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Abstract

BACKGROUND: In CAD, left ventricular function depends on
the condition of myocardial perfusion, hence it may be presumed
that blood flow abnormalities may enable the LVEF to be pre-
dicted. The aim of the study was to apply an Artificial Neural
Network (ANN) to investigate the relationships between myo-
cardial perfusion and LVEF, measured simultaneously.
MATERIAL AND METHODS: gSPECT examinations were per-
formed in 95 patients with CAD, divided into training (n = 50)
and testing (n = 45) groups. using the acquired data, in each
subject the LVEF was calculated and a perfusion polar map
was constructed and divided into 25 segments. Based on re-
sults obtained in the training group, a characteristic configura-
tion of segments was defined, with features enabling differenti-
ation between the individual subjects of that group. The set of
those segments, as well as the corresponding LVEF values
enabled the optimum network architecture to be constructed

Correspondence to: Boguslaw Stefaniak
Chair and Department of Nuclear Medicine
Skubiszewski Medical University of Lublin
ul. Jaczewskiego 8, 20–954 Lublin, Poland
Tel: (+48 81) 72 44 339, e-mail: ziemowit@asklepios.am.lublin.pl

and trained. The trained ANN was verified by application to the
testing group.
RESULTS: Using the above-described procedure, 15 polar map
segments were defined which enabled the patients of the train-
ing group to be differentiated sufficiently enough to make their
further recognition possible. The optimal network structure con-
sisting 25 neurons was obtained by comparing the activity in
those segments in individual subjects with corresponding LVEF
values. Based on the above model, the obtained network was
able to reproduce learning data (r = 0.832; learning error =
= 4.84%) and to apply the gained knowledge to the testing
cases (r = 0.786; testing error = 4.99%).
CONCLUSIONS: The obtained network can generalise learned
information. To predict LVEF, some polar map segments should
be excluded from the analysis. Erroneous LVEF prediction may
occur resulting mainly from conditions independent from per-
fusion abnormalities.
Key words: myocardial perfusion, polar map, LVEF,
artificial neural networks

Introduction

Transformation of the data acquired by the myocardial single-
-photon emission computed tomography (SPECT) into a polar
map is a common procedure used to assess semiquantitatively
distribution of perfusion within the heart muscle [1, 2]. Thanks to
the circular form and standard dimensions, the polar map image
is independent from the individual shape and size of the left ven-
tricle. This enables the reference (normal) perfusion distribution
to be defined from the data obtained in a group of healthy sub-
jects. By comparing a patient’s polar map image with the normal
perfusion distribution, regional abnormalities can be detected,
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localised and quantified [2]. Parametric images generated to present
those abnormalities, supplemented with various numerical indices
have been shown to be of great value in assessing the intensity
and extent of blood flow changes in patients with coronary artery
disease (CAD), as well as in prognosis and follow-up [2, 3].

It has been proven that in CAD, local deterioration of myocar-
dial perfusion may lead to regional contraction abnormalities and
to an impairment of left ventricular global function, with an left
ventricular ejection fraction (LVEF) decrease. Based on these ob-
servations, it seems justified to presume that it would be possible
to predict the LVEF from the blood flow pattern.

The introduction of gSPECT technique [4] made it possible
for myocardial perfusion and left ventricular function to be assessed
simultaneously, yielding LVEF values comparable to those ob-
tained with other methods, such as a gated blood pool study first
of all. Such simultaneous evaluations of the left ventricular perfu-
sion and function, based on the same data acquired during activ-
ity measurements, enables a direct comparison to be made be-
tween these two parameters, and, consequently, a determination
of the relationships between them.

However, because of this comparison some problems con-
nected with the data analysis should be taken into account. Such
a rudimentary method as the linear regression analysis can hard-
ly be considered adequate for comparing the great number of
input variables obtained from all polar map segments with the
LVEF values. Various other methods used in the data processing
also do not meet all necessary requirements, essential for this
comparison to be made.

