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Abstract

Radioguided surgery (RGS) is a surgical technique that, using intra-operative probes, enables the surgeon to identify tissues 
preoperatively “marked” by a radiopharmaceutical. Somatostatin receptors (SSTRs) are present in the majority of neuroendocrine 
cells and may be over-expressed not only by tumor cells, but also by endothelial cells of peritumoral vessels, inflammatory cells 
and cells of the immune system, such as activated lymphocytes, monocytes and epithelioid cells. This extra neoplastic uptake is 
the rationale for the use of radiolabeled somatostatin analogs (SSAs) either in some tumors not expressing SSTRs or in various 
non-oncological diseases. The crucial point of RGS technique lays in the establishment of a favorable tumor-to-background 
ratio (TBR). A wide range of probe systems are available with different detectors and many radiopharmaceuticals have been 
experimented and utilized, mainly using g-detection probes; in order to widen RGS application field, newer approaches with 
b– or b+ emitting radioisotopes have also been proposed. Together with the consolidated clinical use, a promising and effec-
tive employment of RGS may be found in neuroendocrine tumors (NETs) using 111In-pentetreotide (OCT). RGS with OCT has 
been demonstrated useful in the management of patients with gastroenteropancreatic (GEP) tumors, lung, brain and breast 
cancer. Preoperative scintigraphy or PET with DOTA-peptides combined with RGS increases the rate of successful surgery. 
Preliminary studies with b– probes using 90Y-SSA suggest the possible interest of this approach in patients undergoing peptide 
receptor radiotherapy.
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Background

In the last decades, diagnostic imaging witnessed a tremen-
dous development in both hardware and software that allowed the 
establishment of procedures such as Computed Tomography (CT), 
Magnetic Resonance Imaging (MRI), Single-Photon Emission Com-
puted Tomography (SPECT) and Positron Emission Tomography 
(PET). In any field of application, surgeons have been helped in 
pre-operative tumor identification and extension definition, which 
is crucial to define the best surgical approach in terms of radicality. 
However, intra-operatively, surgeons still have to rely on their ana-
tomical knowledge and on traditional methods, mainly inspection 
and palpation (with a possible support by ultrasounds), to define the 

limits of tissues that need to be removed or sampled with a biopsy. 
In this sense, radioguided surgery (RGS) represents a more suitable 
approach and an important tool, which could help surgeons during 
operations, simplifying the process of cancerous tissue identifica-
tion and allowing the detection of lesions, which could not be seen 
or palpated. The first report of RGS dates back to 1960 with William 
Myers, who intravenously injected radiolabeled compounds in 
a pre-operative stage, as a lead to locate intra-operatively the tumor, 
by using a hand-held g-detecting probe [1]. The fundamental con-
cept of this technique is the three-point counting principle. The first 
count is done in vivo, to localize the tissue that needs to be removed; 
the second step consists of an ex vivo count in order to confirm that 
the pathological tissue was excised, and finally the interested area 
is probed again to check for potential leftovers of radioactivity. Usu-
ally, the detecting system provides data in the form of both visual 
and acoustic signals of counting rate (counts per second), which 
increase as the surgeon moves the probe nearer to the “hottest” 
radiation source, i.e. the affected tissue to be removed [2]. The 
crucial point of RGS applications lays in the establishment of a fa-
vorable lesion-to-background ratio, which can occur, in presence of 
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a low background activity, either via a selective radiopharmaceutical 
binding, such as in presence of somatostatin receptors (SSTRs) 
in neuroendocrine tumors (NETs), or via a non-specific/localized 
uptake at level of the target that has to be surgically removed.

SSTRs are present in the vast majority of normal neuroendocrine 
cells and may be over-expressed not only by tumor cells, but also by 
endothelial cells of peritumoral vessels, by inflammatory cells and 
by cells of the immune system, such as activated lymphocytes, 
monocytes and epithelioid cells. This extra neoplastic uptake 
is the rationale for the use of somatostatin analogs (SSAs) either in 
some tumors not expressing SSTRs or in various non-oncological 
diseases [3–5]. 

RGS success is testified by its growing diffusion, not only in 
biggest and most specialized hospitals, but also in smaller ones. 
Most valuable applications concern sentinel lymph node (SLN) 
radio-guided biopsy in patients with breast cancer or cutane-
ous malignancies [6] and 99mTc colloid albumin for pre-operative 
and intra-operative localization (ROLL) of non-palpable breast 
lesions [7–11]. 

