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Abstract
Background: This study aims to evaluate the performance of a deep learning enhancement method in PET images reconstructed 
with a shorter acquisition time, and different reconstruction algorithms. The impact of the enhancement on clinical decisions was 
also assessed.

Material and methods: Thirty-seven subjects underwent clinical whole-body [18F]FDG PET/CT exams with an acquisition time 
of 1.5 min per bed position. PET images were reconstructed with the OSEM algorithm using 66% counts (imitating 1 min/bed 
acquisition time) and 100% counts (1.5 min/bed). Images reconstructed from 66% counts were subsequently enhanced using 
the SubtlePET™ (SP) deep-learning-based software, (Subtle Medical, USA) — with two different software versions (SP1 and 
SP2). Additionally, images obtained with 66% counts were reconstructed with QClear™ (GE, USA) algorithm and enhanced with 
SP2. Volumes of interest (VOI) of the lesions and reference VOIs in the liver, brain, bladder, and mediastinum were drawn on 
OSEM images and copied on SP images. Quantitative SUVmax values per VOI of OSEM or QClear™ and AI-enhanced ‘shortened’ 
acquisitions were compared.

Results: Two hundred and fifty-two VOIs were identified (37 for each reference region, and 104 for the lesions) for OSEM, SP1, 
SP2, and QClear™ images AI-enhanced with SP2. SUVmax values on SP1 images were lower than standard OSEM, but on SP2 
differences were smaller (average difference for SP1 11.6%, for SP2 −4.5%). For images reconstructed with QClear™, SUVmax 
values were higher (average +8.9%, median 6.1%, SD 18.9%). For small lesions with SUVmax values range 2.0 to 4.0 decrease of 
measured SUVmax was much less significant with SP2 (for liver average −6.5%, median −5.6% for lesions average −5.6%, median — 
6.0, SD 5.2%) and showed the best correlation with original OSEM. While no artifacts and good general diagnostic confidence 
were found in AI-enhanced images, SP1, the images were not equal to the original OSEM — some lesions were hard to spot. 
SP2 produced images with almost the same quality as the original 1.5 min/bed OSEM reconstruction.

Conclusions: The studied deep learning enhancement method can be used to accelerate PET acquisitions without compromising 
quantitative SUVmax values. AI-based algorithms can enhance the image quality of accelerated PET acquisitions, enabling the 
dose reduction to the patients and improving the cost-effectiveness of PET/CT imaging.
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Introduction

New algorithms based on artificial intelligence (AI), more pre-
cisely deep learning (DL), a branch of machine learning, designed 
for an improvement of medical imaging have been developed in 
recent years [1]. These novel methods, aimed to improve image 
quality, have been introduced also to positron emission tomogra-
phy/computed tomography (PET/CT) — an imaging method that 
is widely used in many clinical applications, especially oncology, 
neurology, and cardiology [2, 3]. The long way from the idea 
of an image enhancement method through its validation up 
to the implementation of different DL algorithms in PET/CT into clini-
cal use has been described elsewhere [4, 5].

Since the advent of the PET technique, a lot of solutions have 
been proposed to shorten the time of acquisition and, even 
more importantly, to reduce the radionuclide activity injected 
into the patients. Any change of either parameter always impacted 
image quality, quantitative data, and clinical confidence of the rea-
ders reporting the scans [6, 7]. The application of machine learn-
ing in nuclear medicine image analysis is very promising [8] and 
seems to be a perfect solution for the reduction of the administered 
radiopharmaceutical activity and, subsequently, patient radiation 
exposure without compromising the image quality and diagnostic 
performance of PET/CT [9]. That is why the interest in the appli-
cation of AI-based methods is growing [10], with special attention 
to image enhancement [11] and improvement of image quality in 
low-dose acquisition [12].

