The value of simultaneous co-registration of 99mTc–MDP and 131Iodine in metastatic differentiated thyroid carcinoma

Magdy H. Kotb1, Walid Omar1, Tariq El-Maghraby2, Marwa El-Bedwihy1, Magdy El-Tawdy3, Hosna Mustafa2, Adil Al-Nahhas4

1Department of Nuclear Medicine, National Cancer Institute, Cairo University, Egypt
2Department of Nuclear Medicine, Cairo University, Egypt
3Department of Physics, Naser Oncology Centre, Cairo, Egypt
4Department of Nuclear Medicine, Hammersmith Hospital, London

[Received 28 IX 2007; Accepted 15 XI 2007]

Abstract

BACKGROUND: The lack of anatomical details in standard 131Iodine whole body scanning (131I WBS) interferes with the proper localization of metastatic differentiated thyroid carcinoma (DTC) lesions. In addition, nearby or overlapping variable physiological distribution of 131I may affect the specificity of 131I uptake, giving indeterminate results. The aim of this study was to demonstrate the clinical usefulness of simultaneous co-registration of 99mTc MDP bone scanning as an anatomical landmark with 131I scanning in the evaluation of metastatic DTC.

MATERIAL AND METHODS: Twenty-five patients (16 females and 9 males, mean age ± SD = 52 ± 13 years) with metastatic DTC (17 papillary, 8 follicular), were included. Whole body scanning using a 256 × 1024 matrix and an 8 cm/min scan rate were obtained 48 hours after oral administration of 185–370 MBq 131I and 2 hours after IV administration of 185–370 MBq 99mTc MDP using a dual head gamma camera equipped with high energy parallel hole collimators. Occasionally, additional simultaneous co-registration of localised detailed images was also performed using a 256 × 256 matrix size. The two planar images were fused with optional fusion of SPECT images.

The data from standard 131I scanning and fused 131/ 99mTc-MDP scanning were separately assessed by two nuclear medicine physicians. Fusion images were considered to improve image interpretation in comparison with standard 131I scanning when they provided better localization of lesions.

RESULTS: All lesions in the present study were validated by radiological images and clinical follow up for at least 12 months. Forty-eight metastatic lesions were confirmed as follows: 2 in the skull, 10 in the neck, 20 in the thorax, 12 in the pelvic-abdominal region and 4 in the extremities. Standard 131I WBS showed 54 extra-thyroidal foci with 8 false positive lesions of which 2 were located in the scalp and 6 in the pelvic-abdominal extra-skeleton (i.e. sensitivity 100%, specificity 86%). Out of the 48 validated lesions, 16 were indeterminately localized: 10 in the thorax (3 mediastinal nodal lesions, 5 vertebral lesions and 2 ribs) and 6 in the pelvic-abdominal region (2 upper sacral, 2 sacroiliac region and 2 ischial bone). Fusion images confirmed the precise localization of the pathological uptake in the validated 48 lesions (sensitivity 100%, specificity 100%). There were 2 (4%) indeterminate lesions in fused planar imaging that were clearly localized via fused SPECT images.

CONCLUSIONS: Fusion images using simultaneous co-registration of 131I and 99mTc MDP scanning is a simple and feasible technique that improves the anatomically limited interpretation of scintigraphy using 131I alone in patients with metastatic differentiated thyroid carcinoma. The diagnostic advantage of this technique seems to be more apparent in the thoracic and pelvic-abdominal regions in contrast to the neck and extremities.

Key words: simultaneous Co-registration, differentiated thyroid carcinoma, iodine-131 scan, technetium-99m-MDP bone scan

Introduction

Differentiated thyroid cancer (DTC) is a common endocrine cancer and is reported as one of the most escalating human cancers [1]. DTC is an indolent tumour with a high chance of defini-
tive cure due to its low metastatic potential. The high grade of differentiation and appropriate treatment with 131Iodine therapy has lead to a long-term survival exceeding 90% [2]. A small proportion of patients (5–20%) with unfavourable prognostic risk factors will develop local or distant metastases, and when distant metastases are present, the overall survival rate declines to 40% after ten years. The metastatic sites are frequently the regional lymph nodes, followed in frequency by metastases to the lungs and the skeletal system [3–6]. The aim of post-surgical follow up is the early detection of metastases especially those that can lead to respiratory failure, airway obstruction and neurological complications that are considered major causes of death in DTC. Regular follow up with whole body iodine scanning and other functional and conventional imaging will improve the management and quality of life in a disease with known low intrinsic mortality rate [7].