Other clinical applications have been investigated and RGS 
has been applied with variable results to many neoplasm, as para-
thyroid adenoma and osteoid osteoma [12, 13]. 

Detection probe systems

Due to the progressive diffusion of RGS, various systems of 
hand-held intra-operative probes have been developed to allow 
proper radiation detection. With respect to the specific type of de-
tected radiation, they can be divided in g probes, the only ones widely 
diffuse in the surgical practice b– probes, and PET probes, detecting 
radiations originating from positron emitters [14–18].

As concerning gamma-detector technologies, there are 
two main categories commercially available and already used 
within the operating room: scintillation-based and semiconductor 
ionization-based detectors. These two systems share the type of 
detector source, which is represented by crystalline materials, even 
if the basic principle behind the detection system and the specific 
crystalline materials are completely different. In the first case, i.e. 
in scintillation detectors, the emitted radiation excites atoms within 
the scintillation crystal, producing visible light in proportion to the 
energy absorbed. A photomultiplier tube enhances the resultant 
visible light, then converted into an electrical pulse collected by 
the detection unit. Semiconductor ionization detectors instead, 
take advantage of crystalline materials such as cadmium telluride 
(CdTe), cadmium zinc telluride (CdZnTe), and mercuric iodide 
(HgI2). In this case, the operating principle is based on the ioni-
zation of the semiconductor crystal, which is made possible by 
the transfer of free electrons emitted from the radionuclide that 
create an electrical pulse collected and amplified by the detection 
unit [19, 20]. Scintillation-type and semiconductor ionization-type 
detection systems have their own pros and cons, which tend to 
complement each other for possible application in any scenario. 
Scintillation-type detection systems have higher sensitivity (es-
pecially for medium to high energy gamma photons) thanks to 
a much bulkier probe head profile design, but have poorer energy 
resolution and scatter rejection. On the other hand, semiconductor 
ionization-type detection systems have higher energy resolution 
and scatter rejection, but have a lower sensitivity (especially for me-

dium energy to high energy gamma photons), because of a much 
more compact probe head profile design. When considering the 
performance of any type of g-detection probe system, there are 
different parameters that need to be evaluated: overall sensitiv-
ity (efficiency), spatial resolution (lateral sensitivity distribution), 
spatial selectivity (radial sensitivity distribution), energy resolution 
(spectral discrimination), and contrast. Overall sensitivity can 
be defined as the efficiency of the detection probe system and 
is determined by the detected count rate (photons detected) per 
unit of activity (photons emitted) registered at the tip of the probe 
profile. Spatial resolution, instead, represents the lateral sensitiv-
ity distribution and can be defined as the ability of the g-detection 
probe to pinpoint accurately the position of a target source of 
activity, along with the capability to distinguish and separate two 
radioactive sources located relatively close to each other. Radial 
sensitivity distribution is represented by spatial selectivity, which 
is described by the width of the resultant measurement cone out 
of which radiation is being detected at a defined distance. In case 
of a wider measurement cone, background signal may exceed 
target source signal thus leading to interference with detection 
of target signal. On the contrary, with a narrower measurement 
cone, background counts will be reduced and detection of the 
target source signal will be more likely, even in the presence of 
an increased background noise. Energy resolution is directly 
related to the concept of spectral discrimination, the capacity 
of the gamma-detection system to distinguish between emitted 
radiations of differing energies. This is crucial in two particular 
situations: firstly, in case of two simultaneously administered radio-
nuclides that have different energies; secondly, when higher-energy 
nuclides are administered to distinguish between primary and 
scattered photons. Finally, contrast, which is directly related to all 
of the aforementioned performance variables of the g-detection 
probe system and reflects the ability of the gamma-detection probe 
to distinguish between activity within the target tissue and back-
ground activity within the surrounding non-target tissue [21–24]. 

To complete the information, it must also be remembered the 
commercial availability of hand held gamma cameras, not yet 
spread, because it has not yet demonstrated a favorable cost/ef-
fectiveness [24, 25].