An algorithm recently developed by Subtle Medical showed 
promising results in validation studies performed in Europe and on 
other continents [13, 14] and is now registered and commercially 
available. Its routine use in PET/CT imaging may potentially reduce 
the acquisition time or patient’s radiation dose. Based on these 
encouraging results, our institution decided to use it in its 3 PET/CT 
centers. The purpose of this study is to determine, if the published 
early results can be replicated in daily clinical routine and if the DL 
image enhancement can be used to reduce the acquisition time 
or the injected radiotracer activity.

Material and methods

Subsequent, randomly assigned patients undergoing a routine 
PET/CT with fluorine-18-deoxyglucose ([18F]FDG) for oncological 
indications were qualified for the study. After the initial evaluation, 
images with no apparent [18F]FDG-positive lesion (normal PET/CT 
scans) were disqualified. As a result, only patients with at least one 
[18F]FDG-positive, pathological finding, were qualified.

All patients were injected with the standard dose of 3.5 
MBq/kg [18F]FDG and the images were acquired approximately 
60 min  post-injection. The images were obtained with the GE 
Discovery IQ PET/CT scanner (GE Healthcare, Milwaukee, WI, 
USA). The scanner is using the standard OSEM reconstruction, 
as well as the QClear™ enhanced lesion detection reconstruction 
[15, 16]. Patients underwent a low-dose computed tomography 
(CT) prior to PET-processed acquisition, for attenuation correction 
and anatomical correlation of PET findings. The whole-body PET/CT 
exams were performed with a standard acquisition time of 1.5 min 
per bed position. Emission data was corrected for randoms, dead 
time, scatter, and attenuation and was reconstructed iteratively 

by an ordered-subsets expectation maximization (OSEM) algo-
rithm. The original OSEM reconstructed images (100% counts, 
1.5 min/bed) were sent from the modality to the SubtleEdge 
server for processing using deep learning (DL) based software 
(SubtlePET™, Subtle Medical, Menlo Park, CA, USA). SubtlePET™ 
reconstruction software was developed using 2.5D encoder- 
-decoder U-Net with the main purpose of denoising the images. 
It employs a convolutional neural network (CNN)-based method 
in a pixel’s neighborhood to reduce noise and increase image 
quality [17, 18].

To simulate images obtained with a shorter acquisition time or 
lower [18F]FDG activity, the 1 min/bed (equivalent to 66% of acquired 
counts or 2.33 MBq/kg of injected activity) were also sent to the DL 
software, for comparison. As the manufacturer offered two different 
versions of the software, both versions were used for processing: 
the original SubtlePET version 1 (SP1), and an upgraded SubtlePET 
version 2 (SP2).

Additionally, to test the performance of the DL processing in 
case of a reconstruction algorithm other than OSEM, the 1 min/bed 
images reconstructed with the QClear™ (GE, Milwaukee, USA) 
reconstruction algorithm were also sent for the processing, how-
ever with the version 2 of the software (SP2) only. To summarize, 
the following datasets were obtained and analyzed:

 — 1.5 min/bed OSEM (the original PET images)
 — 1 min/bed SubtlePET™ v1 over OSEM (SP1/OSEM)
 — 1 min/bed SubtlePET™ v2 over OSEM (SP2/OSEM)
 — 1 min/bed SubtlePET™ v2 over QClear™ (SP2/QClear).

An experienced, board-certified nuclear medicine physician 
reviewed the standard acquisition PET images in the Advantage 
Workstation (GE, Milwaukee, WI, USA) and identified possible 
lesions. 30 mm radius spherical volumes of interest (VOIs) 
of the lesions and reference VOIs placed in the reference organs: in 
the liver, brain, bladder, and mediastinum were drawn on the stand-
ard acquisition images. The same lesions, VOIs, and reference 
VOIs were subsequently copied and reviewed on the AI-enhanced 
images (SP1/OSEM, SP2/OSEM, and SP2/QClear). For each VOI, 
SUVmax values normalized to lean body mass were calculated at 
each type of reconstruction.

