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Abstract

The aim of this review is to summarize the developments and briefly characterize the somatostatin analogs which are currently 
used for somatostatin receptor imaging in clinical routine or in early phase clinical trials. 

Somatostatin (sst) receptor targeting with radiolabeled peptides has become an integral part in nuclear oncology during the last 
20 years. This integration process has been initiated in Europe with the introduction to the market of 111In-DTPA-DPhe1-octreotide 
[111In-pentetreotide]. Introducing 99mTc in somatostatin receptor targeting radiopeptides resulted in much better image quality, 
higher sensitivity of tumor detection and lower mean effective dose for the examined patient. The next generation are 68Ga 
labeled somatostatin analogs. Due to the spatial resolution of PET technique and increasing number of PET scanners, the PET 
or PET/CT technique became very important in somatostatin receptor imaging. Until up to a couple of years ago the analogs 
of somatostatin were constructed aiming at their agonistic behavior, expecting that their internalization with the receptor acti-
vated by the radiolabeled ligand and its retention within the tumor cell are crucial for efficient imaging and therapy. Recently it 
has been shown that the antagonists recognize more binding sites at the tumor cell membrane and hence offer an improved 
diagnostic efficacy, especially when the density of sst receptors is low. This approach may in future improve diagnostic value 
of somatostatin receptor imaging techniques. The developments in tracer design are followed by the improvements in imaging 
techniques. The new SPECT scanners offer resolution close to that of PET, which might open a new era for 99mTc and other 
SPECT radiotracers. 
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Introduction

Somatostatin (sst) receptor targeting with radiolabeled pep-
tides has become an integral part in nuclear oncology during the 
last 20 years. This integration process has been initiated in Europe 
with the introduction to the market of 111In-DTPA-DPhe1-octreotide 
[111In-pentetreotide] (Octreoscan® Mallinckrodt Medical, 1995) 
which was soon becoming the most important product for somato-
statin receptor scintigraphy. It is in wide spread clinical use, although 
clinical drawbacks regarding sensitivity in tumor detection, image 
quality and patient exposure to relatively high effective doses of 
ionizing radiation have to be considered. 

Major achievements of introducing 99mTc in somatostatin 
receptor targeting radiopeptides are much better image quality, 

higher sensitivity of tumor detection and lower mean effective 
dose for the examined patient [1–4]. Technetium-99m is con-
sidered to be a suitable radionuclide for somatostatin receptor 
scintigraphy (SRS). It is the workhorse of the nuclear medicine 
physician because of its short half-life (6 hrs.) and emission of 
gamma radiation with the energy of 141 keV. The wide availability 
and cost-effectiveness of 99mTc are of major importance for routine 
clinical applications. Several chelators were investigated to provide 
efficient and stable 99mTc-labeled somatostatin analogs with high 
affinity to somatostatin receptors, among them conjugates of 6-hy-
drazinonicotinamide (HYNIC) found their way to the clinics [5, 6]. 
Furthermore, [99mTc-ethylenediamine-N,N’-diacetic acid (EDDA)/ 
/HYNIC, Tyr3]octreotide (99mTc-EDDA/HYNIC-TOC) is now available 
in a number of European countries and beyond (Tektrotyd, NCBJ 
RC POLATOM). The next generation of somatostatin analogs are 
tracers for PET or PET/CT somatostatin receptor imaging labeled 
with the radiometal 68Ga (68 min). The commercially produced 
radionuclide generators 68Ge/68Ga are available for use in the clin-
ics, independent of the cyclotrons. In combination with the spatial 
resolution of PET technique and increasing number of PET scan-
ners, the technique became very attractive and 68Ga labeled soma-
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tostatin analogs found their way to the clinic. Currently three major, 
clinically useful, 68Ga labeled tracers for PET/CT imaging are avail-
able: 68Ga-DOTA-Phe1-Tyr3-Octreotide (DOTATOC), 68Ga-DOTA- 
-NaI3-Octreotide (DOTANOC), and 68Ga-DOTA-Tyr3-Octreotate 
(DOTATATE) [7].

