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Abstract

Antimicrobial peptides are widespread in living organisms and
constitute an important component of innate immunity to mi-
crobial infections. By the early 1980s, more than 800 different
antimicrobial peptides had been isolated from mammals, am-
phibians, fish, insects, plants and bacterial species. In humans,
they are produced by granulocytes, macrophages and most
epithelial and endothelial cells. Newly discovered antibiotics
have antibacterial, antifungal, antiviral and even antiprotozoal
activity. Occasionally, a single antibiotic may have a very wide
spectrum of activity and may show activity towards various kinds
of microorganisms. Although antimicrobial activity is the most
typical function of peptides, they are also characterized by nu-
merous other properties. They stimulate the immune system,
have anti-neoplastic properties and participate in cell signalling
and proliferation regulation. As antimicrobial peptides from high-
er eukaryotes differ structurally from conventional antibiotics
produced by bacteria and fungi, they offer novel templates for
pharmaceutical compounds, which could be used effectively
against the increasing number of resistant microbes.
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Introduction

One of the major difficulties modern medicine has to over-
come is controlling microorganisms resistant to conventional an-
tibiotics and dealing with the increasing number of new infections
[1]. It should also be mentioned that diseases caused by micro-
organisms are the most significant etiologic factor to cause death
worldwide (after cardiovascular disorders). Nowadays, a danger-
ous recurrence of infectious diseases can be observed in a num-
ber of countries, and the World Health Organization (WHO) has
classified these diseases as the main menace to human beings.
Therefore, an urgent need for new substances with antimicrobial
properties still exists.

Antimicrobial peptides are ancient and essentially small cat-
ionic molecules of the host defence system. They are found in
a great variety of species [2]. By the early 1980’s, more than
800 different antimicrobial peptides were isolated from mammals,
amphibians, insects and plants [3]. Since numerous antibiotic pep-
tides possess a strong in vitro activity against microorganisms,
which are resistant to conventional antibiotics, they provide at-
tractive templates for the design of new antimicrobial agents for
specific application. Various new substances are undergoing cli-
nical trials. In the future, they may replace the drugs which have
been used in medicine for many years.

Peptide antibiotics in medicine

Peptide antibiotics are widespread in nature and belong to
the most significant elements of the immune system of Prokaryota
and Eukaryota. Conventional antibiotics currently used in medi-
cine are produced non-ribosomally in microbes by multienzymat-
ic cellular systems or within various extraribosomal processes.
Synthesized peptides gain their microbiological activity within the
post-translatory treatment.

Antimicrobial peptides constitute a large group of known che-
motherapeutics. However, because of their high toxicity and high
cost of production only a small quantity of them has been used in
medicine. These drugs constitute a diverse group of chemical
substances. The peptide chain is mainly composed of L-amino
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acids or D-amino acids. Apart from the basic peptide skeleton,
these antimicrobials contain nonprotein parts such as sugar frag-
ments and fatty acid residues (Figure 1).

Bacitracin, vancomycin, and the polymyxins are relatively tox-
ic drugs and have only a limited use in chemotherapy. Their modes
of action differ: bacitracin and vancomycin affect cell wall synthe-
sis whereas the polymyxins affect the cell membrane. Bacitracin
and vancomycin are used for the treatment of infections caused
by gram-positive bacteria; the polymyxins are used for treating
gram-negative infections and are active against Pseudomonas
aeruginosa.

The continuously rising resistance of microorganisms to the
majority of drugs (including conventional peptide antibiotics) is
the main cause of the constant search for new, more effective
antimicrobial substances.

Bacteriocins — antimicrobial peptides
from microorganisms

Bacteriocins are bacterial products and they show antimicro-
bial activity against other microorganisms [4]. They are usually
produced by Gram-positive bacteria. Bacteriocins are peptides
secreted by cells to inhibit or kill closely related species. They are
divided into two basic types [5]. The first group comprises pep-
tides which have been subjected to post-translatory treatment
(modified bacteriocins - lantibiotics). The second group includes
unmodified bacteriocins. Furthermore, bacteriocins comprise co-
licins and microcins, i.e. peptides produced by Gram-negative
bacteria (e.g. Escherichia coli) [6].

