (1:100, clone 16, 
Novocastra), HER2 (1:250, A0485, Dako, Carpinteria, CA), and 
HIF-1a (1:50, clone H1alpha67, Novus Biologicals, Litten CO, 
USA) using a biotin-free polymeric horseradish peroxidase-linker 
antibody conjugate system in a Bond-Max automatic slide stainer 
(Leica Microsystems).

The expressions of hormonal receptors, ER and PR, were 
recorded according to the American Society of Clinical Oncol-
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ogy/College of American Pathologists (ASCO/CAP) guide-
lines [15]. Cases with an HER-2 IHC staining score of > 2 were 
tested by HER2 gene amplification using the fluorescence in 
situ hybridization (FISH) method. HER-2 positive was defined 
as an IHC staining score of 3+ or, in the case of an IHC staining 
score of 2+, FISH positivity. The HIF-1a expression was scored 
according to the intensity of tumor cells exhibiting cytoplasmic 
staining (0 = none, 1 = weak, 2 = moderate, and 3 = strong). 
Moderate or strong cytoplasmic staining was considered 
as positive expression. 

Statistical analyses
Numeric data are expressed as the mean ± SD. Moreover, 

to compare pSUVmax, HIF-1a expression was divided into two 
groups according to thresholds (2): negative (HIF-1a expres-
sion < 2) and positive (HIF-1a expression ≥ 2). The relationship 
between levels of primary tumor SUVmax (pSUVmax) and clinico-
pathological parameters was evaluated using the Mann-Whitney 
U-test and the Kruskal-Wallis test using MedCalc software, version 
15.11.4 (MedCalc, Mariakerke, Belgium). To identify an optimal cut-
off value of pSUVmax for the prediction of progression, receiver-op-
erating characteristic (ROC) analysis was performed. Moreover, we 

used the log rank test according to the all patient’s pSUVmax. Cutoff 
value was established by the maximum log rank statistical value. 
A pSUVmax higher than the cutoff value was defined as a “high 
SUVmax”, and a pSUVmax below the cutoff value was defined 
as a “low SUVmax”. Kaplan-Meier curves for high vs. low pSUV-
max were calculated for PFS by logrank test. A P-value of < 0.05 
was considered to be statistically significant.

Results

Patient characteristics
Pertinent characteristics of the patients are summarized in Table 

1. The mean age was 52.4 ± 9.5 years, ranging from 25 to 90. The 
median follow-up period was 49 months (mean ± SD = 48.8 ± 20.7, 
range: 26–97 months). Tumor stage was categorized by the size of 
primary tumor (T): 126 (60.3%) in T stage 1, 76 (36.7%) in T stage 2 
and 5 (3.0%) patients in T stage 3. Axillary LN involvement at pathol-
ogy was observed in 78 patients (37.7%). There were 99 (47.8%) 
patients in stage I, 76 (36.7%) in stage II, 26 (12.6%) in stage III, 
and 6 (2.9%) in stage IV IDC (Table 1). All 207 patients underwent 
surgery. While 151 patients received chemotherapy, 111 received 
radiotherapy, and 151 received hormonal therapy, according to 

Table 1. Patients with IDC: pSUVmax values and recurrence according to prognostic factors

Variables N (%) pSUVmax (mean ± SD) p value

Tumor size

T1b; 0.5 cm < size ≤ 1.0 cm 47 (22.2) 2.6 ± 2.5 < 0.000001

T1c; 1.0 cm < size ≤ 2.0 cm 79 (38.1) 3.8 ± 3.6

T2; 2.0 cm < size ≤ 5.0 cm 76 (36.7) 5.9 ± 3.9

T3; 5.0 cm < size 5 (3.0) 8.2 ± 7.8

Estrogen receptor (ER)

Negative 63 (30.4) 6.8 ± 4.9 < 0.0001

Positive 144 (69.6) 3.4 ± 2.8

Progesterone receptor (PR)