Radioguided surgery radionuclides and 
radiopharmaceuticals

Radioguided surgery takes advantage of many radiopharma-
ceuticals that have been experimented and utilized, mainly utilizing 
g-detection probes. The very first implementations were based on 
the utilization of radionuclides of Iodine as radiopharmaceutical 
agents (firstly 125I and 131I, afterwards 123I). With the diffusion of 
99mTc, nowadays the great majority of procedures, ranging from 
radioguided sentinel lymph-node biopsy to the surgical manage-
ment of many other pathological conditions, are performed with 
technetium radiocompounds.

Each radionuclide has its own physical properties to consider 
such as physical half-life, photon yield (emission probability per 
decay) and principal g-photon radiation emission (or emissions, 
in case of multiple radiations). Additionally, the g-photon radiation 
emitted from each radionuclide can be defined as low-energy within 
a 0–150 keV range, medium-energy for values between 150 and 
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400 keV and high-energy emissions for values greater than 400 
keV [7, 9, 26–31]. 

The choice of a radiopharmaceutical for a RGS procedure 
has to be done on the basis of either radionuclide’s physical proper-
ties or pharmacokinetics of the radiotracer, to achieve the highest 
lesion to background ratio. 

With respect to radiolabeled somatostatin analogs (SSAs), 
various radiopharmaceuticals have been used for intraop-
erative localization of gastroenteropancreatic neuroendocrine tu-
mors (GEP-NETs), including 111In-pentetreotide (OCT), 125I-Tyr3-oc-
treotide, 123I-MIBG, and 99mTc-EDDA/HYNIC octreotate. Although, 
in the presence of a high gastrointestinal background creating 
unfavorable conditions in RGS of GEPs, OCT proved to be the 
most efficient [32–34]. 

The choice of this agent is supported by the shorter physical 
half-life compared to 125I (approximately 2.80 days versus 60 days), 
which implicates less radiation safety issues related to both storage 
and disposal of radioactive materials. Furthermore, its intestinal 
clearance can be partially overcome by the administration of 
laxatives, whereas 125I-Tyr3-octreotide is excreted via hepatobiliary 
system, thus leading to a more considerable amount of intestinal 
activity. Thirdly and most importantly, OCT allows the achievement 
of the highest tumor-to-background ratio (TBR), up to 4:1 and more, 
providing the best intraoperative results. Although the worst energy 
spectrum and dosimetry of 111In in comparison with the correspond-
ing radiopharmaceuticals labeled with 123I or 99mTc, OCT remains the 
favorite radiotracer for RGS using SSA, being easier to be managed 
and more reliable for this surgical procedure. Nonetheless, all the 
aforementioned radiocompounds have been successfully used to 
localize either primary or metastatic lesions from multiple GEP-NETs, 
including gastrinomas, carcinoids and insulinomas [35].

Gamma-detection probe systems are the most represented 
in clinical applications, however, since g radiation has a high pen-
etrating potential and can pass through large amounts of tissue, 
any nearby tracer uptake represents a non-negligible background 
level, which can reduce the TBR and undermine the feasibility 
of this technique. Therefore, in order to widen RGS application 
field, a newer approach with b– emitting radioisotopes has been 
suggested. 

Promising results in RGS have been published using b+ emitting 
radiopharmaceuticals, such as 18F-Fluorodeoxyglucose (18F-FDG), 
although its intra-operative utilization should be limited or carefully 
regulated because of concerns regarding exposure of operating 
room personnel to radiation [36–38]. Nevertheless, being absent 
a clinical usefulness for 18F-FDG in patients with NETs undergoing 
surgery, because of the high rate of false negative results, a higher 
interest is connected to the use of b– probes, presenting techni-
cal advantages in RGS respect to g emitters. In fact, b– radiation 
only penetrates up to few millimeters of tissue, with insignificant 
background activity due to secondary radiation. This feature al-
lows administration of radiopharmaceuticals with lower activity, 
development of more accessible and compact probes, which are 
preferred by surgeons and may provide higher TBRs, that could 
help in the definition of lesion’s extension and margins. In addition, 
thanks to the lower absorbed dose and the short range of electrons, 
there is a negligible radiation exposure for medical personnel, 
which could therefore allow a larger number of RGSs per year for 
surgeon [39].