 Lantibiotics constitute the most popular group of bacterio-
cins. Their name refers to the occurrence of the unnatural amino
acids of lanthionine or methyl lanthionine. Apart from this dehy-

droamino acid and other unnatural fragments, thioether bonds
are present in the structures of these antimicrobial peptides.
Lanthionine and methyl lanthionine residues have strong electro-
philic centres, which can react with nucleophilic groups present in
bacterial DNA or can inhibit the activity of certain enzymatic sys-
tems. These compounds are extremely important due to their po-
tential biotechnological application. They may be used as bio-
preservatives of food or antibiotics. The most popular and often
characterized is nisin, which is used as a biopreservative for dairy
products (Figure 2) [7]. Nisin is bactericidal against gram-posi-
tive bacteria such as Clostridium. Moreover, it inhibits endospore
germination and it has recently been proven to kill gram-negative
bacteria Salmonella. The major obstacle in the use of lantibiotics
is the high cost of production. Final purification is particularly trou-
blesome.

Endogenous peptide antibiotics

Over the last 25 years, numerous antimicrobial peptides iso-
lated from all living nature have been described (Figure 3) [3].
These new antibiotics are gene encoded peptides and they play
a significant role in the innate immunity of all organisms. So far,
over 800 different antimicrobial peptides have been isolated and
described. More information concerning these substances is avail-
able on the websites [8, 9].

Historical background

The first reports concerning natural antimicrobials produced
by higher organisms appeared 40 years ago. In the 1960s, 24-
peptide bombinin was isolated [10]. This substance with hemolytic
and antibiotic peptides was purified from the secretion of the skin

Figure 1. Structures of conventional peptide antibiotics: A. — vancomycin; B — polymyxin B, Dab — a, g — diaminobutyric acid C. — bacitracin A.

A B
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of the frog Bombina variegata [10]. Unfortunately, hemolytic activ-
ity limited the scope of research on this antibiotic.

Ten years later, Habermann isolated melittin from bee venom
[11]. This substance is currently being investigated by scientists
who are looking for effective antimicrobials [12]. As in the case of
bombinin, hemolytic activities limit the application of this peptide.

The research of Hans Boman was a milestone in the search

for new antimicrobial peptides. In 1981, he isolated cecropins from
the haemolymph of pupae of the cecropia month [13]. Cecropins
are a family of 3–4 kDa linear amphipathic peptides. They consti-
tute a main part of cell-free immunity of insects.

The research of Michael Zasloff is also of great importance.
He isolated magainins, two linear peptides with a wide spectrum
of activity, from the skin of Xenopus laevis [14]. Magainins are two

Figure 3. Number of antimicrobial peptides sequences inserted per year to AMSDb database [3].

Figure 2. Structures of nisin and modified (unnatural) amino acid residues: A. — lanthionine; B. — methyl-lanthionine; C. — didehydroalanine;
D. — didehydrobutyrine. Abu — aminobutyric acid.
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closely related peptides. Both of them are 23 amino acids and
they differ only by two substitutions. At low concentration, they
inhibit the growth of various species of bacteria and fungi and
induce osmotic lysis of protozoa. A great the number of new pub-
lications is still rising.

Sources of antimicrobial peptides

The last 25 years turned out to be extremely fruitful as regards
antimicrobial peptides and their function in living organisms. Antimi-
crobial peptides have been isolated from insects [16], amphibians
[17], birds [18], fish [19] and mammals [20] and they constitute
a significant part of the immune system of these creatures. Peptides
are secreted by bone marrow derivatives (macrophages, granulo-
cytes), most epithelial cells (keratinocites), Paneth cells of the small
intestine, vaginal epithelium, airway epithelium, oral cavity epithelium
and dermal glands in frog.