In several papers it has been shown that artificial intelligence,
which is commonly known to be a flexible scientific tool, may be
useful in the interpretation of myocardial perfusion polar maps
and in defining relationships between data presented in those
images and various other physiopathological phenomena [5].
Among others, ANNs have been applied successfully to compare
regional radionuclide distribution patterns in myocardium in pa-
tients with CAD with the intensity, extent and localisation of coro-
nary artery changes. Based on those results it may be expected
that this method would be suitable for a comparison between
perfusion distribution as presented in the polar map and the LVEF.
To our knowledge, such a study has not been performed yet.

In fact, artificial neural networks, usually simulated by the com-
puter, have become a separate branch of knowledge. As a result
of earlier investigations, various ANNs algorithms ready for use
have been obtained and applied to several computer platforms.
Hence, it can be considered justified to employ these algorithms
to evaluate relationships between the myocardial perfusion pat-
terns and the left ventricular (LV) global function and to predict the
LVEF value, based on the blood flow distribution.

The aim of this study was to apply ANN to investigate relation-
ships between the distribution of perfusion as presented in polar
map images obtained from gSPECT at rest, and the LVEF calcu-
lated from the same acquisition data.

Material and methods

Ninety-five patients with angiographically confirmed CAD un-
derwent a myocardial gSPECT 1 hour after an intravenous injec-

tion of 740 MBq 99mTc-tetrofosmin at rest. Examinations were per-
formed using a double-headed, large field of view gamma cam-
era (Varicam, GE Medical Systems) connected to a dedicated
computer (Xpert, GE Medical Systems). Both of the detectors
were equipped with low energy, high resolution, parallel hole
collimators and positioned at an angle of 90° in relation to each
other. Data were acquired in 60 projections, 50 sec. each, by
both detectors jointly (30 projections by each of them) in step-
and-shoot mode over a 180° circular orbit modified by body con-
touring, from the 45° RAO to the 45° LPO view. The activity was
measured using gated technique, with the cardiac cycle divided
into 8 sequences. A 20% symmetric energy window, centred on
the 140 keV peak was used. Data were acquired with a zoom
factor of 1.28 and stored in a 64 × 64 computer matrix. A tomo-
graphic reconstruction was performed by means of a filtered back
projection, using a Butherworth filter with an order of 5.0 and a
cut-off frequency of 0.30 cycles/pixel. Attenuation and scatter
corrections were not performed. In each case the LVEF was cal-
culated by the method of Germano et al. using dedicated soft-
ware. To assess myocardial perfusion semi quantitatively, polar
maps were constructed from gSPECT data converted into a non-
gated study and were divided into 25 segments. In each seg-
ment the average cts/pixel number was calculated and expressed
as a percentage of the cts/pixel value in the segment with the
maximum activity. For ANN data evaluation, the clinical material
was divided randomly into the training group (n = 50; 14 fe-
males, 36 males; average age 55.3 years) and the testing group
(n = 45; 21 females, 24 males; average age 55.4 years). Artifi-
cial neural network was simulated on a PC computer using com-
mercial software STATISTICA StatSoft, Inc.v.6. for Microsoft Win-
dows. The network with radial basis functions was selected as
an optimal ANN type for comparing empirical data obtained from
segmental activities with the LVEF. The sets of 25 polar map
values and corresponding LVEF values found in the training group
were used to indicate segments with activity patterns optimal for
clear-cut identification of any subject in that group and for differ-
entiating that subject from the other cases. These segments were
indicated by the program automatically, based on a balanced
network performance (minimum errors of prediction in training
and testing groups) as well as on the variety of network structure
and on the configuration of used input variables. For this pur-
pose, the program calculated the prediction error quotient for
each variable using sensitivity analysis. This quotient was ex-
pressed as the relation between the prediction error found for
the model with a removed given input variable and the total net-
work error calculated based on all variables.     The above-indicat-
ed segments enabled the construction of an optimal network
architecture and its training.

The Network was learned using a 2-fold cross-validation
scheme. Centres of radial basal functions were created randomly
from the training group, using Kohonen’s method. The radii of the
basal function were equal to 1.

Verification of trained ANN was done by its application to the
testing group and by comparing the predicted LVEFs with the
measured ones in both groups. The obtained results were sub-
jected to statistical analysis, including the two-way joining meth-
od applied to the assessment of the feature grouping.
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Results

One or more perfusion defects were found at rest in 88 sub-
jects (46 cases in the training group and 42 cases in the testing
group). In the remaining 7 patients i.e. in 4 training subjects and
3 testing ones, no perfusion abnormality was detected.

