Volume 71 | Number 4 | Year 2021

Lung cancer and breast cancer mortality trends among 45–74-year-old European women U. Sulkowska, I.M. Michałek, J. Didkowska, P. Koczkodaj

MRI utility in predicting extraprostatic extension of prostate cancer and biochemical recurrence after radical prostatectomy N. Majchrzak, P. Cieśliński, T. Milecki, M. Głyda, K. Karmelita-Katulska

Does epidural analgesia modify the risk of complications after gastrectomy?

T. Olesiński, M. Urbańska, A. Borkowska, P. Wieszczy, D. Król, D. Rucz, M. Symonides

Sexual well being of breast cancer patients *M. Lachowicz, J. Kufel-Grabowska, M. Bartoszkiewicz, R. Ramlau, K. Łukaszuk*

4/2021

Indexation in: Scopus, EMBASE, Google Scholar, CrossRef, MEiN: 100 points

Nowotwory Journal of Oncology

established in 1923 as the Bulletin of the Polish Committee Against Cancer renamed NOWOTWORY in 1928 renamed NOWOTWORY Journal of Oncology in 2001

bimonthly

official organ of the

POLISH ONCOLOGICAL SOCIETY

Narodowy Instytut Onkologii Im. Marii Skłodowskiej-Curie Pastwowy Instytut Badawczy

M. SKLODOWSKA-CURIE NATIONAL RESEARCH INSTITUTE OF ONCOLOGY

journal of the

POLISH SOCIETY OF SURGICAL ONCOLOGY

Editorial Board

M. BAUMANN (Germany) L. CATALIOTTI (Italy) A. EGGERMONT (France) J. FIJUTH (Poland) H. ZUR HAUSEN (Germany) J. JASSEM (Poland) J. KŁADNY (Poland) A. MACIEJCZYK (Poland) LJ. PETERS (Australia) P. RUTKOWSKI (Poland) I. TANNOCK (Canada) A. TURRISI (USA) C.J.H. VAN DE VELDE (Netherlands) J. WALEWSKI (Poland) P.H. WIERNIK (USA)

 Editor in Chief:
 Wojciech M. WYSOCKI (Poland)

 Editor Emeritus:
 Edward TOWPIK (Poland)

 Co-Editor:
 Richard F. MOULD (United Kingdom)

Nowotwory Journal of Oncolog

Address of the Editor Office:

Narodowy Instytut Onkologii im. M. Skłodowskiej-Curie – Państwowy Instytut Badawczy ul. Roentgena 5 02-781 Warszawa, Poland

Address for correspondence:

Krakowska Akademia im. Andrzeja Frycza-Modrzewskiego ul. Gustawa Herlinga-Grudzińskiego 1 30-705 Kraków, Poland room 309 phone: 512 177 774

Address of the Publisher:

VM Media sp. z o.o. VM Group sp.k. ul. Świętokrzyska 73, 80-180 Gdańsk, Poland e-mail: viamedica@viamedica.pl, www.viamedica.pl

Managing Editors: Agnieszka Wrzesień, Aleksandra Cielecka

NOWOTWORY Journal of Oncology

is indexed in: Biochemistry & Biophysics Citation Index, CAS, CrossRef, EMBASE, Free Medical Journals, Google Scholar, Index Copernicus (108.30), MEiN (100), Polska Bibliografia Lekarska, Scopus, SJR and Ulrich's Periodicals Directory

Editorial policies and author guidelines are published on journal website: www.nowotwory.edu.pl

NOWOTWORY Journal of Oncology is published with the generous support from the Count Jakub Potocki Foundation

