Cerebral hemodynamics and investigations of cerebral blood flow regulation

Wojciech Rudziński1, Maciej Swiat2, Maciej Tomaszewski1, Jaroslaw Krejza1,3
1Department of Radiology, Division of Neuroradiology of the University of Pennsylvania, United States
2Department of Neurology, Aging, Degenerative and Cerebrovascular Diseases, Medical University of Silesia, Katowice, Poland
3Department of Nuclear Medicine, Medical University of Gdansk, Poland

[Received 20 III 2007; Accepted 7 IV 2007]

Abstract
To maintain adequate cerebral blood flow despite frequent changes in systemic arterial blood pressure and to constantly adjust blood supply to the current metabolic demand dictated by neuronal electrical activity, brain developed a myriad of mechanisms. These are designed to protect central nervous system from fatal consequences of hypoxia and energy deficit and are collectively called “cerebral autoregulation”. Despite years of research mechanisms responsible for regulation of CBF functioning under physiologic and pathologic conditions are still not clear. When these mechanisms are damaged or exhausted, patients life is in danger, as even slight, negligible under normal conditions, systemic hemodynamic disturbances might lead to cerebral infarct. Even perfect imaging of the irreversible brain damage with MR for the particular patient is too late action. Thus, detection of cerebral blood flow disturbances and impaired autoregulation, which are known to be associated with high risk of stroke, are extremely important in clinical practice. Several methods have been developed to quantify this process and thus evaluate risk of cerebral ischemia and guide therapeutic process. This review focuses on current knowledge on physiology of regulation of cerebral blood flow, mechanisms responsible for brain damage resulted from cerebral ischemia and reviews noninvasive diagnostic tests to assess cerebral autoregulation.

Key words: brain, cerebral circulation, cerebrovascular reactivity, autoregulation, hemodynamics

Cerebral blood flow regulation
Brain tissue constantly maintains an extremely high metabolic rate. Cerebral oxygen consumption (~ 3.5 ml/100g tissue/min) [1] accounts for about 20% resting total body oxygen consumption. The metabolic demand must be matched by high blood flow supply, which on average exceeds 50 ml/100g tissue/min, accounting for 15–20% of the total cardiac output [1, 2]. As the brain almost exclusively uses glucose for its energy metabolism and in general does not store energy, continuous blood supply, maintained within a narrow range, is absolutely required for brain function (90%) and cell viability (10%) [3]. Cerebral blood flow (CBF) is driven by cerebral perfusion pressure (CPP), represented by the difference between mean arterial blood pressure (ABP) and intracranial pressure (ICP), working in concert with cerebrovascular impedance. The components which make up cerebrovascular impedance include:
— cerebrovascular resistance (CVR), which is inversely proportional to the forth power of the vessel radius when laminar flow occurs and the flow is in steady state;
— the internal fluid resistance, which depends on viscoelastic properties of arterial walls, viscosity of the blood and flow velocity;
— the blood inductance, which is dependent on its rheostatic properties and momentum;
— the vascular compliance, which is related to the elasticity of the vessel wall [4, 5].

Alteration of any of the components, which make up impedance in a non steady-state system, such as occurs in the cerebrovascular system, can significantly impact the blood flow. Microvascular constriction, however, most significantly increases the impedance [6]. The ability of brain microvasculature to maintain cerebral blood flow relatively constant despite wide variations in CPP is called “cerebral autoregulation” (CA). In the normal state CA maintains relatively constant CBF within the range of mean ABP from about 60 to 150 mm Hg [7]. It should be mentioned, however, that upper and lower limits of CA are not fixed and can be shifted up or down by endogenous as well as exogenous factors. Sympathetic nervous system activity and increased levels of Angiotensin II, for example, shift upper and lower limits of CA up towards higher pressures, while chronic use of antihypertensive medications have opposite effects [8, 9]. Patients with untreated hypertension have limits of regulation set on higher level in com-
parison to healthy people [8]. This is important because in these patients overzealous antihypertensive treatment may lead to dangerous reduction of CBF at relatively high ABP. The mechanisms of CA are complex and not fully understood. It is surmised from the results of numerous experimental studies that CA is maintained by three different control pathways: vasogenic, metabolic and neurogenic.

The vasogenic mechanism is based on the intrinsic ability of cerebral vessels to respond to changes in shear stress and transmural pressure [10]. Increase in transmural pressure activates vascular smooth muscle cells leading to decrease in the diameter of arteries [11, 12]. On the other hand, contraction of cerebral vessels increases vascular wall shear stress [13]. This triggers endothelial cells to release factors, that relax vascular smooth muscles and dilates vessels [12]. These counteracting mechanisms assure optimal adjustment of the vessel diameter to CPP at any time.

The exact mechanisms of vascular contraction in response to increase in transmural pressure remain unclear. It appears, however, that mechanical dilation of smooth muscle cells leads activation of phospholipase C (PLC) [14]. Increased PLC activity leads to elevated diacylglycerol levels, which activates protein kinase C, which is known to activate nonselective cation channels, depolarizing the smooth muscle membrane potential and enhancing calcium entry through voltage-dependent calcium channels. Increased concentration of free calcium ions activates the myosin light chain kinase, which phosphorylates myosin light chains and causes muscle contraction [15]. It is also possible that stretch of muscle cells directly activates calcium channels and leads to increased calcium concentration without activation of PLC-dependent pathway [16]. In contrary to intraluminal pressure-induced contraction, which seems to be dependent only on smooth muscle cells, shear stress-induced vasodilatation requires interaction of endothelial cells and vascular muscles. Synthesis of nitric oxide (NO) is necessary for this phenomenon to occur [17]. Shear stress increases activity of endothelial nitric synthase (eNOS) and causes release of NO, which diffuses to adjacent smooth muscle cells and induces vasodilatation through activation of potassium channels in those cells [18, 19]. Shear stress may also directly increase expression of eNOS as a shear stress-response element has been found in promoter region of gene for eNOS [20]. It is not clear, how significant a role the vasogenic mechanism plays in maintaining and regulation CBF and whether it depends somehow on caliber of the involved cerebral arteries.