Insect peptides are one of the largest groups of known antibi-
otics. A single insect produces approximately 10–15 peptide anti-
biotics, each peptide exhibiting a completely different spectrum
of activity [21]. Antimicrobial peptides can be detected in insect
haemolymph as early as 2–4 after a septic injury [22]. The pep-
tides are secreted directly to haemolymph (functional equivalent
of blood) and are fast and effective protection against invading
microorganisms.

Amphibian peptides are a large group of substances, mainly of
linear and uncomplicated structure [17]. The majority of these sub-
stances is hydrophobic, cationic and forms an amphipathic a-helix
in nature. These molecules are produced and stored in dermal struc-
tures called granular glands, which release their content onto the
skin of a frog, upon adrenergic stimulation or injury. Other cationic
peptides are expressed in the cells of gastric mucosa and in the
intestinal tract. The best-known peptides isolated from frogs are
brevinins, esculentins, magainins, ranatuerins and temporins [17].

The major classes of mammalian antimicrobial peptides are
defensins and cathelicidins. Defensins are arginine-rich, am-
phiphilic b-sheet peptides containing 29–43 amino acid residues
[23]. Six amino acids in the structure of defensins are cysteins
linked by intracellular disulfide bonds. Depending on the concen-
tration, defensins show antimicrobial activity against the most
popular microorganisms and cause tumour cell lysis. At low con-
centration, they stimulate keratinocyte growth, cytokine produc-
tion and adhesion molecule expression [24]. Defensins found in
mammals are grouped into two main classes: a-defensins and
b-defensins. Alpha-defensins are found in azurophil granules of
neutrophils [25], macrophages and Paneth cells of the intestine
[26]. Beta-defensins are found in neutrophils [27], respiratory tracks
of cattle [28] and leukocytes of chickens [29].

Cathelicidins are a diverse group of antimicrobials, differing
greatly in sequence, structure and the number of residues [30].
They are cationic and amphipathic molecules, which inhibit mi-
crobial function by targeting microbial membranes. In addition,
cathelicidins interact with host pattern recognition receptors to
stimulate cellular immune defence. Cathelicidins are expressed
in various specific types of cells, including different epithelial sur-
faces. The peptides also appear to have a wide range of antimi-
crobial activity although they may be under-expressed in cystic
fibrosis airways [31]. The development of topically administered

antimicrobial peptides may have a significant role in the treatment
of cystic fibrosis in the future. Cathelicidins have a wide spectrum
of antimicrobial properties. Some of them exhibit endotoxin bind-
ing activity [32]. The most popular peptides belonging to this group
are protegrins [33], bactenecins [34] and indolicidin [35].

Biosynthesis

Endogenous antimicrobial peptides are encoded in the ge-
nome as prepropeptides, with a classical N-terminal signal pep-
tide targeting intracellular storage or extracellular release [36].
Because of their cationic structure (residues of Lys and Arg), an-
timicrobial peptides are toxic for intracellular organelles. The an-
ionically charged prosegment neutralizes the cationicity (inhibit-
ing the activity of the mature peptide) and may be responsible for
intracellular trafficking and correct folding of the C-terminus as
well. The fully functional antimicrobial compound is released by
elastase-mediated cleavage [37].

Classes of antimicrobial peptides

In the past, the origin of antimicrobial peptides was the basis
for their classification. This type of classification helped to make
connections between the functions of the antimicrobial peptides
originating from a similar group of animals and aspects of living
conditions of the animals. However, the later discovery of a large
number of peptides from many different animal species and the
possession of a group of antimicrobial peptides, such as ce-
cropins, by distantly related animal groups, undermined this type
of classification. Today the grouping approach, based on the
chemical and biochemical characteristics of peptides, is preferred.
The solution structures of many peptides have recently been solved
by NMR (Figure 4).

The present grouping combines sequence homologies, three-
dimensional structures and functional similarities.

