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Abstract

Imaging techniques for in-vivo verification of the ion beam range 
and treatment delivery are increasingly receiving a consider-
able attention, as they hold the promise to enable full clinical 
exploitation of the improved tumour-dose conformality offered 
by ion beams. Although promising novel techniques have re-
cently been proposed and are being investigated in fundamental 
pre-clinical research, Positron-Emission-Tomography (PET) 
still offers the only technically feasible method for a volumetric 
non-invasive verification of the ion treatment during or shortly 
after daily dose delivery. This contribution discusses examples 
of clinical implementation of PET imaging, with special focus 
on the experience in in-beam and offline monitoring of car-
bon ion and proton therapy at the GSI Helmholtzzentrum für 
Schwerionenforschung in Germany, the Massachusetts General 
Hospital in USA, and the Heidelberg Ion Beam Therapy Center 
in Germany. In particular, it highlights the encouraging clinical 
results but also the encountered major limitations. Finally, it 
addresses the most promising ongoing developments aiming 
to achieve optimal exploitation of the surrogate PET signal for 
in-vivo quality assurance of high precision ion beam therapy.
Key words: Positron-Emission-Tomography, ion beam 
therapy, treatment verification
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Introduction

The favourable physical properties of ion beam interaction 
in matter with the characteristic dose maximum in depth known 
as “Bragg peak” (Figure 1) offer the possibility of superior 
tumour-dose conformality with better sparing of surrounding critical 
organs and healthy tissue in comparison to conventional radiation 
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in external beam radiotherapy. However, these advantages come at 
the expense of an increased sensitivity to uncertainties in the dose 
delivery, especially due to inter- and intra-fractional changes of 
the patient position and anatomy over the course of fractionated 
therapy. In particular, the praised finite range of ion beams (cor-
related with the position in depth of the Bragg peak) is a major 
source of uncertainty in the patient [1–3], hampering full clinical 
exploitation of the ion ballistic properties. Therefore, clinical prac-
tice of ion beam therapy still tends to rely on the less sharp but 
better controllable lateral penumbra of the beam (cf. Figure 2), 
rather than stopping the Bragg peak in front of critical structures. 
Although treatment uncertainties can be mitigated by the introduc-
tion of cautious safety margins and the careful choice of the beam 
incident directions, in-vivo and non-invasive validation of the actual 
dose delivery and, in particular, of the ion beam range during the 
fractionated course of radiotherapy would be highly beneficial. 

Over the last years, increasing interest has been devoted to 
in-vivo quality assurance of high precision ion beam therapy. In 
this context, very promising novel concepts of real-time range 
verification exploiting prompt (with respect to the time of beam 
interaction in matter) emitted neutral or charged radiation have 
recently been proposed and started being investigated [4–6]. 
Nevertheless Positron-Emission-Tomography (PET) still offers the 
only technically feasible method for a volumetric non-invasive 
verification of the ion treatment during or shortly after daily dose 
delivery. This method, originally proposed for the imaging of im-

Katia Parodi
Ludwig-Maximilians-University Munich

Photons 6 MeV
Protons 105 MeV
Carbon Ions 2200 MeV
Protons 160 MeV
Carbon Ions 3600 MeV

Depth in water (cm)
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

5 10 15 20

Do
se

 (a
rb

itr
ar

y 
un

its
)

Figure 1. Calculated depth-dose deposition in water for monoenergetic 
photon, proton and carbon ion beams in the energy range of therapeutical 
relevance. For the photon beam, an additional filtering layer of 2 mm 
aluminium was included in the calculation prior to the entrance in the 
water target. Taken from [1]
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planted radioactive beams [7], has been extensively investigated 
in the case of therapy with the more easily accessible stable ion 
beams. To date, several examples of clinical implementations of 
PET-based treatment verification have been reported worldwide, 
exploiting different types of installation to measure the signal in-
duced by actively- or passively-shaped ion treatment fields during 
or shortly after irradiation. This contribution will review the basic 
principle of the method and give an exemplary overview of different 
implementations and clinical experiences. These include in-beam 
and offline PET monitoring of carbon ion and proton therapy at the 
GSI Helmholtzzentrum für Schwerionenforschung in Germany, the 

Massachusetts General Hospital in USA, and the Heidelberg Ion 
Beam Therapy Center in Germany.