Differences in values between the standard study (1.5 min/bed 
OSEM) and copy of the VOIs for additional datasets, both, in 
SUVmax and as percentage (%) were statistically evaluated: average 
difference, median and standard deviation for each dataset, refer-
ence region and all the lesions together were compared. In order 
to test the diagnostic performance of AI-enhancement in the case 
of lesions with relatively low [18F]FDG uptake, a similar analy-
sis of a subgroup of scans presenting lesions with SUVmax < 4.0 
was performed separately.

Statistical analysis

Statistical analysis was performed for two ranges of results: 
1) all measured lesions [with four methods, i.e. 1.5 min/bed OSEM 
and three methods for 1 min/bed acquisition time: SP1/OSEM, 
SP2/OSEM, and SP2/QClear) and 2) for lesions with low uptake 
(SUVmax < 4) also with four mentioned methods. Descriptive 
statistics for categorical variables were presented as relative/ab-
solute frequencies, while those for continuous ones as the median 
(range).
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As all measured values had a non-normal distribution, we per-
formed the Friedman test with the calculation of the Kendall corre-
lation coefficient and later Spearman rank correlation for correlation 
between the base dataset (OSEM 1.5 min/bed) and datasets recon-
structed with reduced time.

For lesions with SUVmax < 4, a normal distribution was found, 
but without preserved sphericity. Therefore, the Friedman test 
was performed, followed by the r-Pearson linear correlation coef-
ficient calculation. Next ICC intraclass correlation was calculated 
between OSEM 1.5 min/bed and each of the AI datasets. ICC 
was interpreted according to the Landis interpretation scale [19] 
(0.0: poor; 0.0–0.20: slight; 0.21–0.40: fair; 0.41–0.60: moderate; 
0.61–0.80: substantial; 0.81–1.00: almost-perfect reproducibility).

Results

Thirty-seven subjects (21 males, 16 females, aged 16–80 years; 
median age 67 years) with at least one [18F]FDG-avid lesion were 
qualified for the study. Patients’ weight varied from 36 to 109 kg 
(median 73 kg) and body mass index (BMI) ranged from 15.1 to 37.2 
(median 25.2). Patient characteristics and clinical indications for 
the [18F]FDG PET/CT imaging are shown in Table 1.

We identified altogether 252 VOIs: 104 lesion VOIs (at least one 
lesion, no more than four lesions per patient) and 148 reference 

VOIs (37 for each of four reference regions — liver, brain, bladder, 
and mediastinum). SUVmax values obtained with all the image 
reconstructions and enhancement methods were compared with 
the SUVmax values measured at the original images (1.5 min/bed 
OSEM). The differences in SUVmax values in absolute numbers and 
percentage are presented in Table 2. SUVmax values on AI-enhanced 
images were lower than on unenhanced standard OSEM imag-
es but using SP2 the difference was smaller (median difference for 
SP1 was −11.89%, for SP2 −4.82%; Tab. 2). Still, all new recon-
struction methods showed a strong positive correlation to the orig-
inal OSEM 1.5 min/bed data. For the images reconstructed with 
QClear™, the trend was reverse — SUVmax values were higher than 
on unenhanced OSEM images (median 6.12%). For lesions with 
SUVmax values below 4.0 — the decrease of measured SUVmax 
was much less significant with SP2 (for liver reference median 
−5.6%, for lesions median −6.04%). Statistical analysis showed 
no difference between OSEM 1.5, SP2/OSEM, and SP2/Qclear, 
with the highest Pearson r and ICC intraclass coefficients for data 
reconstructed with SP2 (Tab. 3).

Statistical analysis showed that for lesions with SUVmax range 
2.0 to 4.0, the SP2 version strongly correlates with OSEM; r-Per-
son correlation coefficient is 0.9166 and ICC intraclass correlation 
of 0.9545 (almost perfect reproducibility), it is also clearly visible 
on Bland–Altman plot (Fig. 1).