Conventional imaging modalities used for follow up of DTC include ultrasonography for cervical lymph nodes, CT for lung metastases and MRI for brain lesions. However, 18F-fluorodeoxyglucose-PET or PET/CT were introduced for visualizing the whole skeleton with great anatomical orientation [11, 12]. Recently, hybrid scanners using SPECT or PET in combination with CT were introduced with great potential. Yet, the high technical demands and the high cost of these machines limit their availability. One particular problem regarding the modality of these hybrid scanners (SPECT/CT or PET/CT) in DTC patients is the need to avoid contrast agents for the CT part. Contrast agents (with high iodine content) will interfere with the future administration of radioiodine for diagnostic purposes.

Interfering with special fusion algorithms [11, 12]. Recently, hybrid scanners using SPECT or PET in combination with CT were introduced. The ability of thyroid malignant cells to trap and organify the iodine through the sodium-iodine symporter is the basis for the diagnostic and therapeutic use of 123I [8]. The identification of abnormal areas of iodine uptake in the follow-up studies is the strongest evidence of metastases or recurrence. On the other hand, 18F-fluorodeoxyglucose-PET has several limitations that interfere with its clinical value. The long half-life (8 days) and the sub-optimal physical characteristics (high gamma ray energy of 364 KeV), limit the administrated dose significantly, leading to poor image quality. This leads to poor anatomical localisation of the abnormal foci seen on 123I WBS. Moreover, 131I is physiologically secreted in the salivary glands, stomach, gut and urinary tract leading to overlap and uncertainty in the identification of abnormal pathological metastatic foci [9,10].

Proper anatomical localization in nuclear medicine imaging is an inherited problem that has encouraged multi-modality imaging with special fusion algorithms [11, 12]. Recently, hybrid scanners using SPECT or PET in combination with CT were introduced with great potential. Yet, the high technical demands and the high cost of these machines limit their availability. One particular problem regarding the modality of these hybrid scanners (SPECT/CT or PET/CT) in DTC patients is the need to avoid contrast agents for the CT part. Contrast agents (with high iodine content) will interfere with the future administration of radioiodine for diagnostic or therapeutic purposes for a variable period of time.

99mTc-methylene diphosphonate (99mTc-MDP) is commonly used for the detection of suspected skeletal metastases in patients with DTC. Bone scintigraphy represents an excellent method for visualizing the whole skeleton with great anatomical orientation. In a preliminary work, the usefulness of the addition of 99mTc-MDP bone scan to 131I whole body scintigraphy for better anatomical localisation of bone metastases in DTC has been reported [13, 14]. However, such studies lack the technical details of these different scintigraphic techniques, particularly regarding the acquisition and processing of details.

The aim of the current work was to demonstrate the technical details of simultaneous acquisition of 99mTc-MDP bone scanning and 131I whole body scanning, and secondly, to show the incremental clinical usefulness of combined co-registered images from both 99mTc-MDP and 131I for the accurate detection of local and distant metastases from DTC.

Material and methods

The study was approved by the Committee Board of Radiotherapy and Nuclear Medicine department at the National Cancer Institute, Cairo. Informed consent was obtained from all patients and/or their relatives, with a complete description of the procedures. The work involved twenty-five patients with metastatic DTC (16 females and 9 males), average age 52 ± 13 years. Histologically, there were 17 patients with papillary DTC and 8 patients with follicular DTC. All patients had thyroidectomy (near-total in 10 and total thyroidectomy in 15). Detailed patient characteristics are presented in Table 1. All cases had metastatic disease and the metastases were defined based on the appearances on neck ultrasound, CT, MRI and 131I WBS. In addition, increased Thyroglobulin (Tg) levels, histological findings and evolution of the disease during subsequent follow up for at least 12 months were considered to confirm the presence of metastases.