Negative 56 (27.0) 6.2 ± 5.1 0.0011

Positive 151 (73.0) 3.8 ± 3.1

HER2

Negative 42 (20.2) 5.6 ± 5.2 0.1720

Positive 165 (79.8) 4.1 ± 3.4

HIF-1a

Negative (< 2) 110 (53.1) 3.7 ± 3.1 0.008

Positive (≥ 2) 97 (46.9) 5.2 ± 4.5

Axillary LN involvement 

Negative 129 (62.3) 4.0 ± 4.1 0.0013

Positive 78 (37.7) 5.1 ± 3.4

Stage, pathologic

I 99 (47.8) 3.1 ± 3.4 < 0.000001

II 76 (36.7) 5.8 ± 4.1

III 26 (12.6) 5.2 ± 3.4

IV 6 (2.9) 6.2 ± 4.4

Recurrence

Recurrence-free 179 (86.4) 4.1 ± 3.7 0.0005

Recurrence 28 (13.6) 6.8 ± 4.4



35www.nmr.viamedica.pl

Young-Ju Jeong et al., Jae-Won Jung, Correlation of HIF-1a and SUVmax in IDC

Original

clinical status. 179 (86.4%) patients were in a disease-free status, 
and 28 (13.6%) patients presented a progression during follow-up. 

Relationship between pSUVmax and 
clinicopathological parameters

Table 1 shows pSUVmax differences according to the 
clinicopathological parameters. Mean pSUVmax of the 207 pa-
tients was 4.4 ± 3.9 (range, 0.5 to 21.3). The mean pSUVmax 
was significantly different among the T-stage groups (p < 0.000001) 
and was increased as tumor size increased. pSUVmax was sig-
nificantly higher in ER-negative tumors (p < 0.0001), PR-negative 
tumors (p = 0.0011), HIF-1a positive expression (p = 0.008) and 
tumors with positive LN metastasis (p = 0.0013) compared to 
ER-positive tumors, PR-positive tumors, HIF-1a negative expression 
and tumors without LN metastasis, respectively. However, there 
was no significant difference in pSUVmax according to HER2 sta-
tus (p = 0.1720). The mean pSUVmax was 3.1 ± 3.4 in stage I, 
5.8 ± 4.1 in stage II, 5.2 ± 3.4 in stage III, and 6.2 ± 4.4 in stage 
IV, respectively, which were significantly different between each 
group (p < 0.000001).

PFS
Twenty eight (13.6%) of the 207 patients experienced 

progression, and the median follow-up time to progression 
was 49 months (mean ± SD = 48.8 ± 20.7, range: 26–97 months). 
pSUVmax was significantly higher in patients with progression 
than in those who were disease-free. The mean pSUVmax of the 
disease-free group was 4.1 ± 3.7 and that of the progression group 
was 6.8 ± 4.4 (p = 0.0005, Figure 1, 4 and 5). 

A ROC curve demonstrated a pSUVmax of 6.8 to be the optimal 
cutoff for predicting PFS (area under the curve: 0.727; standard 
error: 0.0471) (Figure 2). A pSUVmax of 6.8 yielded a sensitivity of 
53.6% and a specificity of 86.0% for prediction the PFS. Also, the 
result of the log-rank test according to the all patient’s pSUVmax 

showed a cutoff value of 6.6, representing maximum log rank 
statistical value (p = 0.0001).

In the survival analysis using the Kaplan-Meier method, pa-
tients with a pSUVmax > 6.8 had a significantly shorter PFS than 
patients with pSUVmax < 6.8 (p < 0.0001, Figure 3–5).

Discussion

To our knowledge, this is the first retrospective study to evalu-
ate the biologic correlation of pSUVmax and expression of HIF-1a 
in patients with IDC. Cells subjected to hypoxia must undergo 
metabolic adaptations to survive. Under hypoxic conditions there 
is also a parallel increase in glucose uptake, which is facilitated by 
up-regulation of Glut1 expression. Hypoxia is a potent stimulus for 
Glut1 mRNA induction in a variety of tumor cell lines [16]. The mech-
anism of Glut1message induction by hypoxia is complicated and 
is dually controlled by low oxygen concentration and by inhibition 
of oxidative phosphorylation [17]. The cobalt-responsive element 
in the rat Glut1 promoter has been mapped and is homologous to 
the mouse Enhancer-1 sequence [16, 17]. Transactivation through 
this element in the promoter is mediated by HIF-1 [16] that binds to 
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Figure 1. pSUVmax differences according to HIF-1a expression group. 
Mann-Whitney U-test reveals a significant difference between the HIF-
1a negative (< 2) group and HIF-1a positive (≥ 2) (p = 0.008). Mean 
values of pSUVmax (3.73 in the HIF-1a negative and 5.16 in the HIF-1a 
positive) are indicated with red boxes. The error bars represent the 
95% confidence interval for mean

Figure 2. Optimal cutoff of pSUVmax for predicting progression-free 
survival

Figure 3. Progression-free survival according to the pSUVmax
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a specific DNA consensus sequence, 59-RCGTG-39, found in 
the promoters of many hypoxia-inducible genes [18]. The HIF-1 
transcription factor consists of two subunits, HIF-1a and HIF-1b. 
HIF-1a protein, which is unique to the HIF-1 complex, is rapidly 
degraded in oxygenated cells by the ubiquitin-proteasome pathway 
[19]. HIF-1a protein is specifically induced by hypoxia in a graded 
response dependent on the oxygen concentration [5].