Left ventricular ejection fraction values ranged in the total ma-
terial from 15% to 75% (mean 49.8%), in the training group from
17% to 75% (mean 51.5%) and in the testing group from 15% to
70% (mean 48.2%). The average LVEF in the testing group did
not differ significantly from that in the training group (p > 0.05).

Statistical analysis (two-way joining), applied to the spatial
arrangement of characteristic polar map activity features and to
the corresponding alignment of individual cases in the total clini-
cal material, revealed several clustered perfusion patterns, pre-
sented in Figure 1 as activity distribution variations along the ver-
tical axis.

These clusters were shown on the polar map images in accor-
dance with the location of 4 arbitrarily selected areas defined ac-
cording to the arrangement of the regions involved and in agree-
ment with the anatomical subdivision of the LV myocardium. They
consisted of 3–11 segments, presented in Figure 1 as grey coloured
parts of polar map diagrams localised below the horizontal axis (C).

The results obtained by the neural net in the training group
using the program procedures described in the chapter “Material
and methods”, revealed a characteristic configuration of 15 seg-
ments, which enabled individual subjects in this group to be dif-
ferentiated from each other (Fig. 2 — grey coloured segments).

Those segments were scored according to their error, from that
one with the lowest error contribution (E = 1.272; segment No. 22)
through those with a progressively ascending error contribution (seg-
ments no. 12, 18, 5, 15, 8, 1, 11, 13, 6, 4, 17, 10, 16) to that with the
highest error contribution (E = 0.998; segment No. 9).

The optimal network structure, obtained by comparing activi-
ty in the above segments of individual subjects with correspond-
ing LVEF values, consisted of 36 neurons and 320 connections
between them (Fig. 3). This structure included 15 input neurons,
a set of 20 neurons in the hidden layer and 1 output neuron.

A statistical analysis revealed that the above network was able
to reproduce learning data with a learning error of 4.84%. A good
agreement was found between the LVEF values measured by
gSPECT and those predicted using the obtained ANN model, with
a correlation coefficient r = 0.832 (p < 0.0001); and a linear rela-
tion equation Y = 0.795*X + 17.125. Application of this ANN model
to the testing cases showed similar results (testing error: 4.99%;
r = 0.786; Y = 0.827*X + 11.411). The results of the replication of

Figure 1. Results of two-way joining analysis (A) and LVEF values observed in individual subjects of the total group under study (B), in relation to the in-
volved segments (grey coloured) (C). Part A contains 2375 numerical values obtained from 25 segments belonging to each of the 95 patients of both group.
Values from each case were presented in grey scale, on a single row of the chart. Patient’s order along the vertical axis was created by a two-way joining
analysis, based on similarity of the activity patterns between adjacent cases and segments. Part C contains information about configuration of the segments
within the polar map. Part B of the figure presents LVEF values observed in corresponding cases.
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the LVEF in the learning group and of LVEF prediction in the test-
ing group are presented in Figure. 4.

Discussion

Nuclear medicine diagnosis involves processes of collection,
analysis, recognition and classification of data stored in digital
form [6]. For this purpose various methods are available, some
of them yielding quantitative results. Among the quantitative pro-
cedures ANNs seem to be of special value because they can learn
by example and not by the strict mathematical rules which are
scarcely able to define abnormalities on medical images. The most

important ANN feature, often used as case-based reasoning sys-
tems [2], is its possibility to produce correct outputs when the
network is presented with input data-set not previously seen. This
ability is called “generalisation” [6]. Until now the successful ap-
plications of ANNs in nuclear medicine have been most frequent-
ly focused on pulmonary embolism [7–12], and on myocardial [5,
13, 14] and brain perfusion [15, 16]. However, ANNs have not
been applied to study relationships between left ventricular perfu-
sion and function yet.