Until up to a couple of years ago the analogs of somatostatin 
were constructed aiming at their agonistic behavior, expecting that 
their internalization with the receptor activated by the radiolabeled 
ligand and its retention within the tumor cell are crucial for efficient 
imaging and therapy. Recently it has been shown that the antago-
nists recognize more binding sites at the tumor cell membrane 
and hence offer an improved diagnostic efficacy, especially when 
the density of sst receptors is low. The feasibility of using soma-
tostatin receptor antagonists in clinical settings has been proven 
already [8]. This approach may in future improve diagnostic value 
of somatostatin receptor imaging techniques. 

The developments in tracer design are followed by the im-
provements in imaging techniques. The new SPECT scanners offer 
resolution close to that of PET, which might open a new era for 99mTc 
and other SPECT radiotracers. 

The aim of this review is to summarize the developments and 
briefly characterize the somatostatin analogs which are currently 
used for somatostatin receptor imaging in clinical routine or in early 
phase clinical trials. 

Octreotide and its analogs

The development of somatostatin analogs reflected the 
increasing knowledge of the role of somatostatin. It has been 
shown that sst-expressing tumors can be treated with soma-
tostatin or synthetic analogs to either reduce hypersecretion of 
hormones and/or inhibit tumor growth [9]. However, because 
somatostatin undergoes rapid in vivo enzymatic degradation, 
somatostatin analogs which are more resistant to in vivo degra-
dation have been developed [10–12]. The molecule was modi-
fied in various ways, by introduction of D-amino acids and 
shortening of the molecule to the bioactive core sequence 
resulting in improved biological characteristics. The first syn-
thesized somatostatin analogue was octreotide (Sandostatin, 
SMS 201-995), with the high affinity to sst2 and less affinity to 
sst5 and sst3. It has been used since 1983 for the treatment of 
gastroenteropancreatic neuroendocrine tumors (GEP-NET) and 
hormone-secreting pituitary tumors [13]. Later the other eight 
amino acid-containing somatostatin analogs such as lanreotide 
(BIM23014) and vapreotide (RC-160) have been synthesized [14].  
Newer developments aimed at somatostatin analogs with selec-
tive affinity to a wider somatostatin receptor subtypeprofile, such 
as pasireotide (SOM230) with affinity to somatostatin recep-
tors subtypes 1, 2, 3 and 5 [15].

The first somatostatin analogue labeled with a radionuclide and 
used for the localization of NET by SRS was [123I,Tyr3]-octreotide. 
However, due to several drawbacks like time-consuming and diffi-
cult labeling procedure, high cost, intestinal accumulation of activity 
rapidly cleared via the liver and biliary system, which made image 
interpretation difficult and limited its clinical utility. In consequence, 
123I was replaced with 111In, which was bound to octreotide by diethy
lenetriamine pentaacetic acid (DTPA) as a chelator [16]. Since then 
¹¹¹In-DTPA-D-Phe1-octreotide (111In-pentetreotide) has been broadly 

used to visualize neuroendocrine tumors expressing somatostatin 
receptors [17]. 

Although SRS with 111In-pentetreotide is very effective, the 
method is hampered by various factors, such as the necessity of 
a tumor to background ratio of at least 2: 1, relatively low spatial 
resolution particularly for small tumors, and the lack of precise 
quantification of receptor density and radionuclide biodistribution. 
The energy of 111In is relatively high, which results in suboptimum 
image resolution and a relatively high patient exposure to ionizing 
radiation. Moreover, 111In obtained from cyclotron is expensive and 
not easy to attain in several countries. 

For these reasons researches on establishing new radiophar-
maceuticals based on somatostatin analogs labeled with 99mTc for 
SPECT and with 68Ga for PET were undertaken.