ISSN 0029–540X e-ISSN: 2300-2115

Contents

Original articles	
Lung cancer and breast cancer m	ortality trends among 45–74-year-old
European women	
Urszula Sulkowska, Irmina Maria Michałe	k, Joanna Didkowska, Paweł Koczkodaj
MRI utility in predicting extrapro	static extension of prostate cancer and biochemical
Natalia Majchrzak, Piotr Cieśliński, Tomas	z Milecki, Maciej Głyda, Katarzyna Karmelita-Katulska
Does epidural analgesia modify Tomasz Olesiński, Marta Urbańska, Anna Małgorzata Symonides	the risk of complications after gastrectomy?202 Borkowska, Paulina Wieszczy, Dariusz Król, Dorota Rucz,
The quality of life of patients wit	h head neoplasms and incidence of depression
treated with radiotherapy. A pre Bogumiła A. Lubińska-Żądło, Anna Pych, L	liminary research report212 <i>Bożena Kowalczyk, Bożena Zawadzka</i>
Chronic obstructive pulmonary of complications in patients with lu	disease assessment test predicts postoperative Ing cancer qualified for lobectomy
Stefan Wesołowski, Tadeusz Orłowski, Pav	veł Bujnowski
Review articles	
A review of methods of intraope	rative margin assessment in breast
Tomasz Sachańbiński, Barbara Radecka	
Sexual well being of breast canc Milena Lachowicz, Joanna Kufel-Grabows	er patients
COVID-19	
Lung volume irradiation procede infection – physical aspects of tr Krzysztof Ślosarek, Adam Gądek, Łukasz S. Michał Nachlik, Tomasz Rutkowski, Jerzy J	Lires in patients with pneumonia during COVID-19 eatment planning and dosimetry238 roka, Łukasz Dolla, Andrzej Biały, Michał Radwan, Dawid Bodusz, laroszewicz
Pictures in oncology	
32 years of follow-up after doub after a subcutaneous mastecton Andrzej Kułakowski	le breast reconstruction with silicone implants 1y243
Oncogeriatrics	
Treatment of gastric cancer in th Jakub Kenig, Piotr Richter	e older population245
Genetics and oncology	
Personalised medical managem Justyna Gil, Izabela Łaczmańska, Maria M	ent of patients with melanoma (part 2)251

Letter to the Editor

Paper mill-derived cancer research: the improbability of prostate cancer in women,	
and ovarian and breast cancer in men25	55
Jaime A. Teixeira da Silva	

Original article

Lung cancer and breast cancer mortality trends among 45–74-year-old European women

Urszula Sulkowska¹, Irmina Maria Michałek¹, Joanna Didkowska^{1, 2}, Paweł Koczkodaj²

¹National Cancer Registry, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland ²Cancer Epidemiology and Primary Prevention Department, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland

Introduction. We aimed to analyze and compare the most up-to-date breast and lung cancer mortality rates in European women aged 45–74.

Material and methods. The data on breast and lung cancer mortality in 1960–2017 were obtained from the World Health Organization Mortality Data Base and Eurostat. To determine the mortality trends and generate annual percent change, with 95% confidence intervals, joinpoint regression was applied.

Results. In most European Union (EU) member states (15 out of 28), lung cancer mortality was higher than breast cancer mortality, with either increasing or stable lung cancer mortality rates. In four other EU countries, breast and lung cancer mortality rates in the last reported year were almost equal or equal.

Conclusions. Lung cancer is becoming the leading cause of cancer deaths among European women. There is a need for ensuring women-targeted smoking cessation services to decrease tobacco-attributable lung cancer mortality.

Key words: lung cancer, breast cancer, women, mortality, tobacco, cancer prevention, Europe

Introduction

Breast cancer is the most prevalent female neoplasm worldwide. According to the International Agency for Research on Cancer (IARC), in 2018, globally, 2,261,419 women were diagnosed with breast cancer. Moreover, breast cancer is a leading cause of cancer deaths among women (684,996 deceases in 2018). According to the same global cancer statistics, lung cancer is the third-most-common female neoplasm and the second-most-common cause of female cancer deaths globally, with the number of incident cases at 770,828 and the number of deaths at 607,465 in 2018 [1]. In the European Union (EU; state of 2018 with 28 EU member states), breast cancer is still the most prevalent female neoplasm, however, lung cancer is now the leading cause of female cancer deaths [2]. While a systematic understanding of breast cancer risk factors is still unsatisfactory, it is already known that about 70–80% of female lung cancer cases are associated exclusively to tobacco smoking [3, 4]. Hence, cancer mortality trends are affected by changes in European tobacco consumption patterns. At the end of the 20th century, tobacco-related mortality decreased among men, and was stable or increased among women [5]. This phenomenon is evident in lung cancer, considered a good proxy for smoking prevalence estimations.