Page et al. [15] and Khorsand et al. [2] have reported that
neural networks perform the classification tasks better than the
other typical statistical methods. On the other hand, several other
authors solving various medical problems observed with ANN
a similar level of accuracy to that of logistic regression [17, 18].
However, such a simple method as regression analysis cannot
be applied instead of ANN because its is not able to store a num-
ber of different patterns in a single equation. In our study, a typical
statistical analysis (two-way joining) performed in the total clinical
material showed in only several cases, a slight tendency to clus-
ter similar perfusion patterns with nearly equal LVEF values to-
gether. Such results may confirm similarities between blood flow
patterns but do not enable one to evaluate the LVEF directly, i.e.
from the obtained graph.

All of the above characteristic features of ANNs fully justify the
application of artificial intelligence to study relationships between
myocardial perfusion patterns and LVEF.

In examinations of heart scintigrams with ANNs, the majority
of authors divided original or processed cardiac image into vari-
ous subregions, thus reducing the number of input variables. In
the examples of this procedure as presented in some publica-
tions, perfusion polar maps were divided into various numbers
of segments, up to as many as 256 [19].

Figure 2. Perfusion polar map divided into 25 segments. Fifteen seg-
ments automatically selected to provide data for ANN inputs are grey co-
loured.

Figure 3. Network architecture selected automatically to evaluate rela-
tionships between perfusion patterns and ejection fractions.

Figure 4. Relationship between LVEF values measured directly from
gSPECT and LVEF values replicated by ANN in the training group and
prognosticated in the testing group.
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Contrary to the above procedures, an interesting method not
connected with the defining anatomical ROI’s was reported by
Levy for the evaluation of brain and by Lindahl for heart examina-
tion [20, 21]. This method was based on the two-dimensional
Fourier Transform analysis. Unfortunately, the obtained number
of up to 72 Fourier frequency components may be greater than or
equal to the number of typical elements resulting from LV polar
map subdivision [20].

Both of the above-mentioned ANN approaches performed
either with or without scintigraphic image subdivision, may be used
for the detection and localization of abnormalities present in the
whole investigated area.

As regards pattern recognition, the great number of input data
including such as, for example, all pixels describing empirically
a phenomenon under study, may introduce non-significant or re-
dundant information, therefore decreasing overall accuracy [20].
However, usually no mathematical selection of input variables was
performed prior to their assessment by ANN. To overcome prob-
lems of redundant data, constructors of the ANN software had
implemented a “sensitivity analysis” procedure eliminating super-
fluous variables and leaving only those which were necessary to
preserve relevant information.

In this study, the sensitivity analysis indicated 15 segments
which extracted characteristic features of training cases enabling
the LVEF to be evaluated from the polar maps. This reduction of
input variables favourably increased the ratio between the num-
ber of learning cases and the number of network inputs from 50:25
to 50:15. The structure and the number of connections within
the whole network were determined, among other things, by the num-
ber of input variables. In our study, the number of the above con-
nections is equal to 320. Gurney [22] indicated that the total num-
ber of training patterns should be at least 10 times greater than
the number of connections in the network, but in a polemic article
Boone [23, 24] emphasised that in the radiology practice this cri-
terion is both unjustified and impossible to fulfil. Moreover, in stud-
ies by other authors the numbers of learning cases amounted to
45–1087 [12, 25]. In our material the numbers of learning and
testing cases were similar to each other, which was in agreement
with the data presented by some other authors [10, 23]. However,
in some publications those numbers differ, usually with the learn-
ing group more numerous than the testing one [12, 19].

In this study, the amounts of learning (50 patients) and testing
(45 patients) data sets were proved to be sufficient by the relative-
ly low errors and good correlation between prognosticated and
observed parameters.

The sensitivity analysis performed in our study showed that
15/25 automatically defined segments covered mainly territories
supplied by LCX and LAD and to a smaller extent — that by RCA.
As it was shown on Figure 1, the location of the majority of abnor-
mal activity patterns revealed by a two-way joining analysis (part
A, right-hand side) corresponded to the RCA territory on the polar
map images (part C). The frequent location of activity defects in
the RCA territory probably results from the known effect of radia-
tion attenuation in the diaphragm. It may be presumed that such
an activity distribution pattern was responsible for the frequent
segment rejection within this region. The above arrangement of
the segments defined by the sensitivity analysis, showed that the
image features most important for the LVEF prediction were con-

centrated in the central part of the polar map. They were distribu-
ted homogeneously within the LCX territory, slightly dispersed with-
in area supplied by LAD and occurring in only few segments with-
in the RCA territory. Moreover, only two basal segments were in-
cluded.