Modeling somatostatin analogs for labeling 
with radiometals

The development of radiolabeled peptides for successful 
receptor targeting requires consideration of several factors, such 
as the high uptake in the target and low in non-target tissues, the 
clearance from the body, the excretory pathway and the in vivo 
stability of the radiopeptide. The radiolabeled peptides which 
successfully went through all tests, including toxicological studies, 
and with well-established preparation method, may enter clinical 
studies in humans [18–20].

Particularly for the well-characterized somatostatin receptors, 
the design of a peptide and its synthetic pathway was possible in 
order to produce metabolically stabilized peptide analogs which 
preserved most of the biological activity of the original molecule and 
high affinity for the corresponding receptor. They could be labeled 
with various radionuclides for both diagnosis and therapy, while the 
choice of radiolabeling approach depended on the radionuclide 
properties and characteristics of the chelator. As a common feature 
it is required that the labeling protocols allow very high labeling 
yield, radiochemical purity and specific activity and the peptide 
retains the affinity for the receptors.

Peptides can be radioiodinated by electrophilic substitution 
and this reaction can take place at an amino acid residue of the 
peptide which contains aromatic rings, e.g. tyrosine or histidine. 
Such approach is known as a direct radiolabeling. In contrast, 
the radioactive metal ions such as 111In, 99mTc, 68Ga are generally 
more difficult to attach and require an indirect radiolabeling ap-
proach. The indirect methods link radio-metals to peptides using 
bifunctional chelators (BFCs) [21]. BFCs consists of two functional 
groups, which serve different purposes; one binds the chelator to 
the peptide and the second one chelates the metal ion [22]. These 
functional groups are responsible for stable binding between the 
peptide and radiometal and its resistance against radiolysis under 
physiological conditions. The BFC can be attached to the peptide 
via a spacer, which is also a pharmacokinetic modifier. In addition, 
the BFCs should not alter the biological properties and receptor 
affinity and specificity of the peptide [23, 24]. Metallic radionu-
clides present various chemistries, hence there is no universal 
BFC to chelate all radiometals. Several BFCs are used depending 
on the choice of radionuclide since the size, charge, and electron 
configuration of the radiometal will determine the coordination 
number required of a BFC [25] (Figure 1).
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Chelators for 99mTc labeling of somatostatin 
analogs

The radionuclide widely used for radiolabeling is technetium 
(99mTc) which decays by gamma emission (energy 141 keV) with 
a physical half-life of 6.02 hours to technetium-99 which is regarded 
as quasi stable. 

Several somatostatin analogs have emerged carrying a variety 
of chelators utilized for efficient 99mTc labeling of biomolecules in-
cluding small peptides [25–28], among them propylene amine 
oxime [29], open chain or cyclic tetraamines [30, 31].

The HYNIC core with N-hydroxysuccinimidyl hydrazinoni-
cotinamide (NHS-HYNIC, HYNIC) has become one of the most 
popular and effective BFCs used for 99mTc labeling of somatostatin 
analogs [32]. It has initially been developed for radiolabeling of 
polyclonal immunoglobulin [33], and was then recommended 
for preparation of hydrazino-modified proteins and synthesis of 
99mTc-protein conjugates [34] and chemotactic peptides [35] and 
HYNIC as bifunctional chelator (BFC) was introduced for 99mTc la-
beling of octreotide and TOC (Tyr3-octreotide) with high efficiency 
[36, 37]. 

Study of potential structures by LC-MS confirmed that HYNIC 
may function as a monodenate or a bidentate chelator [38, 39]. 
Therefore, 99mTc-labeling is performed in the presence of one or 
more coligands, which saturate the hexacoordinate coordination 
sphere of the Tc(V) core with donor groups such as amine, car-
boxylate or hydroxyl [39]. 

