The value of estimating serum apoptotic marker concentrations in the monitoring and prognosis of 131I — therapy in Graves’ disease. Preliminary report

Franciszek Rogowski¹, Adam Parfieżczyk¹, Antoni Sopotyk¹, Tadeusz Budlewski¹, Ewa Jabłońska³, Beata Kiersnowska-Rogowska³, Piotr Szumowski³

¹Department of Nuclear Medicine, Medical University of Białystok, Poland
²Department of Haematology, Medical University of Białystok, Poland
³Department of Immunology, Medical University of Białystok, Poland

[Received 29 IV 2004; Accepted 13 XII 2004]

Abstract

BACKGROUND: The effect of radioiodine (131I) in Graves’ disease (GD) is probably due to the direct physical destruction of thyrocytes by beta radiation, and by the indirect action through stimulation of apoptosis in these cells. The aim of our study was to investigate the changes in serum concentrations of sFas and sFasL as stimulators of apoptosis, and Bcl-2 as an inhibitor of apoptosis in patients with GD following 131I administration.

MATERIAL AND METHODS: The study was performed on 30 patients with GD (29 female and 1 male aged 25–45). All patients were euthyroid (biochemical and clinical) prior to radioiodine therapy. The target absorbed dose ranged between 90 and 160 Gy. We assessed markers of apoptosis and hormone concentrations (fT3, fT4 and TSH) in the following manner: before 131I administration, then two weeks, one month, two, three, four, and five months after 131I administration.

RESULTS: After four months, the concentrations of sFas and sFasL rose by 50% and decreased during the next month. Pretherapeutic concentrations of Bcl-2 were elevated, and peaked two weeks after ingestion, showing a gradual decrease with time. We found a significant increase in serum TSH, and a decrease of fT3 and fT4 concentrations by the end of the third month of radioiodine therapy.

CONCLUSIONS: Decreases in serum levels of sFas and sFasL and increases of Bcl-2 are regarded as characteristic for GD patients before radioiodine therapy. Radioiodine therapy reverses the ratio of estimated markers after four months. The concentrations of hormones reflect actual thyroid function, whereas concentrations of markers of apoptosis may suggest morphological changes.

Key words: Graves’ disease, 131I therapy, apoptosis

Introduction

The hyperthyroidism of Graves’ disease can be treated using three methods: by using antithyroid drugs which block production of thyroid hormones, radioiodine (131I), which destroys active thyroid tissue, and surgery based on total or subtotal resection of the gland. Radioiodine therapy is the treatment of choice in the USA. Treatment with antithyroid drugs is popular in Japan, Europe, and Poland. When thyrostatics are less effective or poorly tolerated, over half of patients are treated with radioiodine [1, 2]. In a few cases, there are indications for surgery.
The ideal aim of using radiiodine is to achieve a euthyroid state, although many specialists believe that radiiodine therapy often causes hypothyroidism, and that this is a preferred outcome because hyperthyroidism is eliminated, whilst pharmacological therapy of hypothyroidism is relatively easy. Our department accepts cases with advanced cardiovascular symptoms and ophthalmopathy for considerable or total destruction of thyroid tissue [3].

The determination of dosage of 131I is difficult despite using Marinelli’s formula, which takes into account isotope uptake and retention in the gland [4]. The cause of this difficulty is the inability to measure the radiosensitivity of the thyroid in a given patient. Using our own experience, and that of a few generations of thyroidologists, it would appear that differences in radiosensitivity are considerable.

The healing effect of 131I arises probably as a result of the direct physical destruction of thyrocytes by beta radiation, and by the indirect action through stimulation of apoptosis in these cells [5, 6].

In untreated Graves’ disease, there is a constant stimulation of thyroid stimulating hormone (TSH) receptors by autoantibodies, which inhibits apoptosis [7, 8]. The beta and gamma radiation of 131I which enters cells probably neutralizes their hormone stimulation and enhances autoimmune destructive processes.

Cysteine proteases known as caspases play a main role in the process of apoptosis [9]. These enzymes are stored in cells in the form of inactive precursors. By the action of ionising radiation, these precursors undergo oligomerisation, and then autoproteolysis, whereby these precursors are rendered active. The activation of proteases can occur by an extracellular route by the family of membrane receptors known as “death receptors” (e.g. Fas/CD95 and its corresponding ligand FasL; CD95L) [10]. The union of these subunits induces the activation of the caspase cascade. Many observations suggest that FasL binds to Fas, which belongs to the tumour necrosis factor (TNF) super-family of receptors, and produces a complex which is one of the strongest stimulators of apoptosis. In some cell lines, the expression of pro and anti-apoptotic proteins belonging to the Bcl-2 family may modulate the caspase cascade.

An increased intracellular concentration of Bcl-2 inhibits the processes leading to programmed cell death [11]. The Bcl-2 family of proteins participate in the regulation of intracellular (mitochondrial) processes of apoptosis.

