⁶⁷Ga SPECT in detection of infection and inflammation

Jaroslaw B. Ćwikła¹, John R. Buscombe², Daksha S. Thakrar², Andy G. Irwin², Andrew J. W. Hilson²

¹Department of Radiology and Nuclear Medicine, SPSK 2, Otwock, Poland ²Department of Nuclear Medicine Royal Free Hospital, London, UK

Abstract

BACKGROUND: The aim of this study was to assess the value of ⁶⁷Ga SPECT in detection and localisation of sources of infection/inflammation.

MATERIALS AND METHODS: This study was performed on 24 patients (25 examinations) with suspected infection/inflammation. All patients underwent both planar and tomographic studies. There were 10 studies of abdomen and pelvis, 11 lower leg scans and 4 studies of upper chest and neck. We used a twohead gamma camera in each case. A planar whole body scan was performed with slow scan speed (10 cm/min), followed by a SPECT acquisition 48 hours after i.v. injection of 100-200 MBq ⁶⁷Ga. Tomographic reconstruction was performed using a Ramp back-projection filter. These images were then smoothed using an automatically applied count optimised post-projection 3D Metz filter. Attenuation correction and scatter correction were not performed. Images were displayed as re-orientated transverse, coronal and sagittal slices. Planar and SPECT studies were assessed by two physicians trained in Nuclear Medicine, blinded to clinical details and compared with final pathological results.

RESULTS: All planar and SPECT studies were of good quality. Overall diagnostic accuracy was as follows: sensitivity 100% specificity 67%, PPV 90% and NPV 100%. SPECT examination provided additional information about unexpected sources of confirmed infection on a site basis but did not find any additional patients which were not detected on planar examination. Localisation of sites of infection was more easily achieved with SPECT than planar imaging alone, especially when the transaxial slices were compared with CT or MRI.

Correspondence to: Dr John R. Buscombe Department of Nuclear Medicine, Royal Free Hospital London NW3 2QG, UK Tel/fax: (+44 171) 8302469 e-mail: buscombe@rfhsm.ac.uk CONCLUSIONS: We recommend ⁶⁷Ga SPECT study as a tool to improve the accuracy of scintigraphy in detecting the number of sites of infection and their localisation.

Key words: SPECT; 67Ga; infection and inflammation

Introduction

Currently ⁶⁷Ga has a wide range of clinical use and is probably an under-utilised technique. Gallium scan is cheaper than a CT scan and is able to pick up a wide range of inflammatory and/or infected diseases (1). 67Ga SPECT has been shown to be more sensitive than planar imaging in several adult and paediatric studies (1, 2). Clinical indications of ⁶⁷Ga citrate scanning include the infectious complications after median sternotomy, myopericarditis, abdominal abscesses, tuberculosis and osteomyelitis of the spine (3-8). It can also be used in the identification of lung pathology such as fibrosing alveolitis, post bleomycin and radiotherapy and pneumonia (9, 10). ⁶⁷Ga citrate is however nonspecific and has been found to have uptake in non-infected granulomatous process such as sarcoidosis, and malignant disease, for example lymphomas (1). However it remains a very useful agent particularly in the identification of chronic infection, a classic example being external otitis most frequently observed in elderly diabetic patients where early diagnosis is necessary for successful treatment (11).

⁶⁷Ga citrate imaging can provide quantitative information about infection/inflammation activity that is often not apparent from morphological images alone. This can be very useful in monitoring the effect of any treatment. In some situations ⁶⁷Ga imaging offers many practical advantages over ¹¹¹In or ^{99m}Tc HMPAO labelled leukocyte imaging. For example no cell labelling is required and it can be used on patients with few or no working white cells (patients immunosuppressed or/and chronic infection).

New digital gamma cameras have helped to improve the quality of images produced from ⁶⁷Ga citrate. If in addition a multidetector SPECT camera is used, then reasonable image times can be obtained and there are sufficient counts to perform quality SPECT, even of multiple sites. Also when displayed as volume rendered images it seems to be very helpful diagnostic tool (1, 8, 12).