Material and methods — the principle  
of pet-based treatment verification

The unconventional application of PET imaging to the monitoring 
of ion therapy with stable beams is based on the detection of the 
transient b+-activation which is induced in nuclear interactions be-
tween the ions and the irradiated tissue. Depending on the primary 
ion beam species, the mechanism of b+-activation may include either 
target fragmentation only or the formation of both target and projectile 
positron-emitting fragments. The mechanism of production mainly 
affects the shape of the ion-induced activity and its correlation to the 
deposited dose (Figure 3). In fact, activated target nuclei stay almost 
at rest in the place of interaction, while positron-emitting projectile 
fragments travel further and accumulate at their end of range, result-
ing in a peaked activity signal. The latter is located shortly before the 
Bragg peak for the most frequent positron-emitting isotopes of the 
primary therapeutic ion beam, such as 11C and 10C from a primary 12C 
ion beam. Regardless of the formation mechanism, dose deposition 
and irradiation-induced activation remain different quantities due to 
the different underlying electromagnetic and nuclear processes, 
respectively. Hence, treatment verification can be obtained either by 
comparing the actual PET measurement with a reference measure-
ment taken at the beginning of the treatment course to assess repro-
ducibility [9], or with an expectation based on the treatment plan and 
the time course of irradiation and imaging to assess accuracy [10]. 

Due to the intrinsically delayed radioactive decay according to 
the half-lives of the typical reaction products (e.g. 10C, 15O, 11C), rang-
ing from few seconds up to several minutes, the PET signal can be 
measured during or shortly after beam delivery. In particular, three major 
implementations have been so far clinically explored, which utilize either 
dedicated limited angle detectors integrated in the beam-delivery, or 
full ring scanners located inside or outside the treatment room. In par-
ticular, “in-beam” implementations refer to data acquisition during the 
irradiation, which has been so far only achieved in the pauses of pulsed 
beam delivery due to the considerable prompt radiation background 

Figure 2. Calculated 2D dose distributions for a collimated photon 
beam (top, square transversal profile of 4 mm edge) with respect to 
proton (middle) and carbon ion (bottom) Gaussian-shaped pencil-like 
beams (3 mm FWHM) in the therapeutically relevant energy range (cf. 
the corresponding laterally integrated depth-dose distributions in  
Figure 1). The beams enter the water target from the left. The colour 
map indicates percentages of the maximum dose. The less sharp 
lateral penumbra with respect to the steeper distal fall-off at the Bragg 
peak is evident for ion beams, especially for protons. Taken from [1]

Figure 3. In-beam PET measurements of b+-activity depth profiles (solid line) for proton (A) and carbon ion (B) irradiation of Polymethyl  
methacrylate (PMMA) targets at 110 MeV and 212.12MeV/u, respectively. The different pattern of activation either due to positron-emitting target 
fragments only (left) or including also the peaked contribution from positron-emitting projectile fragments (right) is evident. The dotted line shows 
the corresponding calculated dose distributions. Adapted from [8, 18]
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during the real beam-on time [11, 12]. “In-room” installations may 
include on-board detectors starting acquisition immediately after the 
end of the therapeutic irradiation [9], or full-ring scanners moved to 
the patient (or vice-versa) for a few minutes delayed acquisition after 
treatment [13]. “Offline” imaging refers to the acquisition using a full-ring 
scanner installed outside of the treatment room [14, 15]. Examples of 
these three concepts with related initial clinical experience are recalled 
and discussed in the next session. 

Results and discussion — examples  
of clinical implementation and experience

The most extensive clinical experience has been so far reported 
for the in-beam PET monitoring of scanned carbon ion therapy in the 
pilot therapy project at GSI Darmstadt [10]. The daily dose fraction of 

over 400 patients mostly treated for head and neck tumours could 
be imaged using a dedicated dual-head positron camera directly 
integrated in the treatment site [11]. Despite the shortcomings of 
limited angle detection and the lack of quantitative imaging, important 
conclusions on the actual beam delivery could be inferred from the 
comparison of the daily measured activity with a corresponding pre-
diction for the first delivered treatment field. In particular, the method 
gave an essential contribution in reducing the systematic error of the 
semi-empirical calibration of the patient Computed Tomography (CT) 
data into ion range, consistently used by the treatment planning system 
and the PET calculation engine [16]. Additional random errors due to 
patient mispositioning or local anatomical modifications could also 
be detected (Figure 4), and the impact on the actual dose delivery 
could be in first approximation quantified prior to the application of the 
next treatment fraction for a possible treatment adaptation (Figure 5). 