Also for lesions with SUVmax < 4, SP2/OSEM results showed 
the best correlation with the original OSEM data (Fig. 2).

In the qualitative evaluation, generally, good image quality 
was found in SP1/OSEM, with no apparent artifacts. The ima-
ges were not equal to the original OSEM ones — some lesions found 
in mediastinum were hard to detect but they were still identifiable. 
SP2/OSEM provided more detailed images (less smoothing effect) 
and almost the same quality as the original 1.5 min/bed standard 
reconstruction (much better than 1 min/bed OSEM reconstruction) 
(Fig. 3).

Discussion

The study was performed in parallel with the implementation 
of SubtlePET™ reconstruction in clinical routine, based on a pre-
vious assessment performed by Katsari et al. [13], and performed 
in a similar timeframe, already published by Weyts et al. [17] and 
Bonardel et al. [18]. The main goal was to reduce the dose applied 
to the patient (by 1/3), with no negative effect on the image quality 
and clinical confidence. Reduction of the [18F]FDG injected activity 
could also translate to beneficial cost-effectiveness of PET/CT 

Table 1. Population characteristic

Patient characteristic Number [%] (N = 37)

Female 16 (43.2%)

Male 21 (56.8%)

Median (range)

Uptake time 59 min (49–74)

Body height 165 cm (151–190)

Body weight 73 kg (36–109)

Body mass index 25.2 kg/m2 (15.2–37.3)

Age 67 years (16–80)

Tumor characteristic Number [%] (N = 37)

Hodgkin/non-Hodgkin lymphoma 13 (35.1%)

Lung cancer 11 (29.7%)

Colorectal cancer 5 (13.5%)

Esophageal cancer 3 (8.1%)

Breast cancer 3 (8.1%)

Laryngeal cancer 2 (5.4%)

Table 2. SUVmax differences (values and %) between 1.5 min OSEM and 1 min SP1/OSEM, SP2/OSEM, SP2/QClear

1 min/bed Reference regions Lesions

Liver Brain Bladder Mediastinum SUVmax < 4 All SUVmax values

SP1/OSEM Median −0.15

(−6.49%)

−0.17

(−2.04%)

0.07

(0.58%)

−0.19

(−9.58%)
–0.61

(–11.51%)

−0.50

(−11.89%)

SP2/OSEM Median −0.14

(−5.60%)

−0.17

(−2.03%)

−0.15

(−0.86%)

−0.10

(−5.28%)
–0.31

(–6.04%)
–0.25

(–4.82%)

SP2/QClear Median −0.45

(−16.55%)

−0.15

(−1.81%)

0.95

(3.62%)

−0.29

(−14.29%)
0.63

(11.31%)

0.38

(6.12%)
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Table 3. Results correlation between 1.5 min OSEM and 1 min SP1/OSEM, SP2/OSEM, SP2/QClear

Lesions

SUVmax < 4 
(normal distribution)

All SUVmax values 
(inconsistent with normal distribution)

SP1/OSEM r-Person correlation coefficient 0.9058 –

ICC intraclass correlation 0.9498 –

Rank-order correlation R Spearman – 0.9863

Kendall coefficient – 0.9931

SP2/OSEM r-Person correlation coefficient 0.9166 –

ICC intraclass correlation 0.9545 –

Rank-order correlation R Spearman – 0.9913

Kendall coefficient – 0.9956

SP2/QClear r-Person correlation coefficient 0.8459 –

ICC intraclass correlation 0.8746 –

Rank-order correlation R Spearman – 0.9710

Kendall coefficient – 0.9855

Figure 1. Bland Altman plot 1.5 min OSEM — 1 min SP2/OSEM

procedure. In contrast to very encouraging published data, we 
faced some negative feedback from physicians reporting PET/CT 
examinations. The physicians mostly complained of the low visi-
bility of small changes and lower SUVmax values, that, in some 
cases, had an impact on the clinical interpretation of the lesions. 
We decided to perform quantitative analyses using normal dose 
(time) and to simulate lower dose retrospectively by reconstructing 
the images with the time per bed shorter by 1/3, i.e. 1 min/bed 
instead of 1.5 min/bed.