Therefore the aim of this study was to assess the value of ⁶⁷Ga SPECT in detection and localisation of sources of infection/ inflammation and to compare the results with planar imaging.

Patients and methods

The study was performed on 24 patients (25 examinations) with suspected infection/inflammation lesions in different parts of the body. The mean age of patients was 59 years (range 30–80). Of the 25 SPECT examinations, 10 were abdominal and pelvic scans; 10 of the knees and the lower part of the leg, 5 of the upper thoracic cavity and neck. Clinical suspicious mostly concerned the pyogenic abscesses localised in the abdomen (10 cases), and the thorax (5 cases). Suspicion of osteomyelitis consists of 10 cases of knee, foot and vertebral osteomyelitis (Table 1).

Each examination was performed using intravenous 100–200 MBq ⁶⁷Ga (Mallinkckrodt, Nuclear Medicine, Petten, Netherlands) 48 hours later. All studies were performed on a two-head gamma camera (Picker Prism 2000XP, Picker, Cleveland, OH, USA) interfaced to a computer workstation Odyssey VP (Picker Inc., Cleveland, OH, USA). A medium energy parallel collimator was used in each case. Three photopeaks, 90, 180 and 390 keV were used for both planar and SPECT acquisitions. A planar whole body scan was performed with slow scan speed (10 cm/min.). Tomographic images were acquired in 64x64 matrix. The tomographic data were acquired continuously in 30 steps, over 180 degrees for each head of the gamma camera. Data acquisition was 30s per one step. Tomographic reconstruction was performed after uniformity correction: obtained from a ⁶⁷Ga flood source, using a standard Ramp back-projection filter (FBP) the images were then smoothed using an

Table 1. Data of all patients considering age, clinical suspicious
and final result of 67Ga citrate study

Patient	Sex	Age	Clinical suspicious	Final result
1	m	64	abdominal abscess - bilary reconstruction	tp
2	f	78	chest infection - haemodialysis	tn
3	f	51	abdominal abscess - post operative of live	er fp
4	f	51	FUO, pyrexia	tp
5	f	66	right TKR - infection	tp
6	m	80	osteomyelitis left lower leg	tp
7	f	39	abdominal tuberculosis	tp
8	f	35	kidney abscess	tn
9	m	25	shunt V-P abscess	tp
10	f	77	right TKR - infection	tp
11	f	50	abdominal abscess - diverticulum	tp
12	f	75	osteomyelitis right ankle	tp
13	m	30	abdominal and thoracic	tp
			adenopathy - tuberculosis	
14	f	77	FUO myelodysplasia	fp
			 spleen abscess suspicious 	
15	m	77	endocarditis after right TKR infection	tp
16	m	77	right TKR infection	tp
17	m	51	osteomyelitis left ankle	tp
18	m	69	pericarditis	tn
19	m	33	osteomyelitis left femur	tp
20	m	59	osteomyelitis	tp
21	m	51	both TKR infection	tp
22	m	81	left TKR infection	tp
23	m	61	vertebral osteomyelitis - tuberculosis	tp
24	f	66	osteomyelitis left leg	tp
25	f	52	vertebral osteomyelitis	tn

Abbr: FUO — fever of unknown origin, V-P shunt — venous-portal shunt,

TKR — total knee replacement, tp — true positive study, tn — true negative study, fp — false positive study

automatically applied count optimised post-projection 3D Metz filter after reconstruction. Attenuation correction and scatter correction were not performed. At this stage the data were re-orientated into orthogonal slices. Slice thickness was 9.34mm in each case. Images were displayed as transverse, coronal and sagittal slices.

In some patients with osteomyelitis suspicion a standard 3-phase bone scan was performed before the ⁶⁷Ga citrate study. Sites of uptake greater then background and outside of physiological uptake of ⁶⁷Ga were reported as showing positive accumulation. Images were read independently by two physicians with experience in these types of investigations, blinded to clinical details. All studies were confirmed at surgery, microbiology and/or histopathology as well. Four patients with negative results had clinical follow-up for more then 6 months.