Initially tricine (N-[Tris(hydroxyl-methyl)-methyl]glycine) 
was used as co-ligand for 99mTc to complete the 99mTc-HYNIC 
core [40]. It was assumed that the 99mTc species is coordinated 
by two tricine molecules and the terminal N-atom of the hydrazine 
group of HYNIC in the resulting 99mTc-HYNIC-protein complex [41]. 
Detailed HPLC analysis indicated that the complex can reversibly 
adopt various forms, depending on temperature, reaction time 
and pH. Replacement of tricine by other co-ligands such as ethy

lenediamine-N,N’-diacetic acid (EDDA) resulted in more stable 
complexes and lower number of isomers [42, 43]. Changing the 
coligand can significantly affect the lipophilicity of the complex and 
allows for modification of its biodistribution. Several studies have 
been published on the 99mTc labeling of octreotide via HYNIC in 
combination with different co-ligands [44, 45]. 99mTc-HYNIC-TOC 
after labeling with 99mTc using tricine and EDDA as co-ligands re-
tained its receptor affinity as determined in vitro in rat brain cortex 
membranes and showed favorable biodistribution in vivo in tumor 
bearing animals [37, 38]. In animal models, the tracer accumulation 
ratio in the tumor compared with kidneys and liver was higher than 
in case of 111In-DTPA-octreotide [46].

The first 99mTc-HYNIC-TOC (with tricine as co-ligand) scintigra-
phy in comparison with 111In-octreoscan was published by Bangard 
et al. in 2000 [5]. Favorable influence of EDDA on biodistribution of 
the 99mTc-HYNIC-TOC in clinical trials was presented. When using 
this tracer, higher target/non-target ratios were obtained and more 
lesions were detected than with the use of 111In-octreotide [47]. 

Promising pre-clinical results were obtained also with the conju
gates obtained by coupling an open-chain tetraamine chelator 
(N4 chelator) of the 99mTc-Demotate series (e.g. [99mTc-N4

0,Tyr3]
octreotate, 99mTc-Demotate 1) [48, 49] or with [99mTc-N4

0-1,Asp0,Tyr3]
octreotate, 99mTc-Demotate 2, during a pre-clinical comparison 
with [111In]DOTA-TATE in the detection of sst2-positive tumors [50]. 
99mTc-labeled octreotide analogs have been developed and 
clinically evaluated for SPECT imaging, such as HYNIC-TOC [51], 
HYNIC-TATE [52–54] and 99mTc-Demotate 1 [55, 56].

The verification of the diagnostic efficacy of 99mTc-EDDA/ 
/HYNIC-TOC and 99mTc-EDDA/HYNIC-TATE was performed by direct 
comparison of SRS using both tracers in the uniform group of 12 pa-
tients with confirmed GEP-NET [57]. Both 99mTc-EDDA/HYNIC-TOC 
and 99mTc-EDDA/HYNIC-TATE were found to be useful radiophar-
maceuticals for SRS-SPECT, in neuroendocrine tumors, especially 
those expressing sst2. Similar number of metastatic lesions was de-
tected using either agent, 85% correlation was found when analyz-
ing each of metastases individually. No significant differences were 
observed in the uptake of these agents in the tumors and in the 
kidneys. The uptake of 99mTc-HYNIC-TOC in the liver was higher 
than in the case of 99mTc-HYNIC-TATE, but the ratio of uptake in the 
lesion to background was comparable. Somewhat higher lipophi-
licity of 99mTc-HYNIC-TOC might have an impact on the detection 
of metastases located in lymph nodes and in the liver; however, 
as seen in Figure 2, the excellent images of tumors located in these 
difficult locations can be obtained with 99mTc-EDDA/HYNIC-TOC. 

In Poland, 99mTc-EDDA/HYNIC-TOC(99mTc-Tektrotyd) is the most 
frequently used tracer in scintigraphic visualization of neuroendo-
crine tumors. A radiopharmaceutical kit for technetium-99m labeling 
is manufactured at National Centre for Nuclear Research (NCBJ 
RC POLATOM), Poland. 99mTc-Tektrotyd was granted marketing 
authorization in Poland on April 29, 2004. 