Determination of malignant lesions with PET/CT is based 
on their glucose metabolism [20, 21]. The overexpression of 
Glut1 is closely related to FDG uptake in human cancer [20, 21]. 
Glut1 is thought to be a possible intrinsic marker of hypoxia, and 
its expression is regulated by hypoxia via HIF-1 [22, 23]. Hypoxic 
conditions may correspond to higher FDG uptake [24]. In addition, 
several studies described the relationship between FDG uptake 
and the expression of vascular endothelial growth factor (VEGF) or 

micro-vessel density (MVD) [25, 26]. HIF is considered to support 
tumor growth by the induction of angiogenesis via the expression 
of VEGF and also by anaerobic metabolic mechanisms [27]. In 
this study, we found that high pSUVmax was related to poor out-
come in patient with IDC and indicated that high HIF-1a expression 
was also related to poor prognosis.

Various prognostic factors have been proposed for the risk 
stratification of patients with breast cancer, such as involvement 
of axillary LNs, presence of distant metastases, hormonal receptor 
status and HER2 status. However, these pathological predictors can 
only be obtained after surgery, which is frequently associated with 
significant morbidity and mortality. Also tissue samples some-
times cannot be obtained even with invasive diagnostic procedures. 
On the other hand, PET/CT can provide quantitative information 
about tumor glucose metabolism, which represents the aggres-

Figure 4. A. A 57-year-old female patient diagnosed with IDC (pSUVmax 10.0, tumor size 3.5 cm, ER-, PR+, HER2+, HIF-1a 3+) and underwent 
PET/CT before cancer treatment. In the pre-treatment, a focal hypermetabolic lesion in the right breast (red arrow) and enlarged LNs with focal FDG 
uptake in the right axillary area (SUVmax 10.7, red arrow) were shown, which were histologically confirmed as malignancy in both lesions (long 
arrow); B. In the follow-up PET/CT taken after neoadjuvant chemotherapy and operation, there was no evidence of residual malignancy; C. But 14 
months later, newly found hypermetabolic lesions in the left supraclavicular (SUVmax 6.3, red arrow), abdominal LNs (8.2, red arrow) and left femur 
(6.3, red arrow) on the follow-up F-18 FDG PET/CT was shown and radiological and histological confirmed as metastasis

Figure 5. A. A 68-year-old female patient diagnosed with invasive IDC (pSUVmax 1.0, tumor size 1.5 cm, ER+, PR+, HER2+, HIF-1a 1+) and no 
recurrence of IDC during 5-year follow-up period; B. A 43-year-old female patient diagnosed with IDC (pSUVmax 12.6, tumor size 3.0 cm, ER-, PR-, 
HER2-, HIF-1a 3+) who developed bone metastases and died after 2 years
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siveness of the malignant lesion. FDG uptake can be evaluated 
noninvasively and be measured with good inter-test reproduc-
ibility [28]. Therefore, quantitative FDG uptake can be a valuable 
adjunct to conventional preoperative clinical assessment. In our 
study, a statistically significant difference in recurrence-free survival 
was also observed between patients with high pSUVmax and those 
with low pSUVmax.

Our study had limitations. First, fine needle aspiration and/or 
core-needle biopsy were performed to diagnose IDC in all patients. 
Consequently, the pSUVmax might have been affected. It is possible 
that inflammation after a procedure could have contributed to the 
pSUVmax, although this may not have been significant. Considering 
the design of the study, this type of effect was inevitable and did 
not adjust the results described. Second, there was wide overlap 
of pSUVmax between patients with and without recurrence. Pre-
diction of recurrence would not be easy in patients with borderline 
value of pSUVmax.

Conclusion

pSUVmax has a strong relationship to expression of HIF-1a 
and known prognostic parameters of breast cancer and could be 
useful to predict the prognosis in patients with IDC. The relationship 
between pSUVmax and HIF-1a may lead to a more rational use of 
PET/CT in patients with IDC.
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