Results

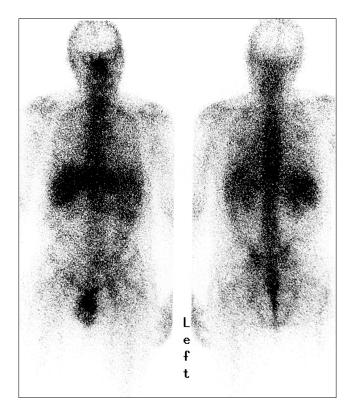
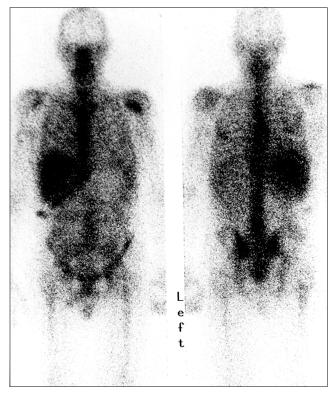

All ⁶⁷Ga planar and SPECT studies were of diagnostic quality. Of the 25 studies the results were as follows: 19 true positive examinations, 4 true negative examinations, 2 false positive studies. There were no false negative studies (Table 1, 2). However on

Table 2. Results of ⁶⁷ Ga citrate study, including two patients with true
positive studies evaluated correctly in SPECT studies with additional
sources of infection. Also one case with false positive study with
both planar and SPECT including another focus of tracer accumula-
tion seen in SPECT study


Site of ⁶⁷ Ga accumulation								
Patient	SPECT	Planar	Result					
1	right abdomen, below liver	right abdomen, below liver	tp					
2	normal	normal	tn					
3	anterior abdomen	anterior abdomen	fp					
4	periaortic nodes	periaortic nodes	tp					
5	right TKR (both components)	right TKR (both components) tp					
6	left tibia	left tibia	tp					
7	iliac or sacroiliac area	iliac or sacroiliac area	tp					
8	normal	normal	tn					
9	abdominal abscess	abdominal abscess	tp					
10	femoral component of TKR	femoral component of TKR	tp					
11	first focus within left abdomen	focus of	tp					
	second within low left abdomen	abdominal uptake	tp					
12	right lateral ankle	right lateral ankle	tp					
13	sites within abdomen and thorax	sites within abdomen	tp					
	left mediastinum	and thorax						
14	first abdomen – spleen	left abdomen	fp					
	second left abdomen - spleen	spleen	fp					
15	both components of right TKR	both components	tp					
		of right TKR						
16	heart accumulation	heart accumulation	tp					
17	right medial ankle	right medial ankle	tp					
18	normal	normal	tn					
19	proximal tibia	proximal tibia	tp					
20	synovial membrane of right knee	whole right knee joint	tp					
21	both TKR	both TKR	tp					
22	tibial component of left TKR	tibial component of left TKR	tp					
23	abdominal abscess	abdominal abscess	tp					
24	left lateral ankle	left lateral ankle	tp					
25	normal	normal	tn					

Abbr: V-P shunt — venous-portal shunt, TKR — total knee replacement, tp — true positive study, tn — true negative study, fp — false positive study

a site by site basis there were additional sites of infection seen on the SPECT study, confirmed as infection not seen on the planar studies. Therefore site by site the sensitivity of the SPECT study was 100% compared with 93% for the planar imaging. SPECT imaging proved to be most useful in the abdomen where it was possible to identify the presence and site of infection compared with organs containing physiological activity of ⁶⁷Ga. This was particularly true around the liver (Figure 1, 2). It enabled normal struc-

Figure 1 A. 61-year-old patient with history of liver transplant and suspicious of abdominal abscess. Planar A-P (left side and P-A right side) ⁶⁷Ga study with focal accumulation of tracer below left save of liver toward spine.