In metabolic regulation, arterial resistance is modified by waste products of energy metabolism (CO2), partial pressure of O2, and release of specific vasoactive substances such as adenosine and potassium ions from neurons in response to insufficient blood supply. The most important metabolic factor is tension of CO2 in perirteriolar space, although CVR is not directly affected by the CO2 tension. It is the accompanying shift in perirteriolar pH, which regulates diameter of cerebral vessels [21]. Hypercapnia and the resulting decrease in extracellular pH causes cerebral vasodilatation and increase in CBF, while hypocapnia leads to cerebral vasoconstriction and CBF decrease. Mechanisms responsible for regulation of CVR by CO2 tension and accompanying pH changes are not clear. Hydrogen ions may directly activate potassium channels in smooth muscle cells leading to its hyperpolarization or they may induce release of vasodilatory prostaglandins, adenosine or NO from neurons, glia or vessels [22–26]. Hypoxia, potassium ions and adenosine also lead to hyperpolarization of smooth muscle cells and consequently dilation of cerebral vessels. It appears that hypoxia-induced vasodilatation is mediated by activation of potassium channels, while increased concentration of potassium ions in extracellular fluid activates electrogenic Na/K pumps and smooth muscle inward rectifier potassium channels [27, 28]. Adenosine acts on cerebral vessels through its receptors located in arterial smooth muscle membrane [29]. Activation of these receptors leads to opening of calcium-dependent and ATP-dependent potassium channels [30, 31].

While there is a consensus that vasogenic and metabolic mechanisms play critical role in regulation of cerebrovascular tone, the importance of neurogenic regulation in the control of CBF is still a matter of debate. The cerebral vessels are innervated by extrinsic and intrinsic systems of nerve fibers. The “extrinsic” system refers to nerve fibers originating in ganglia belonging to sympathetic, parasympathetic and sensory ganglia, while nerves originating within the brain represent an “intrinsic” system [32]. Activation of sympathetic vascular nerves leads mainly to release of norepinephrine and neuropeptide Y [33]. Sympathetic stimulation constricts large cerebral arteries. However, CBF does not decrease, because the constriction of large cerebral vessels is immediately compensated for by dilation of resistance arteries [34]. The role of sympathetic innervation seems to be related to protecting the brain against ABP increases through the mechanism of sympathetic activation shifting the upper and lower limits of CA towards higher pressures. Parasymathetic vascular nerve fibers release vasoactive intestinal polypeptide, acetylcholine and NO [35, 36]. Activation of these nerves causes cerebrovascular dilation, the physiological significance of which is still not clear [37]. Fibers originating in sensory ganglia contain clacitonin gene-related peptide, substance P, neurokinin A and pituitary adenylate cyclase-activating polypeptide [38–40]. These fibers cause dilation of cerebral vessels and their physiological role appears to be counteracting action of cerebral vasoconstrictors [41]. Activation of these fibers may contribute to increase in CBF occurring in pathologic conditions such as meningitis and may play a role in pathogenesis of migraine [42, 43].

Vascular fibers belonging to the intrinsic system originate in different parts of brain such as nucleus basalis, locus coeruleus and raphe nucleus [44–46]. These fibers may modulate vascular tone directly or through stimulation of perivascular interneurons and glial cells [47, 48]. Activity of the intrinsic system may decrease or increase local blood flow depending on the rostrocaudal level of activation of their cells of origin within the brain. The physiological significance of this system is not yet completely elucidated [45, 46].

For academic purposes, CBF regulation is parceled into several major mechanisms, though the division is somehow artificial. The mechanisms influence and modify each other at any given time and the overall cerebrovascular tone is the product of interplay of many processes. It is clear that some of these mechanisms share common biochemical pathway at the level of vascular muscle cells. For instance vascular dilation caused by parasympathetic activation, shear stress and hypercapnia, at least in part, are mediated by the same factor — NO [49].
Neurovascular coupling in humans

The brain’s information-processing capacity is limited by the amount of oxygen and energy available. When neurons are active, blood flow in that local brain region increases to meet the enhanced local metabolic demand [50]. The tight coupling between neuronal activity and blood flow is known as the “neurovascular coupling”. This phenomenon seems to be dependent on both astrocytes and perivascular nerves.

Increased local neural activity leads to release of glutamate acting on astrocytic metabotropic glutamate receptors [51]. Activation of glutamate astrocytic receptors leads to increased synthesis of arachidonic acid, which is metabolized to vasodilatory prostanoids like Prostalginand E2 (PGE2) and epoxyeicosatrienoic acid (EET) [52, 53]. PGE2 and EET diffuse to vascular muscle cells and dilate vessels increasing local blood flow [52, 53]. However, during this process significant amount of arachidonic reaches vascular muscles as well. Smooth muscle cells contain enzymes (CYP4A), which generate powerful vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE) — induced vasodilation [48, 54]. The question arises, what shifts this balance towards vasodilatation? Glutamate released into synaptic space activates postsynaptic NMDA-type glutamate receptors located on perivascular neurons [55, 56]. This leads to activation of neuronal NO synthesis and production of NO, which reaches smooth muscle cells. NO not only exerts vasodilatory effects but also binds to the heme moiety of CYP4A enzyme and inactivates it, thereby preventing further synthesis of 20-HETE from arachidonic acid [57, 58]. Thus activation of both nNOS positive neurons and astrocytes seems to be necessary for proper functioning of neurovascular coupling. It is likely that astrocyte-derived vasodilatory prostanoids are direct mediators while neuronal NO acts as a modulator of this process.