The initial results obtained with version 1 of the software 
(SP1/OSEM) confirmed some of the observed problems, such 

as excessive smoothing of the images, low SUVmax value, and 
a potential lower detectability of small [18F]FDG-avid lesions. Once 
the manufacturer developed a new version of the algorithm (SP2), 
addressing most of the raised issues, we decided to reevaluate 
the data with the new version.

We were able to reprocess previously acquired data with 
the new algorithm, applying it also to 1 min/bed data reconstructed 
with QClear™ reconstruction that is routinely used in our center, and 
to repeat all the measurements for all four types of data.

After a direct comparison of original clinical data and 
the reduced time DL algorithm outputs, the comparison of multiple 
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Figure 3. [18F]FDG PET/CT maximum intensity projection image, comparison of axial images — 1.5 min OSEM; 1 min — SP1/OSEM; SP2/OSEM; 
SP2/QClear. The example image represents an axial slice of the thorax in a patient with Hodgkin lymphoma. [18F]FDG-avid positive lesions were 
found in the mediastinum and right axillary region

outputs was conducted. We could see not only the impact of the AI-
based algorithm on the lower count/dose or time, but also the dif-
ferences between the two versions of the algorithm, and the impact 
of the reconstruction algorithm used on the final image.

It has to be pointed out that the DL algorithm is applied to al-
ready reconstructed and corrected (for attenuation, scatter, well 
counter, etc.) images, working on already statistically modified 
images and not on the original raw data.

Figure 2. SUVmax difference from 1.5 min OSEM for lesions with SUVmax < 4 for SP1 (blue dots), SP2 (orange dots), and SP2 QClear (grey dots)
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The final number of patients in the cohort was a little lower than 
originally planned but still, it was large enough to provide a good 
representation of different clinical diagnoses, age, sex, and body 
mass index of the subjects.

The main limitation of the study is its one center/one PET/CT 
scanner setting. We are planning to perform a larger study on data 
obtained from 3–4 scanners in different centers. Another limitation 
is related to the comparison method as only one dose of [18F]FDG 
could be administered in each patient due to the radiation protec-
tion restrictions. In contrast to the study by Katsari et al. [13], and 
similarly to Weyts et al. [17] and Bonardel et al. [18], we decided 
to keep standard dose and acquisition time and to reconstruct 
the images retrospectively with a shorter time (1/3 reduction) 
to simulate lower dose, rather than to administer lower activities and 
acquire for a longer time to simulate normal dose. It gave us also 
the possibility to check if the subjects had any lesions visible on 
the standard OSEM images before reprocessing images with the DL 
algorithm, in order to ascertain the presence of lesions feasible for 
the evaluation.

It should be also pointed out how the DL algorithm in question 
was qualified by us as users. While in other modalities (like CT or 
MR), AI provides already some algorithms supporting the clinical 
decisions of the readers, the SubtlePET algorithm is still just an im-
age enhancement tool with no support for the clinical interpretation.

We also need to remember that we were working on the already 
approved and registered algorithm, while many other centers try 
to develop and test their own methods [11, 12, 20].

Conclusions

The evaluated AI-based image enhancement can be used 
to accelerate PET acquisitions by one-third without compromising 
quantitative SUVmax values and image quality as compared to the ac-
quisitions with standard duration. Respectively, it can also be used 
to optimize PET images obtained with a radiopharmaceutical 
activity reduced by one-third. Subsequently, routine use of the im-
age enhancement may increase PET/CT scanner throughput or 
reduce the patient’s radiation burden. Furthermore, the analyzed AI 
enhancement can be used in PET images processed with different 
reconstruction algorithms. However, as shown by our experience 
with different AI algorithms, one should be aware of its impact on 
SUVmax values and lesion detectability.
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