According to this classification, antimicrobial peptides can be
divided into 5 main classes (Table 1):
1. Linear, mostly a-helical peptides without cysteine residue, with

or without hinge region (bombinins, cecropins, magainins).
2. Antimicrobial peptides with one disulfide bond that form a loop

structure with a tail (bactenecins, esculentins).
3. Antimicrobial peptides with two or more disulfide bonds gi-

ving mainly or only b-sheet structure (defensins, protegrins).
4. Linear peptides without cysteine residue and with an unusual com-

position of regular amino acids (histatins, indolicidin, temporins).
5. Antimicrobial peptides derived from larger peptides or pro-

teins with other known functions (lactoferricins, MUC7).
Despite differences in structure, all the peptides studied dis-

play a similar motif: an amphiphilic structure, with one surface
being highly positive and the other hydrophobic.

Mechanism of action

The precise mechanism of the action of antimicrobial pep-
tides is yet to be explained. Generally, antimicrobial peptides dis-
rupt the membranes of a target cell, causing lysis of the cell [45].
The knowledge of how it occurs and of the factors determining
the activity and selectivity of these peptides is very limited. To
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understand the mechanism of action of these peptides a number
of models have been proposed [46].

The majority of these substances are of cationic nature (the
presence of lysine and arginine residues). This property enables
them to interact with negatively charged fragments of biological
membranes in particular lipopolysaccharide (LPS), which is the
component of the outer membrane of gram-negative bacteria [47].
The incorporation of peptides into a membrane leads to the pore
formation or destabilization of its structure and consequently to
the lysis of the bacteria cell. This is the most common mechanism
of action of peptide antibiotics. However, some natural peptides
exhibit other mechanisms. For instance, buforins inhibit the cellu-

lar function by binding to DNA and RNA [48], attacins block the
synthesis of integral membrane proteins [49] and PR-39 inhibits
DNA synthesis [50]. A different mechanism is proposed for gram-
positive bacteria. It is connected with the binding of bacteria to
lipoteichoic acid (LTA) [51].

LPS-binding capacity of antimicrobial peptides is a great cli-
nical advantage compared to classical antibiotics as it prevents
endotoxemia. LPS stimulates lymphocytes B and macrophages
(by binding to CD14, a surface receptor) to the production of in-
flammatory cytokines (TNF, IL-1, IL-6, IL-8) [52]. Uncontrolled and
excessive production of these substances is considered to be the
direct cause of death in the case of sepsis.

Table 1. Major antimicrobial peptide classes and their representatives (G+ — gram-positive bacteria, G– — gram-negative bacteria)

PeptidePeptidePeptidePeptidePeptide SequenceSequenceSequenceSequenceSequence Source of isolationSource of isolationSource of isolationSource of isolationSource of isolation Spectrum of activitySpectrum of activitySpectrum of activitySpectrum of activitySpectrum of activity ReferencesReferencesReferencesReferencesReferences

a-helical peptides
Bombinin GIGALSAKGALKGLAKGLAEHFAN Yellow-bellied toad G+, G–, mammalian cells [10]
Cecropin P1 SWLSKTAKKLENSAKKRISEGIAIAIQGGPR Pig G+, G– [13]
Magainin 2 GIGKFLHSAKKFGKAFVGEIMNS African clawed frog G+,  G–, fungi, cancer cells [14]

Antimicrobial peptides
with one disulfide bond

Bactenecin RLCRIVVIRVCR Bovine neutrophils G+, G– [34]
Esculentin 2A GILSLVKGVAKLAGKGLAKEGGKFGLELIACKIAKQC Edible frog G+, G–, mammalian cells [39]

b-sheet peptides
Defensin HNP-1 ACYCRIPACIAGERRYGTCIYQGRLWAFCC Human G+, G–, viruses, fungi [40]
Protegrin 1 RGGRLCYCRRRFCVCVGR-NH2 Pig G+ [33]

Peptides with unusual
composition

Histatin 3 DSHAKRHHGYKRKFHEKHHSHRGYRSNYLYDN Human G+, G–, fungi [41]
Indolicidin ILPWKWPWWPWRR-NH2 Bos taurus G+, G–, viruses, fungi [35]
Temporin A FLPLIGRVLSGIL-NH2 European common frog G+ [42]