Respiratory and cardiovascular factors and cerebral hemodynamics

Both oxygen and CO₂ tension have powerful effects on cardiovascular system through the peripheral and central chemoreceptors. Peripheral chemoreceptors are located in the aorta and internal carotid artery and respond to both hypoxemia and hypercapnia. The peripheral chemoreflex causes hyperventilation, transiently activates sympathetic traffic to peripheral blood vessels, and increases vagoal activity to the heart [59]. Activation of peripheral chemoreceptors does not change CBF [60]. Central chemoreceptors are located in ventrolateral medulla and detect pH changes of the interstitial fluid [61]. Activation of the central chemoreceptor reflex causes hyperventilation and increased sympathetic stimulation to vasculature. Changes in sympathetic tone have a limited effect on CBF at normal PaCO₂ levels [62]. However, the sympathetic nervous system seems to attenuate the CO₂-induced increase in CBF. This phenomenon may indicate a moderate direct effect of the sympathetic nervous system on the cerebral vasculature [62]. Sympathetic stimulation can have more important effects on segmental vascular resistance and cerebral microvascular pressure in pathologic conditions. Generalized increases in the sympathetic discharge, causing substantial increases in ABP, can prevent concomitant increases in CBF by acting on both small resistance and large vessels [34, 63].

Arterial baroreceptor reflex, which plays an integral role in regulating peripheral vascular tone and heart rate in response to changes in ABP, seems to have no impact on the CBF. Neither interruption nor stimulation of baroreceptor nerves affects CBF or CVR at ABP within the range of CA [64, 65]. However, cerebral vasocostriction occurs in healthy humans during graded reductions in central blood volume. The magnitude of this response is small compared with changes in systemic vascular resistance [66]. It seems that this degree of cerebral vasoconstriction is not by itself sufficient to cause syncope during orthostatic stress, but can exacerbate the decrease in CBF associated with hypotension if hemodynamic instability develops.

Cerebral ischemia and investigations of cerebral blood flow regulation

Cerebral infarction results when blood supply is not sufficient to support cellular viability or when low nutrients supply induces apoptosis. The cell death is a complex function resulting from a combination of the duration and magnitude of ischemia, the nutrients and oxygen content of blood, the specific cerebral structure involved, and ability of the tissue to dissipate the metabolic heat. Cell viability may be lost in as little as 20 minutes after cessation of blood flow. In mild but prolonged low perfusion states, irreversible gray matter damage will occur with CBF below approximately 20 mL/100 mg/h. Figures 1–4 demonstrate a basic concept of chain reactions in neuron and glia cells under different ischemic conditions, which eventually lead to cell death.

In general, ischemia results from:
— sudden arterial occlusion;
— global hypoxia due to respiratory or cardiac arrest;
— hypoperfusion in patients with high ICP;
— subacute or chronic borderline hypoperfusion due to occlusion or narrowing of large cerebral arteries. The last two need more explanation.

Cerebral blood flow disturbances in patients with high ICP

According to the Monro-Kellie hypothesis [67] the cranium acts as a near rigid container of virtually incompressible substances such as brain (80%), blood (12%) and cerebrospinal fluid (CSF) — (8%). These three volumes completely fill the intracranial cavity and remain in a state of dynamic equilibrium with each other. Based on these premises, any extra volume added to the intracranial cavity will increase ICP. However, cessation of cardiac action leads to equalization of ICP with atmospheric pressure, no matter how high it was before stoppage of cerebral circulation. In other words, it will always equal zero when heart does not beat. Thus, it goes without saying that ICP is closely related to the function of cardiovascular system. Under normal CPP (80–100 mm Hg), ICP is not higher than 15 mm Hg [68]. Blood pressure in the cerebral arteries decreases as arterial diameter gets smaller and approaches the interstitial tissue pressure, that is equal to ICP at the level of brain capillaries and veins. The most significant drop in ABP occurs in small resistance, and precapillary arterioles. High ABP inside the arterial system is not transmitted to the brain tissue because it is confined within the arteries by thick arterial walls. More-
over, during every cardiac systole, some CSF and venous blood is pushed out of the cranium to accommodate “cerebral” portion of stroke volume. Thus, under normal conditions, cranial cavity exhibits some compliance and there is only slight rise in ICP due to distention of cerebral arteries during cardiac systole.

As mentioned before, any extra space occupying by intracranial lesion is at the cost of the volume of other intracranial components in order to maintain the ICP at normal levels. Thus, during growth of tumors or the development of hematoma, CSF is absorbed and venous blood is pushed out of the cerebral veins to accommodate the volume of the abnormal lesion inside the skull. When these compensatory mechanisms are exhausted, ICP increases logarithmically as pathologic volume further increases [69]. As ICP increases, the CPP and consequently CBF begin to decrease. From then on, the highest priority is maintaining CBF, even at the price of further increase in ICP, as neural tissue is much...
Figure 3. Biochemical mechanism of excitotoxicity. Energy deficit attenuates re-uptake of glutamate in the synaptic cleft. Increased content of this mediator causes overstimulation of NMDA receptor, excessive synthesis of nitric oxide and influx of calcium into the cell. This leads to inactivation of mitochondrial enzymes, free radicals production and activation of Phospholipase A2. The phospholipase releases arachidonic acid which again attenuates re-uptake of glutamate, thus producing the vicious circle of excitotoxicity.

Figure 4. "Direct" and "indirect" effects of reactive oxygen species (ROS). Reactive oxygen species directly interact with DNA, proteins and lipids and destroy them through oxidation process causing cell death (direct effect). High concentration of ROS damage structure and function of mitochondria and change the redox state of the cell interior (indirect effect). Damage to the mitochondria leads to release of factors initiating process of programmed cell death (apoptosis). Oxidative stress activates transcription factor NFκB (nuclear factor κB), which induce synthesis many proinflammatory cytokines and adhesion molecules. Increased expression of cytokines and adhesion molecules augments inflammatory process in neural tissue.
more sensitive to ischemia than to pressure. It has been shown that neurons can withstand pressure several times higher than the atmospheric pressure [70].