Another possible field of application, that has been analyzed 
also in the field of NETs, takes advantage of the application of spe-
cific monoclonal antibodies (MoAb) to RGS setting the basis for the 
modern development of the radio-immuno-guided surgery (RIGS), 
already used in the past, but without effective results, because of the 
availability of unsatisfactory antibodies. In this context, either whole 
MoAbs or monoclonal antibodies fragments (FAbs) can be used 
in RIGS, with possible different indications, to target antigens ex-
pressed on the surface of tumor cells or within the extracellular 
environment surrounding the tumor. In fact, thanks to their smaller 
molecular weight, more rapid tumor penetration and clearance 
rate, monoclonal antibody fragments may provide higher TBRs, 
thus improving tumor detection. The drawback can be found in 
the possibility of a greater kidney accumulation of such fragments, 
which may hamper the assessment of the abdomino-pelvic area, 
for the detection of tumors within or surrounding the kidneys or the 
bladder. In general, the most important characteristics of an ideal 
MoAb include high affinity (i.e. the initial ability to bind the antigen) 
and high avidity for its antigen (i.e. the ability to retain the binding 
over an extended period), rapid penetration into the tumor tissue, 
rapid clearance from the bloodstream and minimal accumulation 
within normal tissues. However, the production of such radiolabeled 
MoAb is not a simple task and indirectly favors the utilization of 
“regular” agents such as SSA radiopharmaceuticals. In fact, for 
example, the conjugation of a radionuclide to an antibody may 
potentially change the specific binding properties of the MoAb itself 
reducing its affinity and/or avidity for the intended target antigen 
and thus undermining its clinical efficacy [40–42].

With respect to radionuclides and radiopharmaceuticals, there 
is another important key-point that needs to be evaluated in order to 
keep a safe work environment for all personnel, represented by the 
assessment of occupational radiation exposure to those involved 
in RGS. This has been done for several nuclides, including 125I, 
111In, 99mTc, and, 18F. In particular, the United States Nuclear Regula-
tory Commission (USNRC) set the annual occupational exposure 
limit for adults as a total effective dose equivalent of 50,000 μSv; 
whereas the International Commission on Radiological Protection 
(ICRP) has set a limit of 20,000 μSv per year, averaged over a five 
year period (100,000 μSv in five years) [43, 44].

Clinical applications of RGS with 
radiolabeled somatostatin analogs

Neuroendocrine tumors
The employment of RGS in neuroendocrine tumors (NETs) 

has not been standardized yet due to the application of different 
protocols, including radiopharmaceuticals, doses and time inter-
vals between injection and acquisition. At present, five subtypes of 
somatostatin receptors (SSTRs) have been characterized: SSTR1, 
SSTR2, SSTR3, SSTR4 and SSTR5. They are expressed with a cer-
tain degree of tissue specificity; however, SSTR2 is the most repre-
sented [45].111In-pentetreotide scan (Octreoscan®, OCT) has been 
recognized for several years as the gold standard technique in 
diagnostic imaging studies for NETs and is yet the most diffuse SSA 
either for RGS and for SPECT. The reasons for its success, also at 
the present, lay in the high sensitivity and reliability of this method, 
recently improved thanks to the availability of hybrid SPECT/CT, 
for both tumor localization and staging and in follow-up [46–49].
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Even if great strides have been made in preoperative imaging 
technology, the intraoperative evaluation still represents a demand-
ing task for surgeons, in presence of a reported rate of negative 
laparotomy up to 30% for patients with gastroenteropancreatic 
NETs (GEP-NETs) [50–52]. For this reason, a RGS approach, which 
may take advantage of the gamma-detection probe to localize 
intra-operatively such tumors, could reduce significantly the nega-
tive laparotomy rates. In particular, the selective radiopharmaceuti-
cal-receptor binding to SSTR2, which is expressed in more than 90% 
of GEP-NETs, suggests a possible application with intraoperative 
g-detection of the tumor. Unfortunately, abdomen is not the ideal 
site of application for detecting neoplastic sites with OCT, due to 
the “physiological” presence of the radioisotope in liver, spleen, 
kidneys and bowel thus resulting in a scattering and disturbing 
effect which, in most cases, compromises the assessment of the 
region (because of a decrease in TBR) [53–56]. 

Another aspect to consider in the decisional diagnostic pro-
cess is tumor differentiation that can be used as selection criteria 
of which radiolabeled SSA should be preferred for GEP-NETs stag-
ing. In particular, OCT appears more sensitive than 18F-FDG for 
well-differentiated tumors, whereas 18F-FDG demonstrates superior 
sensitivity for undifferentiated lesions [57]. In this sense, being 
patients positive at 18F-FDG inoperable, there is no role for RGS 
with 18F-FDG in patients with NETs.