Gallium-68 labeled somatostatin analogs for 
PET imaging

The next generation of somatostatin analogs are tracers for 
PET or PET/CT labeled with 68Ga, because of its suitable radio-
physical properties: its positron yield is high, with 89% of all disin-
tegrations, its half-life of 68 min matches the pharmacokinetics of 

Figure 1. Octapeptides, chelators, and radiometals for imaging and 
targeted radionuclide therapy of neuroendocrine tumors in patients [1] 
(This research was originally published in JNM. Valentina Ambrosini 
et al. Radiopeptide Imaging and Therapy in Europe. J Nucl Med 2011; 
52: 42S–55S © by the Society of Nuclear Medicine and Molecular 
Imaging, Inc.)
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many peptides and other small molecules owing to a fast blood 
clearance, quick diffusion and target localization [58]. The com-
mercially produced radionuclide generators 68Ge/68Ga are available 
for use in the clinics. The long half-life of the mother radionuclide 
68Ge (270.8 days) allows the exploitation of the generator for over 
6 months and due to the rapid ingrowth of the daughter 68Ga, 
the generators can be eluted every 3 hours. The most widely 
used BFC for 68Ga is DOTA (1,4,7,10-tetraazacyclododecane, 
1,4,7,10-tetraacetic acid). Currently three major, clinically useful, 
68Ga labeled tracers for PET/CT imaging are available: 68Ga-DOTA- 
-Phe1-Tyr3-Octreotide (DOTA-TOC), 68Ga-DOTA-NaI3-Octreotide 
(DOTA-NOC), and 68Ga-DOTA-Tyr3-Octreotate (DOTA-TATE) [7]. 
These three tracers present some differences in pharmacokine
tics but more importantly, their affinity to sstr subtypes varies. 
Whereas 68Ga-DOTA-TATE is sst2-selective, with the highest bind-
ing affinity of any sst2 receptor-binding peptide, 68Ga-DOTA-TOC 
binds to sst2 with high affinity and to sst5 with reasonable affinity 
and 68Ga-DOTA-NOC has high affinity to sst2, sst3 and sst5 [59, 60].

Improving the sst receptor affinity profile and 
the in vitro and in vivo stability  
of somatostatin analogs

Radiolabeled pansomatostatin-like analogs are expected to 
enhance the diagnostic sensitivity and to expand the clinical in-
dications of currently applied sst2 receptor specific radioligands. 
The search for other somatostatin-based peptides having affinity 
for a broader range of somatostatin receptor subtypes and hence 
might target a broader spectrum of tumors but also a higher 
net tumor uptake resulted in the development of several new 
compounds showing high affinity to sst2, sst3 and sst5 [61]. The 
modification at position 3 of octapeptide, replacing tyrosine by the 
unnatural amino acid 1-naphtyl-alanine resulted in 111In-DOTA-NOC 
(1-NaI3-octreotide) [60], which than gained clinical interest for 
PET/CT of NETS when labeled with 68Ga [62]. However, the appli-
cation of similarly developed 111In-DOTANOC-ATE (1-NaI3-Thr8-oc-

treotide), and 111In-DOTABOC-ATE (Bz-Thi3-Thr8-octreotide) 
remained limited [63]. Fani et al. (2010) reported the development 
of bicyclic somatostatin analogs with affinity to sst2, sst3 and 
sst5, such as AM3 (DOTA-)Tyr-cyclo(DAB-Arg-cyclo(Cys-Phe- 
-D-Trp-Lys-Thr-Cys)) which showed fast background clearance and 
high tumor to non-tumor ratios which might be ideal for imaging with 
short lived radionuclides such as 68Ga [64]. Pan-somatostatin radio-
peptides with high affinity binding for all five receptor subtypes have 
also been developed. The first such peptide, KE108 (Tyr-cyclo(DAB- 
-Arg-Phe-Phe-D-Trp-Lys-Thr-Phe)), was modified by Tyr as a pros-
thetic group for iodination NH2-terminally [65], it was then cou-
pled with DOTA, resulting in the analogue 111In-KE88 [66]. 
This analogue was able to bind with high affinity to all five receptor 
subtypes (sst1-sst5) but was efficiently internalized only in sst3 
expressing cells. It did not appear to offer multi-subtype imaging 
properties, since the in vitro internalization and in vivo uptake in sst2 
tumors was very low, compared with sst3 tumors.