Although mechanisms underpinning cancer prevalence and mortality rates are not fully understood, their changes can be a valuable indicator for policymakers and stakeholders, enabling more tailored and efficient actions aimed at

How to cite:

Sulkowska U, Michałek IM, Didkowska J, Koczkodaj P. Lung cancer and breast cancer mortality trends among 45–74-year-old European women. NOWOTWORY J Oncol 2021; 71: 185–196.

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.

decreasing tobacco consumption in the EU and its suitable member states. This study aimed to analyze and compare the most recent female breast and lung cancer mortality rates in 31 European countries.

Material and methods

The presented analysis is an update of the data published in the article by Sulkowska et al. in Nowotwory. Journal of Oncology 2015; 65 (5): 395–403, entitled *Lung cancer, the leading cause of cancer deaths among women in Europe* [5]. We followed previously applied methodology (including the same age group: 45–74 years old) to enable comparability of the data.

Source of the data

The analyzed data were obtained in a hybrid manner. First, we obtained data from the World Health Organization (WHO) Mortality Data Base (MDB) (data available as of 15th December 2019). The MDB contains the number of deaths by country, year, sex, age group, and cause of death. The cause of death is coded according to the International Classification of Diseases (ICD). We identified all female deaths due to breast and lung cancer registered in the MDB since 1960 in 28 EU member states and three non-member states, namely Norway, Russia, and Switzerland. The included diagnosis codes encompassed lung cancer (162–163 – ICD 7th revision; 162 – ICD 8th and 9th revisions; and C33 and C34 – ICD 10th revision) and breast cancer (170 – 7th revision; 174 – 8th and 9th revisions; and C50 – 10th revision). In cases where the data for additional (following) years were available in Eurostat, these were also included in our analysis (detailed data sources, by country, by year in table I). The mid-year population estimates were obtained from WHO MDB and Eurostat.

Statistical analysis

Crude annual mortality rates were defined as the number of new deaths per 100,000 person-years. In the denominator, we applied the mid-year population, defined as the population's size on the 31st of June. In all calculations, both the numerator and denominator came from the same data source, WHO MDB or Eurostat. To enable a comparison with other populations, we performed direct age-standardization for the Segi's World Standard Population [6]. For Luxembourg and Malta, the mortality rates were calculated as three-year moving averages (deploying the preceding and following year).

To determine mortality trends and to generate the annual percent change (APC), with 95% confidence intervals (CI), joinpoint regression was applied [7]. The best-fitting model was selected with permutations tests, with an overall significance level at 0.05 and the number of randomly permutated data sets for permutation set at 4499. Rates were considered to decrease if APC < 0 and 95% CI does not contain zero, and to increase if APC > 0 and 95% CI do not contain zero; otherwise, rates were considered stable. Joinpoint analysis was performed using the Joinpoint Regression Program (version 4.3.1.0, National Cancer Institute, Bethesda, MD, USA).

Compliance with ethical standards

According to the WHO and Eurostat policies, the analyzed data can be freely used for scientific purposes. This study was conducted according to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guide-lines [8].

Results

Breast and lung cancer mortality rates in 1960–2017, analyzed by EU member states, manifested four different patterns:

- Group 1 higher mortality from lung cancer than from breast cancer with increasing mortality rates of lung cancer;
- Group 2 higher mortality from lung cancer than from breast cancer with stable or decreasing lung cancer mortality rates;
- Group 3 almost equal or equal breast and lung cancer mortality rates in the last reported year;
- Group 4 other EU countries (tab. l).

Non-EU countries were analyzed separately, as Group 5. In the vast majority of countries in group 1, lung and breast cancer mortality rates intersected around 2010. In Poland the intersection occurred in 2004, and in Spain in 2016 (fig. 1 A). In Austria, Croatia, Germany, and Slovenia, the increase in lung cancer mortality rates was constant. In Poland, a very short period of trend stabilization was observed between 1968–1972, and in Luxembourg, lung cancer mortality rates decreased between 1971–1974. In Czechia, the trend began stabilizing in 2000. In Spain, in 1990, after years of a plateau, lung cancer mortality rates started increasing.