Figure 2 A. 64-year-old patient with previous history of bilary tree reconstruction, presented symptoms and signs of abdominal abscess. Standard planar A-P and P-A views with focal uptake of ⁶⁷Ga below right lobe of the liver.

Figure 1 B. Standard SPECT study presentation as transverse, sagittal and coronal views, show clear cut uptake of ⁶⁷Ga below the left lobe of the liver toward the spine (best seen in transverse and coronal views).

Figure 2 B. SPECT study with clear focal uptake of the tracer just below right lobe of the liver. Surgical operation confirmed pathology.

Figure 1 C. 3-D reconstruction of SPECT study with physiological uptake of the tracer within liver, spleen and spinal bone marrow. Additional pathological uptake below left lobe of the liver. Confirmed by pathology.

tures such as the colon to be readily identified. This could be enhanced by the use of three-dimensional (3-D) imaging and rotating the 3-D images in all three planes on the screen using an interactive graphic display. In the legs SPECT imaging clearly differentiated between the low grade uptake often seen around healing bone. This was most usefully seen in a patient post surgery for a knee replacement. There was a generalised increase uptake of ⁶⁷Ga uptake along the edges of the femoral and tibial components of the prosthesis but in addition a more intense focal uptake was seen at the site of infection (Figure 3).

Discussion

Taken on a patient by patient basis there is no difference in the results of planar and SPECT imaging. However the results of this study did show that on a site by site comparison SPECT is able to pick up more lesions than planar imaging. The advantage of SPECT imaging is the ability to separate activity in over-

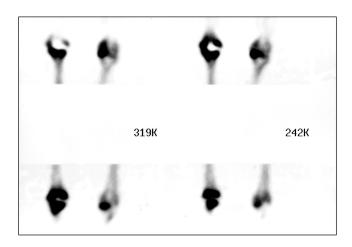


Figure 3A. 77-year-old female patient with history of bilateral TKR. Currently clinical presentation of infection or loosening right TKR device. Standard bone SPECT as coronal view (^{9am}Tc MDP) with focal uptake around right femoral component of TKR and signs of "hot patella" on the left.

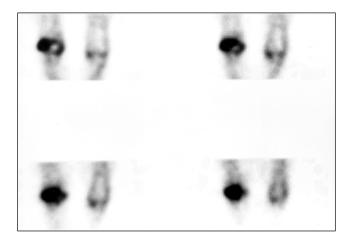


Figure 3B. ⁶⁷Ga SPECT (coronal view) with clear cut uptake around a femoral component of TKR device. Confirmed as infection of right TKR.

lying tissues and also the improved contrast between the pathology and normal activity, which is described as an increase in contrast resolution. Our findings were similar to results of other studies using SPECT in ⁶⁷Ga citrate imaging (1–3, 5, 8,12). One advantage in reading the scintigraphic SPECT data presented as transaxial, coronal and sagittal is that it can be used when comparing the results of the ⁶⁷Ga citrate study and other forms of cross-sectional imaging such as CT or MRI. It may even be possible to combine data, using image registration techniques, though this was not done in our study. This study also confirms that 67Ga citrate can be used in a wide range of infections at different sites of the body and by using SPECT even infection within the abdomen can be identified. In some patients, for example those with vertebral osteomyelitis, suspected tuberculosis and those who are immunosuppressed either by previous drug treatment or AIDS, scintigraphy with 67Ga citrate is the method of choice (1, 8).

Also it seems to be very useful in those patients with orthopaedic implants, when MRI cannot be used because of peri-metal signal drop out, and CT scans are not very helpful due to artefacts and often not conclusive results (1). In our group, 5 patients, those presenting with suspected infection around TKR devices, were all correctly diagnosed. Another use is in those patients with chronic osteomyelitis, which often consists of low grade of inflammation/infection and poor rate of migration of leukocytes, where ¹¹¹In or ^{99m}Tc HMPAO labelled leukocyte studies are often not very useful. Cases of acute osteomyelitis can be detected by commercially used polyclonal or monoclonal antibodies or labelled leukocytes (1,13–15). The low specificity of ⁶⁷Ga scan (67%) in our study confirms that though ⁶⁷Ga citrate is sensitive it may be positive in a range of non-infective conditions and sites of focal uptake must always be confirmed by aspiration or biopsy. A further disadvantage of ⁶⁷Ga study is that the poor imaging characteristics of this radioisotope have to be overcome by good quality of collimation, digital data collection and the use of a specific 67Ga uniformity flood source for correction of data before SPECT reconstruction. This flood source should be repeated on a minimum 3 monthly basis (1).