In the last years, not only octapeptides but also a native somato-
statin-14 (SS14) was considered for ligand development. The native 
SS14 and its DTrp8 analogue were functionalized with the universal 
chelator DOTA and radiolabeled with 111In. Both compounds showed 
a pansomatostatin affinity profile with the respective hsst1-5 IC50 
values in the lower nanomolar range. In addition, the DTrp8 ana-
logue behaved as an agonist for sst2 and sst3 since it stimulated 
receptor internalization. This analogue also localized in experimental 
tumors which selectively expressed sst2 (both of rat and human 
origin), hsst3 and hsst5 [67]. Furthermore, Maina et al. (2014) [68] 
evaluated the somatostatin mimic [DOTA]LTT-SS28 {[(DOTA)
Ser1,Leu8,D-Trp22,Tyr25]SS28} and its 111In radioligand. [DOTA]
LTT-SS28 exhibited a pansomatostatin-like profile binding with high 
affinity to all five hsst1-hsst5 subtypes (IC50 values in the lower na-
nomolar range). [DOTA]LTT-SS28 behaved as an agonist at hsst2, 
hsst3, and hsst5, efficiently stimulating internalization of the three 
receptorsubtypes. Significant and specific uptake was observed 
in HEK293-hsst2-, HEK293-hsst3-, and HEK293-hsst5-expressing 
tumors (4.43 ± 1.5, 4.88 ± 1.1, and < 3% ID/g, respectively, with 

Figure 2. Somatostatin receptor positive lesion at the head of the pancreas, adjacent to the duodenum. Somatostatin receptor positive metastasis 
in the liver. SRS SPECT/CT with 99mTc-EDDA/HYNIC-TOC at 4 h p.i. Image kindly provided by Prof. dr. Ingo Brink, Potsdam, Germany
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values of < 0.5% ID/g during receptor blockade), indicating that 
the somatostatin mimic [111In-DOTA]LTT-SS28 shows promise for 
multi-sst1-sst5 targeted tumor imaging. These studies revealed the 
feasibility of structural modifications to enhance metabolic stabil-
ity in order to achieve higher tumor uptake, such as amino acid 
replacements and changes of ring size. 

The significance of in vivo stability of radiopeptide is a key 
element of successful tumor targeting for cancer visualization and 
therapy in patients. It has been revealed that the action of a single 
peptidase (i.e. neutral endopeptidase, NEP) is responsible for the 
rapid in vivo breakdown of intravenously administered radiopep-
tides from at least the somatostatin, bombesin, and gastrin peptide 
families. Most importantly, this phenomenon can be overcome by 
enhancing their supply and accumulation at tumor sites through the 
mere co-injection of a protease inhibitor, such as phosphoramidon 
[69]. This approach may result in increased diagnostic sensitivity 
and therapeutic efficacy being the potential strategy for translation 
into clinical practice [70, 71]. 