Decrease in CPP lowers intraluminal ABP and leads to dilatation of arteries through the vasogenic mechanism. Furthermore, excessive buildup of CO₂, potassium ions, and adenosine add to the effect of hypoxia resulting from insufficient CBF to cause vasodilatation. Unfortunately, at this point, even significant vasodilatation does not help much improving CBF. Increased ICP constricts cerebral veins and is transmitted through their thin, compliant walls so that the point of maximal resistance of cerebral vascular bed shifts from arterial to venous system [71]. In other words, CBF decreases because of a lower and lower pressure gradient between arterial and venous system. High pressure in venous system decreases venous outflow and leads to congestive brain swelling.

Under these conditions, general cerebral vasodilatation has even more deleterious effects. Dilated arteries contain more blood and increased cerebral blood volume further increases ICP. Moreover, maximal arterial dilatation profoundly decreases stiffness of arterial walls, which become good transmitters of intraluminal ABP into the brain parenchyma [70]. Thus, increased cerebral blood volume, the transmission of intraluminal ABP into brain parenchyma, as well as decreased venous outflow are main determinants of ICP increase. In this situation, the dynamic system consisting of intracranial cavity and its contents loses its compliance and becomes “stiff” so that even small additional volume of systolic blood surge leads to huge ICP increase [72]. When ICP reaches the level of ABP, CPP decreases to zero leading to complete cessation of CBF. It will restart only if ABP rises sufficiently beyond the ICP to restore CBF. If this fails to occur, brain death occurs.

When the homodynamic disturbances caused by pathologic intracranial volume overcome physiologic mechanisms of intracranial volume compensation, ICP not only increases but also random ICP fluctuations begin to occur more frequently. Statistical analysis of these fluctuations has allowed pattern descriptions specific for increased ICP [73, 74]. These fluctuations are called A waves of Lundberg. A waves are characterized by a rapid rise in ICP up to 50–100 mmHg which is followed by a variable period during which the ICP remains elevated and then a rapid fall to baseline. These waves are also called “plateau” waves. It should be mentioned that when A waves occur, the baseline level of ICP is already elevated. Plateau waves develop as a result of a rapid increase in intracerebral blood volume, when sudden decreases in CPP leads to vasodilatation. Thus, plateau waves occur in patients with intact CA and reduced intracranial compliance. These sudden transient drops in CPP may be triggered by many, often poorly characterized factors. A well known trigger of A waves is postural change. The increase in CPP required to abort plateau waves may be generated by the Cushing phenomenon, which is activated when brainstem ischemia triggers systemic hypertension, thus increasing CPP [75]. During plateau waves, patients may have severe headache, visual disturbances, impairment of postural or motor control, altered consciousness, bradycardia and high ABP. The last two symptoms are caused by activation of Cushing reflex in effort to preserve CBF. However, in many patients plateau waves may not cause these symptoms and brain stem herniation ensues with minimal warning signs.

Based on these facts three very important conclusions should be drawn which are relevant for clinical practice. First, there is no perfect relation between clinical signs and severity of intracranial hypertension; second, monitoring of ICP is extremely important to gauge the risk of herniation; and third, maintaining CBF is the highest priority measure to treat patients with intracranial hypertension. Thus, close monitoring of CBF is extremely important when taking care of patients with intracranial pathology.

Chronic hypoperfusion and investigations of cerebral blood flow regulation

In patients with impaired CA even slight fluctuations in ABP may lead to cerebral ischemia or encephalopathy due to global or local hyperperfusion [76]. In such patients ischemia is the result of a combination of chronic and acute factors. Typically slowly progressive narrowing of the large cerebral artery leads to drop in local CPP. The perfusion deficit is most marked at the regions farthest from the main supplying arteries — the arterial border zones [76] — at the margins of the territories supplied by the anterior, middle, and posterior cerebral arteries or between the cortical vessels and small penetrating arteries at the base of the brain. The baseline drop in CPP makes these areas susceptible to fluctuations in systemic ABP, oxygen supply, and local vascular resistance. When the drop in perfusion is of short of duration, transient neurological deficits may occur, but when the CPP falls below critical levels for a sufficient duration, infarction will result. Thus, it is important to know in advance whether a patient is at high or low risk of brain infarct caused by hypoperfusion alone.

In disease states, produced for instance by marked arterial narrowing, the peripheral microvessels are maximally dilated, and a decrease in CPP results in a decrease of CBF. With mild decreases in CPP, cellular function is maintained by increased oxygen and nutrient extraction (called often as stage II) [77]. As CPP falls further, oxygen extraction reaches a maximum, and any decrease in CBF are accompanied by decreased oxygen consumption (referred to as “stage III”). When critical levels of oxygen and nutrient delivery cannot be met, cell death occurs.

Two main approaches to predict the risk of cerebral infarction due to drop of CPP are employed. One is to make quantitative measurements of oxygen extraction, oxygen consumption and CBF. In practice, such measurements can be made using positron emission tomography (PET) with ¹⁵O₂ and C¹⁵O₂. An area with exhausted cerebrovascular reserve will show relatively decreased CBF and increased fractional oxygen extraction. Other methods of assessment of CA on the basis of measurements of oxygen extraction rate include arterio-venous O₂ difference and near-infrared spectroscopy. The second most often used approach is to measure the response of local CBF to a physiology challenge, such as pharmacologic vasodilatation, elevated CO₂ level, and a challenge with decreased ABP.

