A false-positive finding in therapeutic evaluation: hypermetabolic axillary lymph node in a lymphoma patient following FDG extravasation

Thomas Wagner, Nicolas Brucher, Anne Julian, Anne Hitzel
Toulouse Purpan University Hospital Nuclear Medicine Department

[Received 21 V 2011; Accepted 16 XI 2011]

Abstract

We report a case of a false-positive finding in FDG PET/CT following radiotracer extravasation. A 15-year-old male patient was referred for therapeutic evaluation status post-chemotherapy for a lymphoblastic lymphoma. FDG PET/CT showed discordant findings with a marked decrease in a liver/hepatic hilum uptake, disappearance of a subcutaneous left supraclavicular uptake, and appearance of intense right axillary nodal uptake. Extravasation in the right superior limb was noted. Comparison with the previous scan showed that the axillary nodes were present, measured less than 1 cm in their short axis, had not increased in size, and had a fatty hilum. We concluded that FDG uptake was caused by a migration in lymphatic vessels.

Key words: FDG PET/CT, therapy response assessment, extravasation

Introduction

FDG PET/CT is increasingly being used and investigated for therapy response in a wide variety of cancers, e.g. lung cancer [1], rectal cancer [2], oesophageal cancer [3], and lymphoma [4] and in a larger number of indications: neoadjuvant chemotherapy in breast cancer [5], radiochemotherapy in rectal cancer [6], and early response to chemotherapy in lymphoma [7]. Hodgkin’s disease and non-Hodgkin lymphoma are two malignancies where FDG PET has become central for appropriate patient management. The accuracy of therapy response assessment is therefore paramount and nuclear medicine physicians must be aware of all pitfalls and causes of false-positive and false-negative findings with FDG PET/CT. We describe a false-positive finding in a young male patient following radiotracer extravasation.

Case report

A 15-year-old male patient was referred to our institute for therapeutic evaluation status post-chemotherapy for a lymphoblastic lymphoma. FDG PET/CT was compared to the pretherapeutic scan. Discordant findings were noted: there was a marked decrease in a previous liver/hepatic hilum uptake, disappearance of a subcutaneous left supraclavicular uptake, and appearance of intense right axillary nodal uptake (Figure 1). There was a large area of radiotracer uptake within subcutaneous tissue of the right superior limb, consistent with extravasation (Figure 2). The axillary nodes were present on the previous scan, were not hypermetabolic, measured less than 1 cm in their short axis, had not increased in size, and had a fatty hilum (Figure 3). The discordant findings led us to hypothesize that the right axillary lymph node uptake was due to radiotracer extravasation to the...
Case report

Subcutaneous tissue and radiotracer incorporation within lymphatic vessels and lymph nodes. We concluded that the axillary lymph node uptake was a false-positive and that the patient was in partial metabolic response.

Discussion

Therapy response assessment is a critical step in patient management and has become an increasingly important part of our daily clinical workload at PET/CT centres. Discordant findings are some of the most difficult situations to be confronted with. A deep understanding of pathologies and of therapeutics alongside extensive technical skills has become indispensable for nuclear medicine physicians, and will help when reporting on complex scans. The case report we describe here is an example of a complex scan where discordant findings are to be interpreted in the context of an overall decrease or disappearance of previous FDG uptake sites and where the appearance of an FDG avid lymph node is situated next to an area of radiotracer extravasation. FDG accumulation within the axilla following subcutaneous radiotracer infiltration has been described before with FDG [8] and with bone tracer MDP [9]. We feel that it is important for nuclear medicine physicians to be aware of this cause of false-positive findings, especially in a time where patient management in oncology depends increasingly on FDG PET/CT results.

References