In group 2, time of the lung and breast mortality trends intersection varied widely, e.g., in Denmark it took place in 1991, in Sweden in 2001, and in Ireland in 2012 (fig. 1 B). Lung cancer mortality rates were sharply dropping in Belgium, Denmark, Sweden, and the United Kingdom. In Hungary, Ireland, and the Netherlands, the decrease was more gradual. The onset of decreasing rates for lung cancer mortality ranged from 1980 in Ireland to 2015 in Belgium.

In group 3, the breast and lung cancer mortality rates were almost equal or equal (fig. 1 C). In all countries in the group, lung cancer mortality increased; however, only in Italy was the increase constant. The trend plateaued in Finland and France in 1962–1974 and in 1960–1977, respectively.

In every country in group 4, lung cancer mortality has always been lower than breast cancer mortality (fig. 1 D). However, in some countries (Bulgaria, Cyprus, Estonia, Lithuania, Malta, Portugal, and Romania), the breast cancer mortality rate has been decreasing substantially and/or the lung cancer mortality rate has been sharply increasing, which might point toward future intersection of the rates.

1910 AG		A LAND A										אוויזיווקסר רור לוח			
		ASR	ASR	Ň	egment 1		0,	Segment 2			Segment 3			Segment 4	
Country	LOCATION	2010 [‡]	018 [‡]	Period	APC	95% CI	Period	APC	95% CI	Period	APC	95% CI	Period	APC	95% CI
Group 1															
	beast	41.9	37.2	1960-1965	3.9*	1.6; 6.1	1965-1991	0.9*	0.7; 1.1	1991–2018	-2.4*	-2.5; -2.2			
Austria	lung	45.8	51.4	1960-1978	1.2*	0.7 ;1.7	1978–2018	2.3*	2.1; 2.4						
,	breast	53.8	42.2	1985-1999	2.4*	2.1; 2.7	1999–2003	-5.7*	-8.7; -2.5	2003-2015	-0.2	-0.7; 0.2	2015-2018	-5.5*	-8.5; -2.3
Lroatia	lung	43.4	60.3	1985-2018	2.7*	2.5; 3.0									
	breast	40.7	34.1	1986–1994	0.1	-0.9; 1.2	1994–2005	-2.1*	-2.8; -1.4	2005-2008	-7.7	-15.9; 1.3	2008-2018	-1.9*	-2.6; -1.2
Lzechia	lung	44.1	44.4	1986–2000	2.9*	2.3; 3.4	2000-2018	0.5*	0.1; 0.8						
(breast	49.2	44.6	1973-1992	1.0*	0.8; 1.1	1992-2017	-1.8*	-1.9;-1.7						
uermany	lung	45.8	52.4	1973-1980	2.0*	1.4; 2.5	1980-1991	3.8*	3.4; 4.1	1991–2013	3.0*	2.9; 3.1	2013-2017	1.1	-0.2; 2.5
	beast	49.0	45.1	1968-1986	1.7*	0.9; 2.5	1986–2004	-3.2*	-4.0; -2.3	2004-2016	-0.5	-2.0; 0.9			
Luxembourg	lung	41.2	46.4	1968–1971	20.3*	0.1; 44.6	1971–1974	-14.1	-40.5; 24.0	1974–1985	8.5*	5.5; 11.7	1985–2016	1.6*	1.0; 2.1
	beast	43.5	45.4	1960-1964	14.9*	12.3; 17.4	1964-1981	2.2*	1.9; 2.4	1981–1992	0.4	-0.1; 1.0	1992–2018	-0.4*	-0.6; -0.3
roland	lung	58.4	64.4	1960-1968	4.6*	3.4; 5.9	1968-1972	-0.1	-5.3; 5.3	1972–1988	4.0*	3.5; 4.5	1988–2018	2.7*	2.6; 2.9
	beast	46.4	39.9	1971–1993	1.5*	1.0; 2.0	1993–2018	-2.5*	-2.9; -2.1						
Slovenia	lung	42.4	61.3	1971–2018	2.6*	2.4; 2.8									
	beast	35.1	31.9	1960-1991	2.6*	2.4; 2.7	1991–2018	-2.2*	-2.4; -2.0						
ullpdc	lung	25.2	32.9	1960-1973	0.9*	0.3; 1.5	1973–1989	-1.6*	-2.1;-1.2	1989–1996	2.0*	0.1; 3.9	1996–2018	5.4*	5.2; 5.7
Group 2															
	beast	56.6	44.7	1960-1986	1.1*	1.0; 1.3	1986-1997	-0.7	-1.4; 0.1	1997–2017	-2.7*	-2.9; -2.4			
pergram	lung	51.5	48.2	1960-1966	-0.1	-2.6; 2.5	1966–2015	3.1*	3.0; 3.2	2015-2017	-7.6	-20.5; 7.4			
Domark	beast	58.1	39.8	1960-1997	0.5*	0.4; 0.7	1997-2017	-3.8*	-4.1; -3.4						
	lung	89.6	73.8	1960-1973	5.0*	4.0; 6.0	1973–1984	7.6*	6.2; 9.1	1984–1997	2.9*	1.9; 4.0	1997–2017	-1.4*	-1.9; -0.9
	beast	53.3	49.6	1960-1976	2.9*	2.4; 3.3	1976-1995	1.1*	0.8; 1.5	1995-2018	-1.6*	-1.9; -1.4			
nungary	lung	96.7	100.7	1960-1975	1.1*	0.6; 1.6	1975-1996	4.3*	4.0; 4.7	1996-2013	3.2*	2.7; 3.7	2013-2018	-0.4	-3.1; 2.5