Scintigraphic procedures

The patients’ TSH levels were assayed 4-6 weeks after thyroid hormone replacement was withheld. The patients were considered legible for 131I diagnostic WBS when TSH was > 30 lu/ml. The patients were then given a dose of 5 mCi 131I orally and imaged 48–72 hours later.

Acquisition

The initial acquisition of 131I WBS was performed using a large field of view gamma camera (E-cam Dual-head-Siemens) fitted with a high-energy parallel-hole collimator. The photo-peak was 364 KeV with symmetrical 20% window. The whole-body scan was done with a table speed of 6 cm/min. The next step on the imaging day was to intravenously inject the patient with 5 mCi of 99mTc-MDP and image after 2–3 hours.

Fused 99mTc-MDP / 131I-WBS scanning

The fusion scan acquisition started 2–3 hours post 99mTc-MDP injection using the same camera equipped with high-energy parallel-hole collimators. This acquisition was simultaneous using two different windows (15% window centred on 364 keV for 131I and 15% window centred on 140 keV for 99mTc-MDP). The matrix resolution used in this fusion scan was 256 × 1024 and the table speed was 8 cm/min. In some patients, additional spot views in fusion mode (matrix 256 × 256), were acquired for more anatomical delineation. Optionally, SPECT images were obtained with dual-energy windows, 32 projections for each detector and a matrix resolution of 64 × 64.

<table>
<thead>
<tr>
<th>Table 1. Patient characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTC</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Number (n)</td>
</tr>
<tr>
<td>Age; Years (mean ± SD)</td>
</tr>
<tr>
<td>Female: male</td>
</tr>
<tr>
<td>Thyroidectomy</td>
</tr>
</tbody>
</table>

PTC — papillary thyroid carcinoma; FTC — follicular thyroid carcinoma; SD — standard deviation.

www.nmr.viamedica.pl
Data processing and image fusion

The planar data provide two simultaneously co-registered separate images with two different count intensity scales. Processing entails successful fusion of these two images with preservation of the data from the two scale producing single scale image that maintain high target to background (T/B) ratio. This is obtained by tuning the intensity of 131I images using variable multiplication factor (K) for 131I matrix to approximate the count intensity of the 99mTc-MDP image. This count-intensity tuned image will be summed to the bone-scan image providing a single-scale image with satisfactory T/B ratio.

Images analysis and interpretation

Two experienced nuclear medicine physicians were responsible for visual interpretation of the images on a lesion-by-lesion basis for detection of metastases in lymph nodes, lungs, bones and other regions. The findings were defined as positive or negative based on consensus.

The 131I WBS and fusion scintigraphy were interpreted independently of each other, then all the images were re-evaluated based on the fusion images including knowledge of the results of the 131I-WBS scintigraphy.

The usefulness of fusion scintigraphy was assessed based on whether:

— fusion scintigraphy provided additional anatomical information that solves the problem of indeterminate lesions on 131I-WBS;

— fusion scintigraphy provided additional anatomical information that changed the previous staging of the patient, based on the 131I-WBS alone;

— fusion SPECT scintigraphy provided more detailed information than the planar fusion scintigraphy.

Results

The total number of definite metastases was 48 lesions. The highest distribution of metastatic lesions was in the lungs, bones or both, with a frequency of 10 (21%), 8 (16%) and 22 (46%), respectively. Nodal metastases were found in 8 cases (16%). Metastatic lesions were 27/48 (56%) from papillary DTC and 21/48 (44%) from follicular DTC. The details of the distribution and frequency of these metastatic lesions are shown in Table 2.

Regional anatomical distribution of metastatic lesions showed that the highest number 20/48 (42%) was present in the thoracic region, and the lowest was in the head region 2/48 (4%). Variable anatomical distribution was seen in the neck, extremities and pelvic-abdominal areas, as shown in Table 3.