Perfusion imaging becomes a standard part of stroke imaging to determine the ischemic penumbra in patients with ischemic stroke. In case of chronic perfusion impairment, however, a single CBF or blood volume measurement is rather not adequate. First, interpretation of any single perfusion measurements is difficult because of the high physiological variability of CBF. Second, the relationship between absolute CBF and progression to infarction varies widely between and within patients. This is particularly im-
important in assessing chronic rather the acute hypoperfusion, because the degree of flow decrement is generally of the same order as that from the physiological sources of variability [78]. Third, absolute perfusion measurements can be inaccurate because the models used to derive CBF are not sufficiently accurate. This problem is most significant in methods that depend on intravascular tracers. With these methods, a perfusion value is assigned from model-dependent calculations based on the dispersion of a tracer [79]. Regional perfusion, however, is only one of the factors that can affect this dispersion. An additional important factor is intravascular dispersion arising from convection and diffusion during bulk flow in the large arteries between the heart and the capillaries. This intravascular dispersion may vary substantially and depend on the degree of turbulence within the vessels and on the path length to the tissue of interest. Because this dispersion has effects on the tissue concentration versus time function that are similar to variation from capillary flow, variation in turbulence or path length will produce artifactual changes in the value obtained for tissue perfusion. Despite of these limitations assessment of absolute CBF is important, because an absolute decrease in CBF may help to identify the “steal” phenomenon.

The assessment of CA is free of the above mentioned limitations. It can be evaluated by measuring relative blood flow changes in response to the change in the blood pressure using “static” or “dynamic” approaches [80]. Both approaches attempt to establish whether CA is normal or impaired, using the autoregulatory curve of CBF in humans as a model [81, 82]. In the static method, evaluation of CA is performed under steady-state conditions. That is, a first measurement of CBF obtained at a constant baseline ABP is followed by another steady-state measurement that is taken after the autoregulatory response to a change in ABP has been completed. If the change in ABP (within the lower and upper limits of CA estimated for healthy humans) does not change CBF, CA is functioning properly. If manipulation of ABP evokes significant changes in CBF, the CA is impaired. In the static method, manipulation of ABP is usually achieved using vasoactive drugs. Static methods evaluate the efficiency of the CA, that is overall change in cerebrovascular impedance induced by changes in ABP.

Dynamic methods use rapid changes in ABP and analyze CBF and ABP during the whole autoregulatory process [80]. Systemic hemodynamic changes may be induced using rapid leg cuff deflation, progressive lower body negative pressure, Valsalva maneuver, deep breathing, ergometric exercise or head-down tilting. Dynamic methods are able to assess both efficiency and latency of CA response, that is overall change in CBF, as well as the time in which the change in the CBF index is achieved.

The use of systemic hypotension to challenge the CA response is limited, however, because pharmacologically induced hypotension could result in permanent ischemic injury, in particular in patients with already insufficient CBF. Balloon test occlusion itself is a focal challenge to CPP, but it is rather more important to know whether current flow is adequate than in the effect of complete occlusion. What is needed is a mild global challenge to cerebral perfusion that is unlikely to produce ischemia. Two methods of physiological challenge that meet these criteria and that have received substantial study for testing CA include a test with administration of acetazolamide and systemic partial CO2 pressure manipulations.

Acetazolamide is a carbonic anhydrase inhibitor that acts as a potent cerebral vasodilator. Administered intravenously, it slowly penetrates the blood-brain barrier, where it reversibly inhibits the carbonic anhydrase in brain parenchyma. Carbonic anhydrase catalyzes the conversion of bicarbonate and hydrogen ion to water and CO2. Acetazolamide decreases the production of bicarbonate and results in a decrease in the extracellular pH in the brain [83, 84]. This induced acidosis results in vasodilatation of small arterioles [85, 86]. Acetazolamide administration thus induces a considerable increase in CBF [86]. Doses used in the assessment of cerebrovascular reserve are in the 15–18 mg/kg range; in many studies a standard total dose of 1 g is used [87]. Systemic ABP, HR and respiratory rate are unaffected [88]. The effect on CBF may be seen within the first 5 minutes after administration, and steal phenomenon is most conspicuous at about 5 minutes [89]. Peak CBF augmentation occurs at approximately 10 minutes after bolus intravenous administration and diminishes little over the next 20 minutes. With these dose parameters, a 30% to 60% increase in CBF is achieved in normal subjects [90]. The response is little diminished in the healthy aged population [91]. The percentage increase in CBF after acetazolamide administration may be used to define cerebrovascular reserve based on the following formula:

\[
\text{Cerebrovascular reserve} = \frac{(\text{CBF}_{\text{post}} - \text{CBF}_{\text{pre}})}{\text{CBF}_{\text{pre}}}
\]

Although a global increase in CBF by about 30% is accepted as normal, a variety of criteria have been used to define an abnormal response to acetazolamide. The definition has varied among the major studies in which it was used, including such criteria as greater than 5% decrement in absolute CBF, a less than 10% increment in absolute CBF, an absolute change of less than 10 mL/100 g/min, and a value greater than two standard deviations below control values.

The bolus administration of acetazolamide over several minutes at these doses is generally well tolerated. The most commonly reported side effects of intravenous administration include transient perioral numbness, paresthesias, and headaches [88]. The theoretic concern of induced ischemia as results of the “steal” phenomenon has not been borne out by clinical experience [90].

Manipulation of arterial CO2 tension (PaCO2) has also been used to test cerebrovascular reserve. Low level hypercarbia results in a reproducible increase in CBF of 0.01–0.02 mL/g/min for each 1 mm Hg rise in PaCO2. The effect is rapid and quickly reversible. It is mediated through a change in extracellular pH as well as NO and cyclic guanosine monophosphate and results from changes in vascular smooth muscle tone [92]. CO2 manipulation has been performed with a number of schemes, including breath holding or hyperventilation, rebreathing, and inhalation of 3% to 6% CO2. The effect of altered CO2 tension on CBF has been quantified either as a fixed effect for particular CO2 manipulation (similar to the quantification of acetazolamide effect) or as the slope of the CO2–CBF relationship according to the formula [93]:

\[
\text{Cerebrovascular reserve} = \frac{[(\text{CBF}_{\text{post}} - \text{CBF}_{\text{pre}})}{\text{CBF}_{\text{pre}}]}{100} \times \left[1.100(\text{Pa}_{\text{pre}} - \text{Pa}_{\text{post}})\right]
\]

In clinical practice, the magnitude of CBF changes is smaller
than that achieved with acetazolamide. The average increase in cerebrovascular reserve (percentage change in blood flow per mm Hg change in PaCO2) is 1.1% to 2.9%. With 5% CO2 inhalation, the CBF response is approximately half the response to acetazolamide. Furthermore, although CO2 manipulation and acetazolamide in theory both produce vasodilatation and alter CBF in similar fashion, the correlation between CBF changes produced by the two has varied from poor to moderate [94–96]. CO2 manipulation also has the disadvantage of itself altering systemic ABP — mean ABP increase of about 10 mm Hg with 5% CO2 — an effect that may blunt the CBF response [94]. However, CO2 manipulation is easily performed, generally well tolerated, and has no long-term effects. The rapid response to CO2 makes it particularly suitable for transcranial Doppler (TCD) measurements.