The literature available on the subject does not mention the behaviour of apoptotic markers in the sera of patients with Graves’ disease following radiiodine therapy. By proposing that the degree of apoptosis in thyroid glands following 131I administration can be a measure of the extent of destruction of thyrocytes, the concentration of apoptotic markers may be useful in the prognosis and monitoring of patients. This is why we chose to assess the serum concentrations of soluble pro-apoptotic factors such as sFas and sFasL, and the anti-apoptotic protein Bcl-2 in Graves’ disease patients treated with 131I.

Materials and methods

The study was performed on 30 patients with Graves’ disease (29 female, 1 male, aged 25–45 years), referred to our department for radiiodine therapy. Before treatment, all patients underwent clinical examinations; namely a physical examination, history, determination of free triiodothyronine (fT3), free thyroxine (fT4), TSH, ultrasound examination (US), 131I scintigraphy and uptake (24 and 48 hour). Patients diagnosed with Graves’ disease were unsuccessfully previously treated with antithyroid drugs 1–2 years, or did not consent to surgery. Ocular examination of 10 patients with moderate Graves’ ophthalmopathy eliminated the presence of active ophthalmopathy. The concentrations of the hormones fT3 and fT4 in sera were assessed by radioimmunooassay, whilst TSH was detected by immunoradiometric assay (Polatom, Świerk). These concentrations were within normal values in all patients (i.e. fT3 = 3.1–6.5 pmol/L, fT4 = 9.3–23.2 pmol/L, TSH = 0.5–5.0 mU/L). We discontinued antithyroid drugs (methimazole, carbimazole) in all patients for at least four days prior to treatment. We estimated the effective half-life of radiiodine (Teff) by plotting the 24- and 48-hour uptakes on a semi-logarithmic chart. The administered activity — A (in megabequerels — MBq) was calculated using the formula of Marinelli [4].

$$A \text{ (MBq)} = \frac{\text{Gy selected} \times \text{estimated gland weight (g)} \times 24.946}{(\%) \text{ uptake at } 24 \text{ h} \times T_{1/2}^{\text{eff}} \text{ (days)}}$$

131I (Na131I) was given in gelatine capsules (Polatom, Świerk). The therapeutic activity ranged from 240–600 MBq.

The administered dose ranged from 90 to 160 Gy. The thyroid mass before radiiodine therapy, based on scintigraphy and ultrasonography (US) worked out to be 35–60 g. Serum concentrations of pro and anti-apoptotic markers (sFas, sFasL, and Bcl-2) were assessed, along with the hormones fT3, fT4 and TSH before therapy, and following therapy (two weeks, one month, 2, 3, 4, 5 months). Apoptotic markers were assessed using ELISA immunoenzymatic sets (Bender, Austria). The control group consisted of 10 healthy volunteers from our department of a corresponding age. We performed statistical analysis using Student’s t-test. We considered differences of P of value less than 0.05 to be significant.

The medical ethics committee of the Medical University of Białystok approved the protocol of the study, and we obtained written informed consent from all participants.

Results

The results presented in Figure 1 show a slight increase in the concentration of sFas in the sera of patients two weeks after 131I administration, and then a successive decline in concentration by the first, second, and third months. We found considerably decreased concentrations in patients compared to controls. By the fourth month, we observed an almost double fold increase in the concentration of sFas, compared to those of the previous month. These concentrations were at this point greater than those of healthy subjects. By the fifth month, the concentrations of the markers decreased to control values.

The concentrations of sFasL, presented in Figure 2, show an increase in serum concentration at two weeks, and one month following 131I administration, when compared to pretherapeutic concentrations. The results obtained before therapy, then two weeks and three months following 131I ingestion show a significant decrease of marker concentrations lower than those observed in controls. The greatest concentrations of sFasL appeared during...
the fourth month following 131I administration, and were greater than those of the control group. The fifth month following 131I administration showed a decline in sFasL to a value lower than that observed in controls.

The results presented in Figure 3 show an increase in the concentrations of Bcl-2 at 2 weeks, 1 month and 5 months after 131I administration, in comparison to controls and pretherapeutic values. The highest concentrations of Bcl-2 appeared during the 2 weeks and fifth month following 131I administration, and we observed the lowest concentrations three months following 131I. Patients with Graves’ disease had significantly higher concentrations of Bcl-2 during the whole observation period than did controls.

We observed a similar (Figure 4) increase in the concentration of fT4 at two weeks and four months after 131I administration, and then a significant decrease by the third month, when compared to fT4 values, in comparison to pretherapeutic values. The concentrations of fT3 were lowest during the fourth month and highest during the second month following radiiodine ingestion. TSH concentrations in Graves’ disease patients were significantly greater during the second and third months, in comparison to pretherapeutic values.