131I whole body scintigraphy (131I-WBS)

There were 56 areas of focal uptake on 131I WBS. All metastatic lesions showed positive focal uptake on the 131I Whole Body Scan (WBS) with a sensitivity of 100%. However, an additional eight false-positive focal areas were seen reducing the specificity to 86%.

Findings in 131I-WBS were divided into two groups. Group A, Positive 131I metastatic lesions that are well localized anatomically, which included 32 lesions (67%). Group B, are the 131I metastatic lesions that are anatomically indeterminate, which included 16/48 lesions (33%) and included 10 lesions in the thorax and 6 in the pelvis-abdominal region.

131I-WBS and 99mTc-MDP bone scan fusion scintigraphy

As indicated in Table 4, the addition of bone scintigraphy and the resultant fusion (131I and MDP) scintigraphy correctly identified 48 metastatic lesions out of the 56 131I positive lesions. The remaining eight 131I focal areas that were seen in 131I-WBS but not anatomically defined by 99mTc-MDP bone scan were located in the scalp, large bowel and pelvic regions. Accordingly, these were considered false positive findings by 131I WBS. The remaining 48 lesions were considered true positives, and, therefore, the specificity of the fusion scan was 100%.

In group A, fusion scintigraphy confirmed the 131I findings with concordant agreement between both 131I and fusion scan of 100%.

In group B, out of 16 anatomically indeterminate lesions, planar fusion scans localized 14 lesions accurately (87%). The other two

<table>
<thead>
<tr>
<th>Site of metastases (n = number)</th>
<th>Overall (n = 48)</th>
<th>PTC (n = 27)</th>
<th>FTC (n = 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodal</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Lungs</td>
<td>10</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Bones</td>
<td>8</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Lungs and bones</td>
<td>22</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>

PTC — papillary thyroid carcinoma; FTC — follicular thyroid carcinoma

<table>
<thead>
<tr>
<th>Region of metastases (n = 48)</th>
<th>Overall (n = 27)</th>
<th>FTC (n = 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Neck</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Thorax</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Pelvi-abdominal</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Extremities</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

PTC — papillary thyroid carcinoma; FTC — follicular thyroid carcinoma
lesions were clearly identified by SPECT of fused 131I and MDP scintigraphy and were in the thorax and pelvi-abdominal regions. Table 5 shows the effect of fused planner 131I/MDP scans in the identification of indeterminate lesions by standard 131I WBS.

Change in management

Change in management of patients occurred in 3/8 patients who had false-positive findings by 131I-WBS alone. Of those three patients, one had false-positive scalp lesion, and the other 2 patients had false-positive colonic activity. Those three patients were down-staged from distant metastases to local metastases, as they already had involved cervical lymph node metastases.

Discussion

The early detection of recurrence and/or metastases is essential for further management in DTC. Following thyroidectomy and post surgical ablation, periodic follow up with 131I WBS remains a reliable test for the management of DTC patients. The presence of pathological foci of 131I accumulation in the neck, chest or skeletal system is strong evidence for recurrence or metastases [13, 15–17]. However, several inherent limitations remain challenging and influence the reliability of this technique. One notable limitation is the physiological secretion and excretion of 131I from the salivary glands, stomach, bowel and urinary system, which are considered the most common causes of false-positive results. Moreover, accumulation of 131I in some inflammatory conditions, especially in bowel and lungs with variable rate of turnover, is not uncommon. This may provide a potential source of error when misinterpreted as positive for DTC. The limited anatomical information from this functional technique has a major impact in this misinterpretation and in many instances provides indeterminate results [18, 19].

Recently the effectiveness of simultaneous dual isotope co-registration using a combination of 99mTc-MDP diphosphonate and 131I scanning for localization of metastases of DTC has been reported. 99mTc-MDP scans can provide an internal anatomical landmark that, when fused with 131I scanning, can help in the localization of iodine-avid foci. However, these reports did not show the technical details of the fusion process [20, 14].

The aim of this technique is to fuse two simultaneously co-registered images with two different intensity scales yielding a single scale intensity image that preserves the data of the two scales with a high T/B ratio. There are several factors that should be considered with this technique, including: using single energy line isotopes, adequate energy gap between the two energy windows to limit cross talking, proper selection of collimator (use a higher energy collimator to reduce penetration of collimator septa), use of high-speed detector electronics (i.e. fast response time to enhance count efficiency) and finally consider the quantity of used radio-activity for each isotope to create a balance in the count collected for each study.