An important phenomenon affecting the results of CA testing is that of “steal”. In regions under stage II or III conditions, it is common to observe a decrease in CBF after vasodilator administration [90, 97]. This phenomenon is created by the interaction between regions of different cerebrovascular response and the systemic effects of the agents used for physiologic or pharmacologic challenge. Areas with proper CA will show vasodilatation, lowering the pressure in the larger blood vessels supplying both normal and abnormal areas. This lower pressure results in a drop in blood flow in the regions that are already maximally dilated.

In assessment of CA spatial and temporal resolution (the degree of CA impairment can be regionally and tissue specific), simultaneous imaging of parenchymal and vascular structures (status of parenchyma and large arteries is important in interpretation of autoregulatory test’s results), invasiveness, cost and availability should be taken into account when one selects a testing technique.

Physiological techniques to assess functionality of CA

Physiological techniques include TCD, perfusion CT (pCT) and MR (pMR) imaging with dynamic contrast bolus administration, arterial spin-labeling MR perfusion (ASL MR), blood oxygenation level-dependent MR imaging (BOLD). More invasive techniques such as positron emission tomography (PET), single-photon emission CT, and Xenon CT are not reviewed here.

Transcranial Doppler ultrasonography (TCD)

The most popular technique used to assess CA using both static and dynamic methods is the measurement of blood flow velocity (CBFV) changes in cerebral arteries with TCD. Implementation of this technique is based on the fact that changes in CBF will be reflected by changes in CBFV. If CA is intact, drop or increase in ABP will not affect CBFV. This is because any change in ABP will be compensated by adequate change in diameter of small resistance arterioles. Thus, CPP, CBF and CBFV will remain unaffected.

Many investigators tried to formulate objective criteria to classify CA usually as normal/impaired using different approaches. For static methods, most commonly used measures of CA are correlation coefficient (r) between CBF and mean ABP as well as “index of static autoregulation” (sARi), which is expressed as a ratio of percentage change in CVR to percentage change in ABP (sARi = %CVR/%ABP) [98, 80]. The percentage change in CVR is calculated as the ratio of ABP to CBF (CVR = ABP/CBF).

For perfect CA, correlation coefficient would equal 0 and sARi would be 1, while complete lack of CA would yield r and sARi of 1 and 0, respectively. Most commonly proposed threshold between normal and impaired CA for both r and sARi is 0.5 [98, 99]. Evaluation of CA in dynamic methods is based on “dynamic CA index” (dARi). This is the dynamic equivalent of sARi and is defined as dARi = (ΔCVR/ΔT)/ABP, where ΔT is the time when CA response occurs [100, 80]. Thus, the dynamic CA index evaluates not only overall change in CBF induced by change in ABP, but also quantifies time-dependence of the CA response. A value of dARi = 0 represents the absence of CA, while value = 9 corresponds to a very efficient CA response. The proposed threshold value between normal and impaired CA is about 5 [80, 101]. Static and dynamic methods of evaluation of CA yield similar results [80].

TCD can only measure velocities in large arteries. Regional areas of impaired CA in an artery distribution may be missed when averaged with areas that are better perfused. Furthermore, correlation between flow velocities and CBF is weak in some patients, mostly because of collateral circulation [102, 103]. Also, TCD can not be performed in some patients due to absence of acoustic windows [104].

Perfusion CT and MR imaging with dynamic contrast bolus administration

The use of this technology for acute stroke evaluation is increasing. The bolus is tracked during the passage through cerebral circulation in order to calculate cerebral blood volume and CBF using models that are less robust than those used for freely diffusible tracers [105, 106]. In assessment of CA, however, this problem is minimized as preacetazolamide study serves as a control for postacetazolamide study, both can be performed at one session. The spatial resolution is high and the flow data can be easily mapped to the anatomic images. Furthermore, MR or CT angiography can be performed at the same time. The radiation dose, limited coverage of the brain and allergic reaction for contrast are disadvantages of the CT perfusion, whereas in MR perfusion is difficult to obtain reliable absolute quantitation because of the complex relationship between concentration and signal. CT perfusion has received limited but promising use in assessment of CA [107, 108]. The experience with MR perfusion is more extensive and promising [109, 110].

Arterial spin-labeling MR perfusion (ASL MR)

Experience with this method in evaluation of CA is limited. The effect of magnetic saturation or inversion of the protons in arterial blood on the MR signal is used to derive quantitative CBF measurements. This technique does not require exogenous contrast and provides good spatial resolution and repeatability. However, signal-to-noise ratio is poor, and imaging times of 3-6 minutes have been needed to obtain satisfactory results for even single-slice imaging. Though water is a diffusible tracer, the arterial transit time and limited diffusibility of water have effects on CBF measurements with this technique [111], a particular important problem when studying patients with chronic cerebrovascular disease. Experience is limited, but expected and reproducible CBF changes are seen when the technique is applied, in conjunction with acetazolamide or CO2 manipulation, to healthy adults [111, 112], and those with cerebrovascular disease [113]. A study showed
that ASL MR imaging with acetazolamide challenge produced results comparable to those of 123I-IMP SPECT in patients with arterial stenosis [114].