Recently, a new family of PET radiolabeled SSAs, synthesized 
through a chelation with 68Ga, has been proposed for NET imaging. 
Gallium-68 may be linked to different SSAs through a chelating 
agent, as DOTA (1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-
tetraacetic acid), which is the agent of choice because of its ability 
to form stable complexes with different radiotracers of the metal 
group like 111In, 68Ga, 64Cu, 90Y and 177Lu, with the last two radio-
isotopes used for radionuclide therapy. 

SSAs radiolabeled with 68Ga are used in the so called DOTA-
PET, which significantly improved quality and diagnostic accuracy 
of NETs imaging respect to scintigraphy or SPECT with OCT, 
thanks to better performances of PET, in presence of a great in vivo 
stability, good pharmacokinetic properties and a high and specific 
receptor-mediated tumor uptake. In line with such good premises, 
68Ga-DOTA-Tyr3-octreotate (68Ga-DOTA-TATE) has been proposed 
as a potential agent for RGS in GEP-NETs [58, 59]; however, further 
studies are still required to assess its role in this field and evaluate 
its clinical cost/effectiveness, also because of the radiation dose 
to the surgical staff [50, 60, 61]. 

At the present, the most used procedure for RGS of 
GEP-NETs is therefore based on the intravenous injection of OCT, 
with a dose ranging from 3 to 6 mCi (110–220M Bq), followed 
by a 4-hour and 24-hour whole body acquisition, integrated with 
a SPECT imaging. 

The actual surgical exploration, instead, which can be pre-
ceded by a specific patient preparation in order to minimize the 
background radiation from physiologic bowel excretion of 111In, 
is generally performed between 48 and 72 hours post-injection. 
As soon as the probe detects an area with high levels of activity, 
the g-detection system is held stationary to obtain the number of 
counts in a time typically of 10 seconds. The localization of the 
high value in a little area is crucial to calculate the TBR, which 
has to be greater than 1.5 for confirmation of the neoplastic tissue 
localization, considering that “physiological” bowel uptake is spread 

to larger areas [62, 63]. Adams and Baum reported how the use 
of such system with g-detection probe and OCT increased the 
intra-operative detection of GEP-NETs. Thanks to the localization of 
small tumor sites accumulating OCT, smaller than 5 mm in great-
est dimension, they managed to identify 57% more lesions when 
compared to the “palpating finger” of the surgeon. In addition, it 
has to be considered that when dealing with recurrences, much 
of the operative field is obscured with scar tissue compromising 
surgeon localization with palpation. In this scenario, RGS proved 
its value distinguishing cancerous tissue from scars, thus helping 
in the surgical dissection of all sites of tumor. As a result, RGS 
improved long-term outcomes for patients with GEP-NETs with 
primary or recurrent/metastatic disease thus representing a valuable 
alternative in the management of these patients [54].

Lung tumors
Another possible application of RGS with OCT can be found 

in operable lung tumors, including either pulmonary NETs and 
non-small cell lung cancer (NSCLC), being the primary surgery in 
patients with small cell lung cancer (SCLC) very rarely indicated. 
Interestingly, while SSTRs are in vitro expressed either by NETs and 
SCLC, they are not expressed by NSCLC. Nevertheless, a high 
OCT’s uptake has been observed in vivo in these tumors, due to 
the increased uptake at the level of activated reactive cells sur-
rounding the neoplasm [64, 65]. Being absent an OCT’s uptake 
in normal lung, a high TBR may be obtained, although a more 
difficult evaluation in lesions adjacent to the diaphragm has been 
verified, due to scatter radiations deriving from liver and spleen. It 
has to be however pointed out that better technical conditions may 
be obtained in RGS of lung neoplasm respect to GEPs, mainly 
affected by the unfavorable physiological concentration of 111In in 
the bowel. By taking advantage of previous experiences in NETs, 
Mansi et al. showed how useful RGS may be at thoracic level in 
patients with operable lung tumors, in which an in vivo high TBR 
for OCT is demonstrated at diagnostic scintigraphy. OCT may ef-
fectively guide surgical resection improving intra-surgical staging 
and better defining tumor extension, with main reference to the 
parietal involvement. No information has been obtained in their 
series in evaluating lymph node staging. In this context unreliable 
results could be obtained, being possible false positive results at 
the level of actively inflamed lymph nodes [66].