Table I. Age-standardized mortality rates + (ASR) of breast and lung cancer, and the annual percentage change (APC) with a 95% confidence interval (95% Cl), by ioinpoint analysis segment

beć	Ireland	- -	Netherlands lun	beć	sweden lun	United beá	Kingdom lun	Group 3	beć	Inland	bei	France lun	bei	lun	beć	lun	Group 4	beg	lun	pe	lun	be	Estonia lun		
ist	0	st	0	st	C	st	0		st	5	st	5	stt	0	st	D		ist	0	ist	0	st	D	ist	
55.0	53.3	56.1	73.4	40.6	50.2	48.2	63.1		44.9	31.2	48.4	37.0	41.3	28.1	45.7	30.3		44.0	23.1	36.4	14.0	42.7	24.1	56.4	
46.9	52.6	43.2	73.6	32.7	44.6	42.3	56.9		36.3	30.8	44.4	42.1	38.2	33.6	42.5	35.1		42.6	33.1	44.6	22.6	43.1	26.4	47.3	
1960-1975	1960-1980	1960-1967	1960-1973	1960-1988	1960-1964	1960-1976	1960-1975		1960-1995	1960-1962	1960-1974	1960-1977	1961-1963	1961-1965	1960-1970	1960-1972		1964-1986	1964-2001	2004-2018	2004-2018	1981-1999	1981–1983	1980-1994	
1.9*	5.1*	1.5*	1.3*	-0.3*	-1.0	1.1*	4.8*		0.6*	19.9	1.5*	-0.1	24.5*	6.9*	2.1*	1.7*		2.7*	-0.1	-1.2	1.6	1.9*	-14.4	2.2*	
1.2; 2.6	4.5; 5.7	0.4; 2.5	0.7; 2.0	-0.5; -0.2	-5.4; 3.5	1.0; 1.3	4.5; 5.0		0.4; 0.8	-2.6; 47.4	1.2; 1.8	-0.5; 0.3	8.3; 43.1	1.1; 12.9	1.7; 2.5	1.2; 2.2		2.3; 3.1	-0.3; 0.2	-2.4; 0.0	-1.1; 4.4	1.1; 2.6	-33.4; 9.9	1.4; 3.1	
1975-1994	1980-2017	1967-1994	1973-1989	1988-2005	1964-1991	1976–1989	1975-1988		1995-2018	1962-1974	1974-1997	1977-1996	1963-1980	1965-2005	1970-1990	1972-1988		1986-2018	2001-2018			1999-2017	1983–1989	1994-2017	
0.3	-0.2	0.0	7.1*	-1.1*	4.3*	0.4*	2.4*		-1.6*	0.0-	0.3*	3.2*	4.4*	0.4*	*6:0	2.4*		-0.2	2.7*			-2.4*	6.2*	-0.5*	
-0.3; 0.8	-0.4; 0.1	-0.1; 0.2	6.6; 7.6	-1.5; -0.7	4.0; 4.6	0.1; 0.6	2.0; 2.8		-1.9; -1.2	-1.4; 1.4	0.2; 0.5	2.8; 3.5	3.9; 5.0	0.2; 0.6	0.8; 1.1	2.1; 2.7		-0.4; 0.0	1.9; 3.5			-3.0; -1.7	0.5; 12.3	-0.9; -0.1	
1994-2017		1994-2018	1989–2007	2005-2017	1991-2005	1989–2001	1988-2001			1974-1977	1997–2016	1996–2008	1980-1993	2005-2017	1990-2017	1988-1999							1989– 2000		
-2.4*		-2.4*	4.4*	-2.9*	2.8*	-3.0*	-1.2*			10.7	-1.9*	5.3*	0.4	4.4*	-1.7*	0.6*							-1.5		
-2.8; -2.1		-2.6; -2.3	4.0; 4.9	-3.4; -2.3	2.0; 3.5	-3.3; -2.7	-1.5; -0.8			-10.0; 36.2	-2.1; -1.8	4.5; 6.1	-0.5; 1.2	3.3; 5.5	-1.8; -1.6	0.0; 1.2							-3.4; 0.4		
			2007-2018		2005-2017	2001-2017	2001-2017			1977-2018		2008-2016	1993-2017			1999–2017							2000-2017		
			-0.2		-1.4*	-2.6*	-0.3*			1.7*		2.4*	-1.1*			2.0*							1.3*		
			-1.0; 0.6		-2.2; -0.6	-2.7; -2.4	-0.5; -0.1			1.5; 1.9		1.1; 3.6	-1.4; -0.8			1.8; 2.3							0.4; 2.2		