So far, feed-forward multilayer perceptrons (MLP) are the most
frequent network algorithms used for the evaluation of images in
nuclear medicine [5, 9, 10, 17]. Another network type with radial
basis function (RBF) has also found wide-ranging applications in
medical science [26, 27]. In comparison with other ANN types,
the last of the two above-mentioned networks is characterised by
a good ability to model experimental data, a simple structure with
a singular hidden layer and a very short training phase. Such con-
figuration of perceptrons containing one hidden layer was also
a common architecture in previous applications of ANNs in nucle-
ar medicine [12, 13, 19, 21, 28], which were used mainly for data
classification [6].

The first application of the artificial network to patients with
chest pain and suspected myocardial infarction was reported in
1989 [29]. It was a non-image application of artificial intelligence,
trained on 174 subjects according to standard criteria used to
classify low, medium and high cardiac risk patients.

Recently, applications of ANNs to heart diseases have been
concentrated on detection, identification and scoring severity of
LV regional perfusion abnormalities, using data obtained from
SPECT rest/stress polar maps or, as earlier, from planar projec-
tions [27]. The results of the above-described examinations with
ANNs have been presented in numerical format ranging from 0 to
1 with probabilistic interpretation of the output [7, 12, 13, 21].
The abnormalities were detected if the output data exceeded as-
sumed threshold values calculated using operating characteristic
curve analysis [12, 20].

The identification of these perfusion defects concerned the
recognition of the involved LV territory. For the purpose of such
identification, Lindahl et al. applied two different networks: the first
of them for LAD and the second one for the RCA/LCX area [13].

Human perception is able to evaluate the severity and extent
of activity defects on myocardial perfusion polar map images re-
latively easily but is not able to memorise a huge set of activity
patterns and associated quantitative values. In this paper, the ANN
algorithm revealed quantitative relations between myocardial per-
fusion patterns and LVEF. This finding suggests that in most ca-
ses such a relationship occurs in a typical, classified and anticipat-
ed manner. However, although in the total testing group a signif-
icant correlation was found between perfusion distribution and
LVEF, in some cases the obtained results were of rather mo-
derate correctness. Various mechanisms may be responsible for
this phenomenon. Among other things, a peculiar character of
image conversion to the polar map should be taken into
account, which causes of information about shape and linear
dimensions of the reconstructed object to be lost. Due to this
effect, the resemblance between two polar maps may lead
to the similar LVEF values generated on the net output, de-
spite differences in the LV enlargement and resulting diffe-
rences in the observed LVEFs. Another possible mechanism
may be connected with errors resulting from incorrect loca-
lisation of the LV apex and basis areas based on arbitrarily
accepted criteria.
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In this paper, the interrelationship between observed and prog-
nosticated LVEF values was slightly closer in the training group
than in the testing one. It seems probable that the observed dif-
ferences between correlation coefficients result mainly from the
specific features of ANN analysis of biological phenomena, as
well as from total errors which arose during the training of the
model and its application. The automatic construction of the net
architecture may also contribute to the relations between the above
coefficients.

The developed algorithm for LVEF assessment based on
a perfusion pattern is not intended to substitute this parameter mea-
sured by a gated SPECT, because the reported ANN method gives
only a prediction. However, the presented method may be of sig-
nificant value in the evaluation of LVEF when a gating procedure
cannot be performed, in pts with arrhythmia first of all.

Unfortunately, the application of the above method to stress
SPECT studies would be hardly possible because perfusion de-
pendent activity distribution becomes fixed during exercise and
LVEF measurements are performed 15–60 min. after stress, i.e.
under rest conditions. Besides, a long lasting effect of physical
stress may occur resulting in a decreased LVEF value [30].

Conclusions

The obtained network can generalise learned information.
However, to predict the LVEF, some polar map segments should
be excluded from the analysis. Erroneous LVEF prediction may
occur resulting mainly from conditions independent from perfu-
sion abnormalities.
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