Based on the above-mentioned considerations, we used a high-energy collimator and limited the injected dose of 99mTc-MDP to 185–370 MBq, as the bone scanning was considered only as an anatomical landmark. This may yield a sub-optimal bone scan quality but avoids acquiring too much count from the scale of bone display, which may obscure the iodine-avid lesions and fa-

<table>
<thead>
<tr>
<th>Region of metastases</th>
<th>Overall (n = 48)</th>
<th>PTC (n = 27)</th>
<th>FTC (n = 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Neck</td>
<td>10</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Thorax</td>
<td>20</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Pelvi-abdominal</td>
<td>12</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Extremities</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

TP — true positive, FP — false positive, n — number of patients

Table 3. Distribution of metastases by region

Table 4. Findings of standard I-131 and fused I-131 / MDP bone scans

<table>
<thead>
<tr>
<th></th>
<th>Standard I-131 (n = 56)</th>
<th>Fused I-131/MDP scans (n = 48)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>FP</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Specificity</td>
<td>86%</td>
<td>100%</td>
</tr>
</tbody>
</table>

The early detection of recurrence and/or metastases is essential for further management in DTC. Following thyroidectomy and post surgical ablation, periodic follow up with 131I WBS remains a reliable test for the management of DTC patients. The presence of pathological foci of 131I accumulation in the neck, chest or skeletal system is strong evidence for recurrence or metastases [13, 15–17]. However, several inherent limitations remain challenging and influence the reliability of this technique. One notable limitation is
cilitates the process of fusion with a satisfactory T/B ratio. Therefore, the sensitivity of 99mTc-MDP bone scan in the detection of DTC was relatively underestimated (40%) compared to other reports (60%) [21, 20].

Tuning between the two images with different count intensity scales was done through the use of variable multiplication factor (K) for 131I image matrix before matrix summation, which yields a satisfactory fused image with a single intensity scale and provides a reasonable T/B ratio (Figure 1). This process of matrix multiplication and image summation is not applicable for fused SPECT images because separation between the acquired SPECT data in two different scales, one for each isotope, is not possible. However, the relatively limited injected dose of 99mTc-MDP and collection of data through 360 degrees around the object create a reasonable balance between T/B ratio after reconstruction (Figures 2, 3).

DTC has been reported to be 2–4 times more frequent in females than in males although the rate is lower for patients with distant metastases [22]. In our study, where all patients had metastases of DTC, the female: male ratio was 1.9:1 for PTC and 1.6:1 for FTC, further supporting the higher relative risk of distant metastases among males [23]. Similar to other results [24, 6, 25], in the present study FTC was more frequent in males and had a higher rate of metastatic potential compared to PTC (21 metastatic lesions/8 FTC patients compared to 27 metastatic lesions for 17 PTC patients). The distribution by sites for distant metastases corresponded to the results of other studies [3, 4].

In practice, indeterminate localization of iodine-avid foci in 131I WBS requires complementary morphological imaging modalities (U/S, CT and/or MRI) for clarification. While these techniques provide excellent anatomical information compared to functional nuclear medicine imaging, they have some diagnostic limitations. These limitations include the inability to detect disease in lymph nodes (LNs) that are not or are only slightly enlarged (sub-centimetre nodes), differentiation of scar tissue or fibrosis from local recurrence, and the limited ability in monitoring the response to therapy. Moreover, the difference in the mechanisms of assessing malignancy with functional vs. anatomical imaging creates some discrepancy in their results. Another limiting factor is the

Figure 1. The difference in intensity scales and count per pixel for 99mTc-MDP and 131I scans. A. Figure shows the difference in count intensity between bone and iodine scan intensity; B. Figure shows the difference between count per pixel for iodine and bone scale. Image manipulation entails the use of variable multiplication factor (K) for I-131 image followed by summation of iodine and bone scan images producing fused image with single intensity scale.
use of CT with contrast, which limits further radioiodine administration [14, 19, 26, 27].