cicco dei 1	beast	53.1	43.0	1981-1994	2.8*	1.9; 3.7	1994-2011	-0.8*	-1.5; -0.2	2011-2018	-3.8*	-5.9; -1.6			
LIUIUdilla	lung	15.5	17.7	1981-2002	-0.9*	-1.7; -0.1	2002-2018	1.5*	0.3; 2.8						
-+ -V	beast	62.3	42.1	1968-1975	5.0*	2.0; 8.2	1975-1994	0.1	-0.6; 0.8	1994-2016	-3.3*	-3.8; -2.8			
Maild	lung	22.4	32.6	1968-1973	-23.0*	-31.7; -13.3	1973-1976	56.9	-7.8; 166.9	1976–1992	-0.1	-2.3; 2.2	1992-2016	2.8*	1.7; 3.9
	beast	40.2	38.3	1960-1991	1.5*	1.3; 1.7	1991-2017	-1.6*	-1.9; -1.4						
Portugal	lung	17.3	21.8	1960-1982	2.4*	1.8; 2.9	1982-1997	0.6	-0.4; 1.7	1997-2017	2.7*	2.1; 3.4			
-income -incom	beast	47.5	47.8	1969-1988	2.2*	1.9; 2.4	1988-2000	1.1*	0.5; 1.7	2000-2018	-0.4*	-0.7; -0.2			
RUIIIdiiid	lung	29.6	37.1	1969–1989	0.8*	0.5; 1.1	1989-2018	1.8*	1.7; 2.0						
Cloudia	beast	45.6	49.6	1992-2001	1.0	-0.1; 2.2	2001-2006	-3.9*	-7.6; -0.1	2006-2018	0.5	-0.2; 1.3			
PINAKIA	lung	32.9	31.4	1992-1995	-5.0	-13.6; 4.5	1995-2018	2.5*	2.1; 3.0						
Group 5															
	beast	39.6	32.1	1960-1996	0.1	-0.0; 0.3	1996-2017	-2.9*	-3.2; -2.5						
NUIWdy	lung	59.4	50.4	1960-1965	0.2	-4.2; 4.9	1965-1997	6.0*	5.7; 6.3	1997-2017	0.2	-0.3; 0.8			
Cu ditana la calana la	beast	45.5	37.6	1960-1988	0.4*	0.2; 0.5	1988-2017	-2.4*	-2.6; -2.2						
חווקדוואכ	lung	43.1	42.7	1960-2006	3.7*	3.5; 3.9	2006-2017	-0.1	-1.7; 1.5						
	beast	54.6	48.4	1980-1994	3.1*	2.9; 3.3	1994-1999	2.0*	0.9; 3.1	1999–2009	0.0	-0.3; 0.3	2009-2015	-2.4*	-3.0; -1.9
picchu	lung	17.3	17.8	1980-1988	1.6*	1.0; 2.3	1988-1993	-0.7	-2.6; 1.2	1993-2003	-3.0*	-3.5; -2.5	2003-2015	0.1	-0.2; 0.5
t New cases diagno	sed per 100,000 pe	rson-years, ag	ge-adjusted t	o the Segi's World Star	ndard Populi	ation									