Figure 4. Measured (A) and predicted (B) b+-activity distributions (displayed by coloured isolines normalised to the maximum within the imaged 
plane) for an oblique treatment field entering the patient from the right side (left in figure). The arrows point at discrepancies suggesting a local  
tissue reduction in the beam path. Taken from [17]

Figure 5. Flow chart of the interactive approach developed in [17] for local dose quantification from PET images in routine monitoring of carbon ion 
therapy at GSI Darmstadt. Figure adapted from [17, 18]
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Despite the promising results achieved in the GSI project, the 
considerable development and integration efforts and costs pre-
vented the spread of similar solutions at other treatment centers. 
Here, more viable approaches could benefit from the advent of 
commercial combined PET/CT scanners to overcome the major 
limitations encountered with stand alone off line PET scanners [14]. 
In fact, PET/CT devices offer additional anatomical information to 
reduce the unavoidable uncertainties of patient repositioning at 
the remote sites outside of the treatment room. At MGH Boston, 
a pilot clinical study with a total of 23 patients was conducted using 
a commercial PET/CT installation in the department of radiology, at 
more than 10 min walking distance from the proton center [15, 19]. 
The relatively long time (15 min on average) elapsed between pas-
sively scattered proton irradiation and imaging with the consequent 
significant loss of counting statistics needed to be compensated 
with a long PET scan time of 30 min (in single bed position). Still, 
inherent drawbacks of off line imaging were encountered, such 
as the missed contribution of short-lived emitters (especially 
the most abundant 15O with a half-life time of ca. 2 min) and the 
degraded spatial correlation between activity and dose due to 
biological washout processes. The latter had to be for the first time 
accounted in the simulation process for a more reliable compari-
son with the measurement [15]. Despite the extremely low activity 
signal and the above mentioned shortcomings, irradiation-induced 
activation could be demonstrated for different treatment sites, with 
encouraging results of millimetric in-vivo range confirmation in low 
perfused bony structures of intracranial and cervical spine tumour 
patients. Severe limitations for accurate in-vivo range verification 
were instead encountered in the case of abdominopelvic tumors, 
which were attributed to biologic washout effects, co-registration, 
motion and limitations of CT stoichiometric calibrations for tissue 
classification in CT-based Monte Carlo simulation of the expected 
activity patterns [19]. As most of these challenges were ascribed to 
the suboptimal imaging implementation rather than the PET tech-
nique itself, clinical research was then continued with a prototype 
neurological PET scanner on wheel for in-room imaging shortly 
after the patient treatment [13]. The first experience with two patient 
cases confirmed the expected improvements in counting statis-
tics [13]. This enables scan times below 5 minutes in order to avoid 

too long prolongation of the treatment session in the treatment 
room for the sake of acceptable patient throughput. Moreover, 
the most relevant 15O emitter could be detected for visualisation 
of soft tissue activation, exhibiting better spatial correlation with 
the high-dose region and steeper distal fall-off for improved range 
verification, at the expense of a less well understood biological 
washout [13]. The major encountered technical obstacle was the 
co-registration accuracy between the in-room PET acquisition 
and the planning CT, which is essential for the comparison of 
PET measurements with CT-based simulated predictions. Thus, 
future studies are planned at a next generation “neuroPET” pro-
totype integrating a CT scanner to overcome the co-registration 
issue. However, due to the limited bore opening of the device, 
this promising low-cost and high-sensitivity modality is limited to 
the monitoring of cranial sites or pediatric patients.

As neither in-beam nor in-room commercial solutions existed 
yet, at the more recent Heidelberg Ion Beam Therapy Center 
a dedicated commercial PET/CT scanner was installed just outside 
of the treatment sites. For an efficient workflow, a novel shuttle solu-
tion has been implemented to preserve the patient immobilisation 
and positioning between the treatment and imaging site (Figure 6) 
[20, 21]. This can be advantageous with respect to the walking and 
repositioning of the patient especially in the case of challenging 
anatomical locations requiring complex immobilisation devices. 
The scanner is currently being used in a major clinical study aiming 
to investigate the benefit of post-treatment PET/CT verification on 
a large population of patients being treated with scanned proton or 
carbon ion beams [22]. The initial clinical experience (cf. Figure 7) 
is going to be reported soon, together with a description of the on-
going efforts for further methodological improvements [23]. These 
feature improvements in the modelling of the irradiation-induced 
activity [24] and in the dedicated software developed to support 
the PET-verification clinical workflow towards a semi-automated 
range assessment [25]. 