Antimicrobial peptides
derived from larger
peptides or protein

Lactoferricin B FKCRRWQWRMKKLGAPSITCVRRAF Bovine G+, G–, viruses, fungi, [43]
Cancer cells

MUC7 LAHQKPFIRKSYKCLHKRCR Human G+, G–, fungi [44]

Figure 4. Structural features of some antimicrobial peptides: A — Magainin 2; B. — Protegrin 1; C. — Indolicidin. Figure prepared with MOLMOL [38].
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Antimicrobial peptides also counteract fungal infections, es-
pecially those caused by Candida sp. [53]. Defensins and hist-
atins kill fungi by nonlytic release of cellular ATP, which subse-
quently binds to putative purinergic receptors and activates cyto-
toxic pathways [54].

Apart from the antibacterial activity, antimicrobial peptides also
possesses antiviral [55, 56] antiprotozoan [57] and antitumor ac-
tivity [58].

Antimicrobial peptides are preferentially more selective towards
the prokaryotic cell membrane. This might be caused by the fact
that prokaryotic cell membranes are more anionic and that they
do not have cholesterol [59]. Studies have shown that the pres-
ence of cholesterol in artificial membranes significantly reduced
the lytic activity of antimicrobial peptides.

Additional activity of antimicrobial peptides

Apart from their titular role, antimicrobial peptides can pos-
sess a broad spectrum of additional activities [24]. They can pre-
vent viral infections. Moreover, they can be cytotoxic for tumour
cells [58]. However, killing is not the only function of common
antimicrobial peptides. More sophisticated properties of these
peptides have been proven. For example, defensins act as mito-
gens for epithelial cells and fibroblasts [60], suggesting their role
in wound healing processes. Defensins are also potent inhibitors
of protein kinase C [61]. Another peptide PR39 binds to p130
protein and phosphoinositole-3-kinase; both molecules of great
importance in signalling pathways [62]. Some antimicrobial pep-
tides act as chemoattractants for neutrofiles and monocytes [63].
Upregulation of proinflammatory cytokine production and com-
petition for chemokine receptors are other properties reported in
immune systems [64]. All the additional roles of antimicrobial pep-
tides mentioned above are concentration-dependent and can have
local character. Since these peptides are evolutionally conserved,
they might have shown even more diverse activities in the past.

Simple construction, rapid production and diffusability emphasize
their advantages as useful and multifunctional molecules.

Applications

A survey of patent databases reveals a wide range of pro-
posed applications, including the treatment of gastric ulcers [65],
skin ulcers [66], oral cavity diseases [67, 68], ophthalmic diseas-
es [69], sexually transmitted diseases [70] and sepsis [71]. Other
applications are gene therapy [72], production of sterile coatings
[73], use in cosmetics [74], use as food preservatives [75], pro-
duction of transgenic plants and food animals [76] and produc-
tion of new radiopharmaceuticals, which discriminate bacterial
infections and sterile inflammations [77].

Although wide usage of new antibiotics may be difficult to
achieve (due to high costs of production), their application in ther-
apy requiring small quantities of them seems to be promising.

What hampers the introduction of new antibiotics to treatment is
finding a suitable delivery system of a drug. Peptides are substanc-
es of low stability during storage time and intraintestinal usage. They
are non-resistant to the photolytic enzymes of the gastrointestinal
tract and large sizes (ca 2kDa) considerably limit their absorption
into the digestive system [78]. Due to the above-mentioned proper-
ties, they are used mainly locally and are limited only to cases where
a small quantity of a drug is required. The most popular substances
under clinical test are Demegen P-113 [67], Iseganan IB-367 [68],
Omiganan MBI-226 [79] and Pexiganan MSI-78 [66] (Table 2).

Peptide radiopharmaceuticals

In contrast to computerized tomography (CT), magnetic reso-
nance imaging (MRI) and ultrasonography, which visualise ana-
tomical changes, scintigraphy allows the localisation of functional
changes in tissues and organs. Furthermore, this aim can be
achieved in a non-invasive way.