This study clearly shows that both planar and SPECT ⁶⁷Ga citrate imaging are sensitive in the localisation of a wide range of infection. SPECT, using modern gamma-camera technology, can find some additional sites of infection and also improve the localisation of infection. However as the specificity of the test is only 67% all sites of abnormal ⁶⁷Ga citrate should have their nature confirmed by biopsy.

Acknowledgements

The authors wish to thank Mallinckrodt Nuclear Medicine, Petten, Netherlands and Mallinkckrodt Medical GmbH, Germany for their help during this study.

References

- Buscombe JR, Infection. In: Maisey MN, Britton KE, Collier BD, eds: Clinical Nuclear Medicine. London: Chapman and Hall, 1998: 125–137.
- Tan TX, Gelfand MJ. ⁶⁷Ga scintigraphy in pediatric patients. Comparison of extended SPECT of the chest and abdomen with planar imaging. Clin Nucl Med 1996; 21: 717–779.

- Montero A, Carril JM, Quirce R, et al. Contribution of planar scintigraphy and SPECT with ⁶⁷Ga in the diagnosis of infectious complications after median sternotomy. Rev Esp Med Nucl 1998; 17: 331–337.
- Cregler LL, Sosa I, Ducey S, Abbey S. Myopericarditis in acquired immunodeficiency syndrome diagnosed by gallium scintigraphy. J Nat Med Asoc 1990; 82: 511–513.
- Challa C, Milne N, Brown TW, Lyons KP. ⁶⁷Ga uptake in a perisplenic fluid collection: planar and SPECT images. Clin Nucl Med 1997; 22: 870–872.
- Kumar M, Naddaf S, Abujudeh HH, Atay S, Abdel-Dayem HM. Ga-67 imaging of perisplenic abscess after splenic embolization. Clin Nucl Med 1998; 23: 394–395.
- Everaert H, Flamen P, Franken PR, Momen A, Bossuyt A. ⁶⁷Gauptake in a case of tuberculous spondylitis. Clin Nucl Med 1997; 22: 403–404.
- Love C, Patel M, Lonner B, Torrres MA, Palestro CJ. Bone, Gallium, and MRI in vertebral osteomyelitis. J Nucl Med (Suppl.) 1998; 39: 28 (Abstract).
- 9. Crystal RG, Gadek JE, Ferrans VJ, Fuliner JD, Line BR, Hunninghake

GW. Interstitial lung disease: Current concepts of pathogenesis, staging and therapy. Am J Med 1981; 70: 542–568.

- MacMahon H, Bekerman C. Diagnositic significance of gallium uptake in patients with normal chest radiographs. Radiology 1978; 127: 189–193.
- Stokkel MP, Boot CN, van Eck-Smit BL. SPECT gallium scintigraphy in malignant external otitis: initial staging and follow-up. Case reports. Laryngoscope 1996; 106: 338–340.
- 12. Front D, Bar-Shalom R, Iosilevsky G, et al. ⁶⁷Ga scintigraphy with a dual-head camera. Clin Nucl Med 1995; 20: 542–548.
- Corstens FH, Oyen WJ, Becker WS. Radioimmunoconjugates in the detection of infection and inflammation. Semin Nucl Med 1993; 23: 148–164.
- 14. Becker W. The contribution of nuclear medicine to the patient with infection. Eur J Nucl Med 1995; 22: 1195–1211.
- Buscombe JR. Radiolabelled human immunoglobulins. Nucl Med Commun 1995; 16: 990–1001.