The clinical usefulness of using a combination of 99mTc-MDP and 131I scanning for localization of metastases from DTC has been previously described by Johann Schoenberger and colleagues [14]. They gained additional information in 16 of 21 patients because the presence of osseous structures from bone scintigraphy facilitates the correct diagnosis of the lymph node involved; the identification of distant metastases and delineation of residual thyroid tissue from lymph node metastases after thyroidectomy. In the present study, simultaneous co-registered fused 131I/99mTc-MDP scanning was able to depict eight false positive iodine-avid foci in standard 131I WBS. Most of these foci were linked to persistent focal colonic activity located in the pelvic-abdominal region. Therefore, the specificity of the simultaneous co-registered combined 131I/99mTc-MDP was 100% compared to 86% for standard 131I. This resulted in disease down-staging in three patients and a change in the strategy of therapy.

The present study shows concordant agreement between both standard 131I and fusion planar scans in 32 out of 48 (67%) lesions. Concordant results were higher in the skull, neck and extremities compared to the thoracic and pelvic-abdominal regions. On the other hand, the planar fused scans provided additional anatomical information in 87% of indeterminate lesions by outlining bones. Fused SPECT images improved the detectability of two indeterminate lesions in fused planar images by providing

![Figure 2A](image_url)

Figure 2A. 131I WBS and bone performed for 48-year-old male patient with metastatic disease before fusion FCT. Out of the three who demonstrated hot foci in 131I, two were indeterminately localized, one was located in the thoracic region and the other was located in the pelvic region. B. Figure shows multi-spot anterior and posterior planar views before and after fusion. The fused planar images clearly identify the location of hot foci in left ribs posteriorly as well as left ala close to tip of sacro-iliac region.
more anatomical information with better contrast enhancement and solved the problem of overlapping structures.

We have shown, in selected cases, that fusion scintigraphy using the mentioned simultaneous co-registration of 131I/99mTcM-DP method is helpful in the localization of pathological tracer accumulation through delineation of intra- and extra-osseous foci. Moreover, simultaneous acquisition of both nuclides excludes patient motion artefact and facilitates fusion processing and manipulation.

Recently, newly developed machines that combined CT and a gamma camera (SPECT/CT) were introduced and showed great potential. The combination of functional imaging with the anatomical details of multi-slice CT represents the best solution in cases involving metastatic DTC. However, the high cost of this machine and limited availability interferes with the wide distribution of this advanced technology. In addition, contrast related technical problems remain challenging, particularly in DTC patients, as they interfere with further administration of radiiodine in those patients. Therefore, fused scintigraphy offers an effective existing alternative technique that is available in many nuclear medicine departments.

Conclusions

Fusion imaging using simultaneous co-registration of 131I and 99mTc MDP scanning is a simple and feasible technique that improves the anatomically limited interpretation of scintigraphy using 131I alone, in patients with metastatic DTC. Simultaneous exploration of osseous structures and areas of high 131I uptake in

Figure 3A. 99mTc-MDP bone scan (left column), standard 131I WBS (middle column) and fused scans (right column) in a female patient with multiple metastatic hot foci. The planar fused image cannot clarify totally the indicated intra-thoracic lesion because of overlapping structures.

B. Reconstructed transverse, sagittal and coronal slices for thoracic region for the same patient showing the hot foci to be nodal mediastinal lesion.
fused scintigraphy allow clear delineation of osseous and extra-
osseous foci. Moreover, the added anatomical information from
fused scans significantly reduces false positive and indeterminate
results. The diagnostic advantage of this technique seems to be
more apparent in the thoracic and pelvi-abdominal regions than
in the neck and extremities.