Brain tumors 
The application of RGS in brain tumors is based on the sys-

temic administration of radiopharmaceuticals which may allow the 
intraoperative localization and total resection of neoplasm highly 
concentrating the radioactivity, in presence of a low concentration 
at background level. After the excision, taking advantage of the 
three-point counting principle, the interested area is probed again 
to check for potential residual activity. At present, very limited data 
are available on RGS, and even less on the application of OCT, in 
brain tumors. 

Bhanot et al. [67] evaluated the role of RGS by studying  
19 patients with brain tumor, showing a high uptake at SPECT-CT. They  
concluded that the use of RGS provided additional information in 
the real-time intraoperative identification of the tumor and in terms of 
surgical radicality assessment, helping in the differentiation between 
tumor and normal brain. This aspect can be crucial in patients with 
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tumors like gliomas, in which the survival outcome is directly con-
nected with the completeness of tumor excision. 

From a technical point of view, best results of RGS are strictly 
related to the achievement of a high TBR.

Using OCT, as seen in NSCLC, an increased OCT’s uptake 
may be obtained independently from the “specific” expression of 
SSTRs in the neoplasm. Furthermore, with respect to background, 
even though SSTR expression has been proved in the human brain, 
its in vivo targeting is highly difficult because, in normal conditions, 
radiolabeled SSAs are unable to cross the intact blood-brain barrier 
(BBB). Conversely , an in vivo uptake has been observed in meningi-
oma and glioma, as well as in tumors of pituitary and pineal glands.

Kiviniemi A et al. demonstrated that 68Ga-DOTA-peptides ac-
cumulate in gliomas and that uptake is associated with disrupted 
BBB [68]. In 2005, Gay et al. [69] studied with OCT 18 patients with 
“en plaque” meningiomas, either located in the sphenoid wing or 
in skull convexity. They also investigated the use of a g-probe to 
determine whether intraoperative detection of SSTR is achievable 
and could increase the probability of a complete resection, by help-
ing in the definition of tumor margins. In all patients, a pre-operative 
scintigraphy was performed to demonstrate desirable uptake 
values in the tumor respect to background. Intra-operatively, the 
elevated affinity of OCT for SSTR in meningiomas provided high 
TBRs with a mean value of 4.4:1, which enabled the probe also to 
discriminate tumor invasion on bone and dura matter. A peri-orbital 
involvement may be also individuated in case of sphenoid wing 
meningiomas, although with difficulty, due to the background 
contamination from the normal pituitary gland, concentrating OCT. 
The authors concluded that RGS is not only feasible but also useful 
in the removal of invasive meningiomas, especially those involving 
the bone and skull convexity, rather than sphenoid wing tumors. 
While many studies reported a substantial uptake of SSA in men-
ingiomas [70–72], a smaller body of evidence has demonstrated 
the presence of SSTR in high-grade gliomas (HGG). Heute et al. 
used 68Ga-DOTATOC to allow a pre-therapeutic assessment of 
patients with high grade glioma (HGG) undergoing a treatment 
with 90Y-DOTATOC [73]. 

In a population including 11 patients with meningioma and  
12 with HGG, Collamati et al. [16] evaluated a possible approach 
to RGS with b– emitters. As concerning meningioma, all patients, 
but one with an atypical extracranial tumor, showed high uptake of 
68Ga-DOTATOC, with a TBR greater than 10 in almost all cases and 
usually above 20. They reported instead a significantly worse 
uptake in HGG, with a TBR slightly higher than 4, a value still ac-
ceptable for RGS purposes, although the more limited receptivity 
requires longer probing times (about 5–6 s) to discriminate between 
lesion and healthy tissue.

Breast tumors 
With respect to breast lesions, since the introduction of 

national screening programs the incidence of non-palpable 
breast cancer has increased. The main challenge of resect-
ing such lesions consists in correct margins definition in order 
to minimize the involvement of nearby healthy tissues and to 
reduce cosmetic damage. At present, there are three different 
techniques commonly used intraoperatively: wire (WGL), ultra-
sound, and radioguided localization, more commonly performed 
with radiocolloids (ROLL). 