In addition to the cited examples, more and more institu-
tions are actively investigating the clinical usage of dedicated or 
commercial PET scanners for the purpose of in-situ verification 
of ion therapy treatment (e.g. [26–28]). Despite the generally 
encouraging results, all experiences reported so far seem to suf-

Figure 6. Example (with volunteers) of the dedicated shuttle solution allowing to share the same table top (with related immobilization device)  
between the PET/CT scanner (A) and the robotic treatment table (B) for easy transport between the imaging and treatment room (cf. central image). 
An example of clinical workflow starts with volumetric CT imaging for positioning, transport to the treatment room for therapy, and transport back for 
post-radiation in-vivo verification. Adapted from [20, 21]
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fer from the suboptimal PET instrumentation, mostly adapted or 
directly taken from established conventional nuclear medicine or 
small animal imaging. 

Prototype in-beam or on-board solutions offer the advantage 
of imaging in the treatment room with the patient immobilised 
in the same treatment position, with no or only minor impact on 
the patient throughput. Drawbacks are the limited angle imaging 
artifacts, as well as the considerable development and integra-
tion costs. In-room solutions with full-ring tomographs could offer 
a good compromise in terms of image quality, acceptable workflow 
and moderate integration efforts [13, 29], provided that accurate 
co-registration is ensured. “Offline” imaging using a commercial 
scanner installed outside of the treatment rooms is the cheapest 
and easiest approach, not interfering at all with the patient treat-
ment throughput. The drawback is the need of long scan times to 
compensate for the activity decay in the time elapsed between 
irradiation and imaging, together with the loss of short-lived emitter 
contributions (especially the most important)15O and the degraded 
correlation between activity and dose due to biological washout.

In all implementations, imaging performances are challenged 
by the extremely weak (less than 10 kBq/Gy/ml [1]) activation signal 
induced by the therapeutic irradiation, which is order of magnitude 
below the typical tracer concentrations administered in nuclear 
medicine applications. Therefore, major improvements can be 
expected by the ongoing technological developments towards new 
geometrical arrangements for in-beam full ring scanners [30] or 
next generation ultra-fast time-of-flight in-beam PET detectors for 

artifact-free on-the-fly imaging [31], as being explored by several 
institutions and international collaborations including the European 
project ENVISION (European NoVel Imaging Systems for ION 
therapy) [32]. Further challenges of the PET-based verification 
approach being tackled are the modeling of the expected PET 
images [33–35] (including the physiological clearance especially 
remarkable in offline imaging), the co-registration between imag-
ing and treatment positions (for in-room and offline implementa-
tions implying the movement of the patient) as well as organ 
motion [36] (strongly depending on the anatomical location and 
the duration of the PET scan).

It can be concluded that despite the proof-of-concept and 
promising initial clinical experience reported so far, the full poten-
tial of the PET verification approach has not yet been reached. 
Nevertheless, there are strong reasons to believe that the several 
technological and methodological developments being currently 
investigated will enhance the role of this imaging modality for in-vi-
vo verification of range, and possibly, dose delivery of high preci-
sion ion beam therapy in the near future. Improved instrumentation 
could also open the possibility of exploiting the irradiation-induced 
signal in correlation with functional modifications over the course 
of fractionated treatment, as already suggested by retrospective 
analysis of in-beam PET data at GSI [37]. 

Conclusion

Full clinical exploitation of the superior selectivity offered by 
ion beam therapy requires in-vivo imaging of a “surrogate” signal 
(e.g. from escaping secondary radiation) correlated to the beam 
range and delivered dose, as well as a reliable computational 
tool for accurate modeling of the “surrogate” signal in relation to 
the range/dose deposition. PET is a mature imaging technique 
which has been already clinically investigated for in-vivo treatment 
verification of proton and carbon ion therapy at several institu-
tions and with different instrumentation. Despite the encouraging 
results reported so far for in-vivo visualization of the treatment 
area and confirmation of the beam range within few millimeters in 
favorable anatomical locations (e.g. skull base), technological and 
methodological improvements are still desirable for optimal usage 
of the minor amount of irradiation-induced b+-activity correlated 
with the dose delivery. In this respect, major advances can be 
expected from the usage of next generation dedicated instru-
mentation tailored to this specific application, as being currently 
pursued by several groups. Eventually, it can be expected that 
in-vivo verification of ion therapy will benefit from a variety of com-
plementary imaging techniques, most of which — unlike PET — are 
still at the basic research and development level.
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Figure 7. Patient treated for a primary brain tumour with a carbon ion 
boost (A, planned dose distribution overlaid onto the planning CT), 
undergoing a PET/CT measurement (B) shortly after scanned ion  
irradiation at HIT. Taken from [22]
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