Our results correlated with a decrease in goitre size, weight gain, and a decrease in symptoms. Out of the group of 30 patients with Graves’ disease, 8 patients (around 30%) required oral...
hormone supplementation for hypothyroidism, 18 became euthyroid, and 4 were qualified for a second dose of radioiodine due to relapse of hyperthyroidism (Table 1).

Discussion

Graves’ disease is an autoimmunological disease, dependant on the presence of serum antibodies to TSH receptors (TSI, thyroid stimulating immunoglobulins). Thyroid stimulating immunoglobulins stimulate thyrocytes and prevents their entry into the mechanism of apoptosis [7, 8].

The best moment to administer 131I in patients with Graves’ disease is when they are euthyroid (clinical and biochemical). The remission achieved during earlier treatment with antithyroid drugs protects patients from entering temporary thyrotoxicosis.

The literature on the topic indicates that the concentrations of Fas and Fasl may correlate with the clinical course of Graves’ disease; remaining elevated during the period of hyperthyroid-
Histochemical findings suggest an increased biosynthesis of Bcl-2 by thyrocytes in Graves’ disease patients during hyperthyroidism. The initiation of apoptosis usually arises after a decrease of this protein in thyrocytes and infiltrating lymphocytes [16]. What our study confirms is an elevated serum concentration of Bcl-2 before 131I administration compared to the results of the previous month. The fact that the mean concentrations of sFas and sFasL rose to a concentration exceeding that of controls (for the first time following 131I administration) whilst Bcl-2 was greater in controls.

We observed a decrease in the concentrations of sFas and sFasL, with an accompanying rise in Bcl-2 at five months following 131I ingestion compared to the results of the previous month. This observation may suggest an increased anti-apoptotic process.

Our last examinations showed that 18 patients became euthyroid, 8 required hormonal substitution, and 4 required repeated administration of 131I. The average decrease in goitre volume was around 45%. The concentrations of Bcl-2 increased, whilst sFas and sFasL decreased in recurrences of hyperthyroidism. We observed an inverse relationship of these markers in the case of hypothyroidism.

The results we achieved regarding the effectiveness of treating Graves’ disease patients using radioiodine are similar to those described in European literature [1, 17, 18]. The interpretation of the change in serum concentrations of apoptotic markers is difficult with respect to an absence of data on the subject, namely the

Table 1. Results of 131I treatment of patients with Graves’ disease

<table>
<thead>
<tr>
<th>Time of study</th>
<th>Number of patients with hypothyroidism</th>
<th>Number of patients with euthyroidism</th>
<th>Number of patients with hyperthyroidism</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without substitution</td>
<td>With substitution</td>
<td>Without antithyroid drugs</td>
</tr>
<tr>
<td>Before ingestion n = 30</td>
<td>–</td>
<td>–</td>
<td>30</td>
</tr>
<tr>
<td>2 weeks after n = 30</td>
<td>–</td>
<td>–</td>
<td>17</td>
</tr>
<tr>
<td>1 month after n = 30</td>
<td>–</td>
<td>–</td>
<td>23</td>
</tr>
<tr>
<td>2 months after n = 30</td>
<td>2</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>3 months after n = 30</td>
<td>1</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>4 months after n = 30</td>
<td>–</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>5 months after n = 30</td>
<td>–</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>

Second dose of 131I
effect of radioiodine on apoptosis in Graves’ disease. The literature available on the topic suggests that the process of apoptosis is an underlying feature of autoimmune thyroid disease [19, 20]. The interaction of Fas/FasL appears to be the main factor initiating apoptosis in most thyroid disease states [21, 22].

The common opinion is that apoptosis is a result of the simultaneous stimulation of not one, but many death receptors, and the disturbance of the balance between pro and anti-apoptotic factors [19, 23].

Of considerable interest is the opinion that apoptosis may be an indicator of tissue radiosensitivity, and that Bcl-2 is excessively expressed by radioresistant cells [24, 25].

Maybe our data allow the administered activity of radioiodine to be tailored to tissue radiosensitivity, with a subsequent decrease in the number of patients who become hypothyroid following the radioiodine therapy of Graves’ disease [26].

Conclusions

1. A significant decrease in the peripheral blood concentrations of sFas and sFasL (stimulators of apoptosis) and a significant increase in Bcl-2 concentration (an inhibitor of apoptosis), are regarded as characteristic for Graves’ disease patients before radioiodine treatment.

2. Radioiodine therapy reverses the ratio of estimated markers after four month of therapy. Furthermore, after five months of treatment, in euthyroid patients, the average concentrations of Bcl-2 are increased, and sFas and sFasL are decreased to pretherapeutic concentrations.

3. The concentrations of thyroid hormones and TSH reflect actual thyroid function, whereas concentrations of apoptotic markers may suggest morphological changes that precede changes in thyroid gland function.

References