Blood oxygenation level-dependent MR imaging (BOLD)

BOLD imaging, used primarily for functional activation studies, has been applied to assess CA, despite the BOLD does not measure CBF directly. BOLD exploits the magnetic susceptibility differences between oxidative measures of regional oxygenation. The BOLD signal depends on several factors, including local CBF, cerebral blood volume, oxygen delivery, oxygen consumption, hemoglobin level, and pH [115]. BOLD signal has been shown also to change in response to CO2 alteration or acetazolamide challenge, although there is substantial variability in the response [116–118]. The same maneuvers that increase CBF generally result in an elevated regional relative proportion of oxy-hemoglobin. However, the effects of these challenge maneuvers in the setting of chronic flow impairment are not well established. Complex interplay exists between the physiological factors listed earlier, and BOLD signal will depend heavily on the degree and timing of these changes. Limited studies demonstrated BOLD imaging response to vasodilatory challenge in patients with CA impairment [115, 118–120]. The response correlated moderately with SPECT response after acetazolamide [115], however, the response did not reliably match the TCD response [120].

Positron emission tomography (PET)

PET methods, which are used to assess CA, vary depending on the technique [121]. In general PET employs the juxtaposed measurement of CBF and oxygen extraction to determine whether perfusion pressure has fallen below levels where the oxygen demand of tissue can be met by changes in cerebrovascular resistance rather than measure the vascular response to a pharmacologic or physiologic challenge. Theoretically, an increased oxygen extraction fraction should correspond to the level where cerebrovascular resistance is depleted when assessed by a challenge test. In practice, however, it has been shown that these two measures are strongly related but not the same [93, 122]. Although oxygen extraction fraction has been chosen by some as the measure of choice for CA [123], it remains to be seen whether the oxygen extraction fraction or pharmacologic challenge of CA is superior in identifying patients at high risk of stroke.

In clinical practice, PET has disadvantages that currently limit its application. PET measurements require isotopes, chiefly 15O, with a very short half-life; it therefore requires an on-site cyclotron. The availability of this equipment is limited. PET studies of the reserve are cumbersome and expensive, thus they are used more in clinical research than in routine practice. The spatial resolution of PET has improved substantially, but the studies still require long acquisition times and are sensitive to patient motion.

Single-photon emission CT (SPECT)

SPECT has been used in conjunction with several radiopharmaceutical agents to measure CBF and test cerebrovascular resistance [124]. These agents include technetium-99m-hexamethylpropyleneamine oxime (99mTc-hMPAO), 99mTc-ethylenecysteine dimmer (99mTc-ECD), and N-isopropyl-[iodine-123]-iodoamphetamine (123I-IMP). They are extracted by the brain in proportion to local CBF. They have a long half-life, measured in hours, which allows time separation of injection and imaging long enough to obtain high signal-to-noise images. The assessment of CA with these agents can be performed with both qualitative and quantitative CBF measurements. The qualitative methods are less expensive and more simply performed but only allow assessment of relative CBF (i.e. comparison of the two hemispheres or comparison of cerebral hemispheres with cerebellum). Although the presence of impaired CA can be detected by these methods [125, 126], the results vary substantially [127], and have compared unfavorably with quantitative methods of flow assessment [128, 129]. These results are probably due in part to the fact the qualitative assessment of CA does not permit direct detection of the “steal” phenomenon. A degree of quantitation has been achieved with 123I-IMP using a single arterial blood sample [129, 130]. With this method, it has been shown that acetazolamide-induced CBF change measured with these agents correlates with quantitative CBF response [129].

SPECT, performed with these agents, has several disadvantages that limit its clinical use. The long half-life of the injected agents necessitates either a several-day delay between the pre- and postacetazolamide studies, the use of different radiopharmaceuticals, or the use of only a small tracer does for the pre-acetazolamide study; each of these machinations introduces potential errors when the two studies are compared. Imaging time itself is long. The nominal spatial resolution of SPECT studies is inferior to that of the other imaging modalities, and co-registration with CT or MR imaging is needed when intrahemispheric variability in CA is observed.

SPECT has also been performed with xenon-133 (133Xe), a rapidly diffusible, inert radiotracer that is delivered by inhalation [131]. This method produces a quantitative CBF measurements [132, 133]. Although it is free of some of the difficulties of the injectable SPECT agents, the imaging times are long, and the spatial resolution is even less than that achieved with the other agents. Furthermore, the substantial attenuation of the low-energy gamma article emitted degrades the imaging of deep structures.

Xenon CT

Xenon CT also provides quantitative assessment of CBF and CA [90]. An approximately 70:30 mixture of oxygen and non-radioactive xenon gas is delivered by inhalation for several minutes, and serial CT scans are acquired. Because the X-ray attenuation of xenon exceeds that of cerebral tissue, the accumulation of this tracer can be measured over time. Using the Kety-Schmidt model, CBF can be delivered from this time course of oxygen accumulation over 5 to 6 minutes. This method provides reliable CBF quantitation [128] combined with high-resolution imaging methods [128, 134]. Although xenon inhalation at these concentrations is itself known to increase CBF after several minutes, the phenomenon has minimal effect with well-designed protocols [135]. The study can be performed before and after acetazolamide administration in the same session, because the xenon washes out of the brain rapidly.

These qualities make xenon CT well suited for assessment of CA, and this technique has received substantial clinical use and study. It has been validated against the “golden” standard mea-
sures of CBF [106] and correlates with PET-derived oxygen extraction fraction [136].

However, few centers have developed the expertise necessary to perform these studies successfully. Although xenon CT is usually well tolerated at the concentrations used for these studies, feelings of inebriation, somnolence, or dysphoria may occur and interfere with the study [135]. The technique is sensitive to head motion, and it can be difficult to maintain immobility for the duration of combined pre- and postacetazolamide imaging.