Antagonists vs agonists

All compounds described so far have agonistic properties, 
which were considered mandatory because of the ability of these 
compounds to induce internalization of the peptide-receptor com-
plex. Presented studies have been based on the development of 
radiolabeled somatostatin agonists, assuming that the internaliza-
tion of the receptor after radioligand binding is critical for efficient 
retention of the tracer in tumor cells, allowing for efficient imaging 
and therapy. The molecular-pharmacologic investigations showed 
that efficient internalization is usually provided by agonists [72]. 
Recent developments have indicated that receptor antagonists may 
be as good as or even better than agonists for such purposes. 
Ginj et al. (2006) showed that high-affinity somatostatin receptor 
antagonists that poorly internalize into tumor cells can, in terms of 
in vivo uptake in animal tumors, perform equally good or better 
than corresponding agonists, which highly internalized into tumor 
cells. They provided potentially even better tumor visualization 
than agonists. The same tendency was seen for both sst2 and 
sst3 selective analogs, suggesting that this observation may be 
valid for more than just one particular G-protein-coupled receptor. 
The study demonstrated that the sst antagonists are preferable for 
in vivo tumor targeting [73]. The first clinical evaluation of SRS with 
an antagonist confirmed the pre-clinical data, as it showed higher 
tumor uptake of the antagonist 111In-DOTA-sst2-ANT (p-NO2 -Phe- 
-cyclo(D-Cys-Tyr-D-Trp-Lys-Thr-Cys)D-Tyr-NH2) compared with the 
agonist 111In-DTPA0-octreotide and improved tumor-to-background 
ratios, in particular tumor-to-kidney [74].

One of the first reports describing 68Ga- and 64Cu-labeled sst2 
antagonists indicated the high potential of these radiopeptides in 
PET/CT [75]. Translational aspects related to peptide receptor 
radionuclide therapy (PRRT) and imaging with antagonist were 
also addressed. In the pre-clinical evaluation the increased tumor 
uptake, prolonged residence time, favorable differential washout 
and optimized peptide mass improved the therapeutic index of 
177Lu-OPS201, the sst antagonist compared with 177Lu-DOTATATE. 
The authors suggested that due to the larger density of binding 
sites at tumor cell membrane the interruption of sst-analogs before 

PRRT may not be needed when using radiolabeled antagonists [76]. 
The new family of antagonist tracers may even present a better 
imaging and therapy option. Indeed, the results of first clinical 
trials revealed the superior detection of liver metastasis with the 
use of sst antagonist 68Ga-OPS202 compared with the agonist 
68Ga-DOTATOC [77] and in diagnostics and therapy of NETs in 
a THERANOSTIC pair combination with the 177Lu labeled counter-
part [78]. Further clinical trials are planned. 

A novel instrumentation

The superiority of PET/CT over SPECT/CT results from the 
differences in spatial resolution. Exciting developments in the field 
of SPECT/CT have taken place over the last years. Namely the 
utilization of semiconductor CZT detectors have advanced the 
SPECT technology, mainly in cardiac imaging [79]. As a result, lower 
activities can be applied, the patient’s camera time is reduced and 
the spatial resolution is improved.

Moreover, technological advances and improved algo-
rithms nowadays allow for quantitative data analysis of SPECT/CT 
images and enable the calculation of standard uptake values for 
SPECT tracers [80, 81]. Recently GE Healthcare introduced its Dis-
coveryTM NM/CT 670 CZT, the first commercially-available gen-
eral purpose SPECT/CT system powered by CZT technology. 
This novel whole body system combines CZT detectors and 
quantitative SPECT/CT with a spatial resolution as low as in the 
3 mm range. Such devices hold the potential to pave the way for 
new applications of (established) SPECT tracers, especially in 
cases where SPECT data is used for therapy planning [82]. The 
use of 99mTc-EDDA/HYNIC-TOC in therapy planning of patients with 
neuroendocrine tumors could be one such application. The first 
99mTc-sst antagonists were tested pre-clinically and are on the way 
to the clinic. 

Summary

The studies related to the role of antagonist represent the re-
cent most favorable innovation in molecular imaging and PRRT of 
NETs. Taking into account the progress in design of ligands and in 
instrumentation and the availability of 99mTc and other radionuclides, 
there is still space for SPECT and PET technique and for further 
developments in imaging strategies. 
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