References

1. Samaan NA, Schultz PN, Hickey RC et al. The results of various mo-
dalities of treatment of well differentiated thyroid carcinomas: a retro-
spective review of 1599 patients. J Clin Endocrinol Metab 1992; 75:
714–720.
with bone metastases from differentiated thyroid carcinoma — sur-
gery or conventional therapy? Clin Endocrinol (Oxf) 2002; 56: 377–
382.
Long-term results of treatment of 283 patients with lung and bone
metastases from differentiated thyroid carcinoma. J Clin Endocrinol
Metab 1986; 63: 960–967.
Distant metastases in differentiated thyroid carcinoma: a multivariate
analysis of prognostic variables. J Clin Endocrinol Metab 1988; 67:
501–508.
in papillary thyroid cancer: A review of 91 patients. Cancer 1988; 61:
1–6.
6. Mizukami Y, Michigishi T, Nonomura A et al. Distant metastases in
differentiated thyroid carcinomas: a clinical and pathologic study. Hum
in thyroid carcinoma: clinicopathological analysis of 161 fatal cases.
8. Spitzweg C, Morris JC. Sodium iodide symporter (NIS) and thyroid
9. Freitas JE, Gross MD, Ripley S, Shapiro B. Radionuclide diagnosis
and therapy of thyroid cancer: current status report. Semin Nucl Med
10. Shapiro B, Rufini V, Jarwan A et al. Artifacts, anatomical and physio-
logical variants, and unrelated diseases that might cause false-posi-
tive whole-body I-131-I scans in patients with thyroid cancer. Semin
11. Yamamoto Y, Nishiyama Y, Monden T, Matsumura Y, Satoh K, Ohka-
wa M. Clinical usefulness of fusion of 131I SPECT and CT images in
patients with differentiated thyroid carcinoma. J Nucl Med 2003; 44:
12. Ceccarelli C, Bianchi F, Trippi D et al. Location of functioning me-
tastases from differentiated thyroid carcinoma by simultaneous dou-
ble isotope acquisition of I-131 whole body scan and bone scan. J
13. Tenenbaum F, Schlumberger M, Bonnin F et al. Usefulness of tech-
netium-99m hydroxymethylene diphosphonate scans in localizing bone
metastases of differentiated thyroid carcinoma. Eur J Nucl Med 1993;
20: 1168–1174.
Clinical value of planar and tomographic dual-isotope scintigraphy
using 99mTc-methylene diphosphonate and 131I in patients with thy-
Mol Imag 2002; 29 Suppl 2: S492–S496.
European Thyroid Cancer Taskforce. European consensus for the
management of patients with differentiated thyroid carcinoma of the
18. Shapiro B, Rufini V, Jarwan A et al. Artifacts, anatomical and physio-
logical variants, and unrelated diseases that might cause false posi-
tive whole-body 131-I scans in patients with thyroid cancer. Semin
19. Yamaoto Y, Nishiyama Y, Monden T, Matsumura Y, Satoh K, Ohka-
wa M. Clinical usefulness of fusion of 131I SPECT and CT images in
patients with differentiated thyroid carcinoma. J Nucl Med 2003; 44:
20. Ceccarelli C, Bianchi F, Trippi D et al. Location of functioning me-
tastases from differentiated thyroid carcinoma by simultaneous dou-
ble isotope acquisition of I-131 whole body scan and bone scan. J
21. Zettinig G, Leitha T, Niedere B et al. FDG positron emission tomo-
graphic, radioiodine, and MIBI imaging in a patient with poorly differ-
22. Mazzaferrl EL, Kloos RT. Clinical review 128: Current approaches to
primary therapy for papillary and follicular thyroid cancer. J Clin Endo-
crinol Metab 2001; 86: 1447–1463.
23. Shoup M, Stojadinovic A, Nissan A, Ghossein RA, Freedman S,
Brennan MF et al. Prognostic indicators of outcomes in patients with
distant metastases from differentiated thyroid carcinoma. J Am Coll
24. Wood WJ Jr, Singletary SE, Hickey RC. Current results of treatment for
distant metastatic well-differentiated thyroid carcinoma. Arch Surg
26. van den Brekel MW, Stel HV et al. Cervical lymph node metastasis:
27. Alam MS, Takeuchi R, Kasagi Ket al. Value of combined technetium-99m
hydroxymethylene diphosphonate and thallium-201 imaging in detect-
ing bone metastases from thyroid carcinoma. Thyroid 1997; 7: 705–
712.