Clinical applications of autoregulation testing

Risk assessment of cerebral infarction

Autoregulatory response can predict stroke in some types of cerebrovascular disease. Patients with symptomatic occlusion of a major cerebral artery have eight times greater relative risk of cerebral infarction in the affected territory if they have evidence of diminished CA response [133, 137]. Some studies that included patients with severe stenosis have shown significantly increased incidence of cerebral infarction in those with impairment of CA [138–140].

Selection of patients for extracranial to intracranial bypass surgery

Despite a multicenter extra- to intracranial (EC-IC) bypass trial found no benefits from the procedure in patients with symptomatic stenosis or occlusion [141], it is likely that benefits can be achieved if selection was confined to patients with impaired CA and in whom thromboembolic infarction was excluded [123]. Several studies showed clinical benefits associated with improvement in CA response after surgery [96, 142–144].

Testing of CA in patients with Moya-moya disease appears to be particularly useful, because multiple severe proximal intracranial stenoses with subsequent extensive collateral circulation usually develop. Areas with impaired CA are at high risk of infarction, especially in children. Surgical revascularization procedures are often performed, after which dramatic improvement in CA response correlated with cessation of ischemic events has been demonstrated. The development of new vessels from the grafts occurs more reliably in areas of impaired CA, independent of local CBF, suggesting that impaired CA results in greater local angiogenic drive [145, 146]. Testing of CA is therefore likely to have an important role in selecting patients for revascularization and for the guidance of graft placement.

EC-IC bypass can also result in improved cognitive function in patients with impaired CA [147]. A large, randomized trial to assess effectiveness of EC-IC bypass in ineligible patients with CA impairment as assessed using PET is under way [123].

Assessment of CA in conservative patients management

In patients with impaired CA the primary goal is to maintain adequate CPP, by optimization of cardiac function, minimizing orthostatic fluctuations of ABP, and limitations of antihypertensive medication. If CA is intact, emphasis may be placed instead on minimizing hypertension and avoiding thromboembolism. The relative merits of surgical and aggressive medical treatment for impaired CA, however, remain largely unstudied, as CA function can improve over time without surgical revascularization [137, 148]. In some patients temporizing with medical therapy for months to several years may allow the formation of sufficient collateral circulation to remove the risk of stroke from hyperperfusion.

Assessing risk of hyperperfusion syndrome

Hyperperfusion syndrome is a rare but disastrous complication of carotid endarterectomy. Hyperperfusion, defined as increased CBF after surgery, results in cerebral edema and intracerebral hemorrhage [149, 150]. The prognosis is poor, with mortality of 36% to 63%, and survivors have significant morbidity. If patients at risk for the syndrome can be identified preoperatively, strict control of ABP can be instituted in the early postoperative period [149, 151]. Assessment of CA can help to identify patients at risk for this phenomenon as postoperative hyperperfusion was seen only in patients with impaired CA (< 10% CBF response after acetazolamide) [152].

Balloon test occlusion

Balloon test occlusion of the internal carotid artery is performed to assess the adequacy of collateral circulation before permanent carotid artery occlusion. Most patients who tolerate 20 to 30 minutes of the occlusion without developing neurologic deficits can safely undergo permanent occlusion [108]. However, approximately 10% of patients, who pass the clinical evaluation, suffer ipsilateral cerebral infarction after permanent occlusion. Several measures have been used to increase the sensitivity of balloon test occlusion, including pharmacologically induced hypotension, stump pressure measurements, and perfusion imaging; no consensus exists on the optimal protocol. Testing of CA has a strong theoretic advantage over mere CBF imaging for the same reasons that it provides superior evaluation in chronic cerebrovascular disease. Testing of CA with acetazolamide challenge has been performed during balloon test occlusion with promising results [108, 153].

References

1. Ito H, Kanno I, Kato C et al. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monox-

2290.
12. Thorin-Trescases N, Bevan JA. High levels of myogenic tone antago-
13. McDonald DA. Blood flow in arteries. Williams & Wilkins Co, Balti-
more 1977.
15. Kitamura K, Xiong Z, Teramoto N, Kuriyama H. Roles of inositol tris-
17. Ngai AC, Hinn HR. Modulation of cerebral arterial diameter by in-
20. Miyahara K, Kawamoto T, Sase K et al. Cloning and structural charac-
22. Horuchi T, Dietrich HH, Hongo K, Goto T, Dacey RG, Jr. Role of en-
dothelial nitric oxide and smooth muscle potassium channels in cerebral arterial dilation in response to acidosis. Stroke 2002; 33: 844–
849.
23. Kovecs K, Konjakt J, Marton T, Skopal J, Sandor P, Nagy Z. Hyper-
perfusion stimuli prostaglandin E(2) but not prostaglandin I(2) re-
cular vasodilatation to extraluminal acidosis occurs via combined acti-
25. Toda N, Hatano Y, Mori K. Mechanisms underlying response to hy-
28. Horuchi T, Dietrich HH, Hongo K, Dacey RG, Jr. Mechanism of extra-
cellular K+-induced local and conducted responses in cerebral penet-
30. Kleppisch T, Nelson MT. Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-
12445.
31. Li G, Cheung DW. Modulation of Ca(2+)-dependent K(+) currents in mesenteric arterial smooth muscle cells by adenosine. Eur J Pharma-
32. Blyes RL, Cowen T. Innervation of cerebral blood vessels: morpholo-
gy, plasticity, age-related, and Alzheimer’s disease-related neurode-
44. Kalaria RN, Stockmeier CA, Harik SI. Brain microvessels are innerva-
45. Moreno MJ, Lopez dp, Conde MV, Marco EJ. Cat cerebral arteries are functionally innervated by serotoninergic fibers from central and peripheral origins. Stroke 1995; 26: 271–275.
46. Sato A, Sato Y, Uchida S. Activation of the intracerebral cholinergic nerve fibers originating in the basal forebrain increases regional cere-