In this context, radiolabeled SSA may play a role in detection and 
treatment of breast lesions. As concerning scintigraphic localization 
of either primary or metastatic breast lesions, various experimental 
and clinical studies support the role of radiolabeled SSAs in breast 
cancer; nevertheless, due to the heterogeneous SSTRs expression 
in breast tumors and/or to the small number of evaluated patients, 
the full potential of scintigraphy and/or PET with radiolabeled SSA 
has not been revealed yet [74]. In 2005, Kumar et al. analyzed the 
expression of SSTRs in primary human breast cancer, correlating 
their data with tumor pathology. In particular, they indicated SSTR2 
as the main subtype expressed in breast tumors even though 
multiple receptors were identified, with different expression within 
the same tissue. Furthermore, they suggested a possible positive 
correlation of SSTR1, SSTR2 and SSTR4 with estrogen recep-
tors (ER) and of SSTR2 with progesterone receptors (PR) [75]. For 
all the aforementioned reasons, the initial determination of SSTR 
levels and subtypes may be crucial to assess the responsiveness to 
a therapy with cold or radiolabeled SSA. 

In several studies, OCT identified between 50% and 94% of 
breast tumors, with a lower accuracy in high grade or large tumors, 
probably due to SSTR down-regulation [76–80]. 

As accessory information, demonstrating the possible role of 
radiolabeled SSA in therapy of breast cancer, in vitro studies on 
human breast MCF-7 carcinoma cells demonstrated how octreotide 
might be of practical value not only in the development of tumor 
radiotracers, but also as a carrier of cytotoxic antitumor drugs, such 
as paclitaxel, via binding to SSTRs [81]. In addition, in MCF-7cells, 
which express multiples SSTRs, SSA may exert both cytostatic and 
cytotoxic effects, inhibiting tumor cellular growth and promoting 
apoptosis [82]. Unfortunately, there is no evidence of such activ-
ity in vivo. Bontenbal et al. [83], in post-menopause patients with 
metastatic breast cancer, comparing first line endocrine therapy with 
tamoxifen combined with antiprolactin and octreotide versus tamox-
ifen alone, didn’t show differences in overall post-relapse survival 
between the two arms. Similarly, Bajetta et al. [84], in a phase III 
multicenter randomized controlled trial in 203 patients with locally 
recurrent metastatic ER- and/or PR-positive breast carcinoma ana-
lyzed the performance of long-acting release octreotide pamoate 
plus tamoxifen, as a first line therapy for advanced breast carci-
noma. They concluded that because of similar response rates and 
median time to progression there is no indication for adding SSA to 
tamoxifen, thus stopping the trial at the interim analysis.

With respect to intraoperative tumor detection, it is well known 
that the use of OCT shows its value mainly in tumors expressing 
high amounts of SSTRs. However, even though breast cancers ex-
press such receptors, each tumor type has a different pattern of 
SSTR expression, with lower receptor density and higher het-
erogeneity of SSTR subtypes compared to GEP-NETs, showing 
high-density regions adjacent to regions virtually without SSTRs [3, 
85]. Hence, there is no doubt that further studies are required to 
assess the role and effectiveness of RGS with radiolabeled SSA in 
patients positive at scintigraphy or DOTA-PET.

Conclusions

In the last few years, RGS using g-detection probes witnessed 
an enormous expansion, becoming a consolidated technique 
and a valuable asset for every surgery team. Research is cur-
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rently focusing on surgical guidance based on b– emitters and 
has already showed promising results. However, a critical point 
in the development of new RGS procedures, which has to be 
considered, is the radiation exposure of the medical personnel 
that may restrict, especially with high-energy isotopes, the clinical 
application. With respect to neuroendocrine tumors, the favorable 
TBR granted by the selective radiopharmaceutical binding to SSTR 
encouraged the use of RGS, which proved its value in a challeng-
ing task such as GEP-NETs. Helping in the surgical dissection of 
all sites of tumor, improved long-term outcomes of patients with 
primary or recurrent/metastatic disease may be obtained. As con-
cerning the possible application of RGS at thoracic or brain level 
and the employment of 68Ga-DOTA-peptides or b– emitters, they 
are still under evaluation even if there are all the makings of future 
transition to clinical practice, particularly if further research and 
development are done to improve the performance of detection 
systems. Finally the possible role of RGS with radiolabeled SSA in 
breast cancer has to be further evaluated to better understand the 
possibility of a reliable total resection aided by RGS, in presence 
of a non-homogeneous distribution of SSTR. 
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