Table 2. Antimicrobial peptides in pharmaceutical development [80]

PeptidePeptidePeptidePeptidePeptide CompanyCompanyCompanyCompanyCompany Mode of useMode of useMode of useMode of useMode of use ApplicationApplicationApplicationApplicationApplication StageStageStageStageStage

D2A21 Demegen Topical Burn wound and skin infection Phase I

Daptomycin Cubist Pharmaceuticals Systemic Sepsis Phase III

Demegen P-113 Demegen Topical (oral) Gingivitis Phase II
(Histatin analogue)

Heliomycin Entomed Systemic Antifungal Preclinical

Iseganan IB-367 Intrabiotics Oral Oral mucositis Completed phase III,
(protegin analogue) Lung infectious in patients not approved by FDA

with cystic fibrosis Phase II

Lactoferricin B AM Pharma Systemic Antifungal Preclinical

MBI-594AN Micrologix Topical Acne Completed phase II

Neuprex (recombinant Xoma Corp. Systemic Meningococcal miningitis Completed phase III,
fragment of BPI) not approved by FDA,

in additional studies

Omiganan MBI-226 Micrologix Topical Catheter infection Phase III

Pexiganan MSI-78 Genaera Topical Infected diabetic ulcers Phase III
(magainin analogue)
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Chemically-modified compounds like leukocytes [81], cytok-
ines (IL-1, IL-2, IL-8) [82, 83], polyclonal or monoclonal immuno-
globulins [84, 85], ciprofloxacin [86] and some types of peptides
(chemotactic peptides (np. f-Met-Leu-Phe) [87], defensins [88])
are widely used in experimental and diagnostic approaches. Al-
though several acknowledged radiopharmaceutics are well de-
scribed and applied worldwide, it is still necessary to search for
new ones. The majority of classical radiopharmaceutics act in a
non-specific manner and they cannot distinguish between bacte-
rial infections and sterile inflammation. Apart from specificity of
action, an ideal radiopharmaceutic should be characterised by
efficient accumulation and good retention in inflammatory foci,
rapid clearance from the background, easy low-hazard prepara-
tion and wide availability at low cost [89].

All these requirements can be fulfilled by new peptide antibi-
otics labelled with short-lived radionuclides, such as technetium-
99m (99mTc). The research of Welling et al. showed that ubiquici-
din- and lactoferrin- based peptides labelled with 99mTc accumu-
lated significantly in tissues infected with gram-positive and gram-
negative bacteria as well as C. albicans [90–92]. These peptides
could be accumulated only in sites of active infections, not sterile
inflammation, while 99mTc-labeled ciprofloxacin was accumulated
in both cases. Authors have also proved that these modified pep-
tides were effective in monitoring the efficiency of antibacterial
agents in infected mice.

Peptide radiopharmaceutics possess a variety of advantag-
es. Compared to whole proteins, they have simple chemical struc-
tures, which is particularly important for costs of production. Pep-
tides consisting of up to 50 amino acid residues can be automat-
ically synthesized using solid-phase or liquid-phase synthesis [93].
It is also possible to produce them by genetic enginery methods.
Problems concerning short plasma half-life (peptides are vulnera-
ble to proteolytic enzymes) can by omitted by modifications such
as substitution of D-amino acids instead of L-amino acids, incor-
poration of non-protein fragments or amidation and acetylation of
terminal parts of the peptide chain. In an easy way, the whole
panel of synthetic analogues with properties dedicated to certain
in vivo effects can be produced.

As antimicrobial peptides become increasingly popular com-
pounds as new pharmaceutics and are progressively applied in
clinical research, it is to be expected that in the near future they
will be applied not only in laboratories. However, increasing resis-
tance to classical antibiotics is an emerging clinical problem. Nat-
ural antimicrobial peptides are a good alternative and we cannot
exclude that they will substitute at least part of classical antibiot-
ics soon.
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