For Luxembourg and Malta, the mortality rates were calculated as three-year moving averages (deploying the preceding and following year)

APC statistically significant

Figure 1. A. Breast and lung cancer mortality rates among women aged 45–74-years-old. Group 1 – EU countries with higher mortality from lung cancer than from breast cancer with increasing lung cancer mortality rates

Figure 1. B. Breast and lung cancer mortality rates among women aged 45–74-years-old. Group 2 – EU countries with higher mortality from lung cancer than from breast cancer with stable or decreasing lung cancer mortality rates

Figure 1. C. Breast and lung cancer mortality rates among women aged 45–74-years-old. Group 3 – EU countries with almost equal or equal breast and lung cancer mortality rates in the last reported year

Figure 1. D. Breast and lung cancer mortality rates among women aged 45–74-years-old. Group 4 – other EU countries

Figure 1. E. Breast and lung cancer mortality rates among women aged 45–74-years-old. Group 5 – non-EU countries

Group 5 represents three non-EU countries (fig. 1 E). In Norway and Switzerland the rates intersected in 1998 and 2012, respectively. In Russia, such a phenomenon has never occurred.

Discussion

The presented analysis depicts a substantial increase in female lung cancer mortality across the vast majority of European countries (tab. II). In comparison with our previous analysis on female lung and breast cancer mortality in the EU [5] (the last reported year was 2010), we noticed progressive cancer mortality changes. Previously we had forecasted further increases in lung cancer mortality and the intersection of both analyzed trends for 12 EU countries. This forecast proved to be true for Belgium, Croatia, Spain, Ireland, Germany, and Slovenia, in our current analysis. However, in Finland, France, Greece, and Italy, the trends have not intersected yet. Contrary to our earlier predictions, the current analysis shows that in Estonia and Slovakia breast cancer mortality is still higher than lung cancer mortality.

Considering the most up-to-date data on tobacco use, we know that at present in the EU about 47 million women currently smoke. Moreover, the advanced stage of tobacco epidemic was observed in 12 UE member states, where smoking prevalence among women is higher than 15% [9]. According to the Institute for Health Metrics and Evaluation (IHME), an exceptionally high smoking-attributable disease burden is observed in Bulgaria, Croatia, Greece, Hungary, and Poland, with the disability-adjusted life years index ranging between 17.5% and 20% [10]. Trends

reported in our analysis are following the IHME data. Noteworthy, in Poland and Croatia, the increase is very sharp, and Hungary is characterized by the highest lung cancer mortality rate among all 31 analyzed countries (>100 per 100,000).

The presented analysis implies that greater efforts are needed to ensure a decline in lung cancer mortality rates. Several possible courses of action are mainly related to more restrictive anti-tobacco policies. Raising the excise tax for tobacco products is one of the most effective tools to achieve this goal [11], particularly among women who are more responsive to such measures than men [12]. Another solution is banning menthol and slim cigarettes, perceived as being more feminine tobacco products, targeted primarily at this group of users [13, 14]. Some of these solutions have already been introduced under the Tobacco Products Directive (2014/40/ EU) [15]. However, the decline in lung cancer mortality observed in our analysis should not yet be connected with the enforcement of this particular law, since it has been in force too short to impact the mortality statistics. Notwithstanding, effective implementation of the Directive should be a priority for European policymakers, since it may further reduce lung cancer mortality among EU women.

The strength of the analysis is in the completeness of the analyzed cause-of-death data, which was close to 100%, except for Cyprus, where it was 68% [16]. The most important limitation of the study results from the possible cross-national differences in coding practices, particularly in codes for ill-defined and unknown causes. This should be taken into account when comparing mortality rates for specific causes
 Table II. Completeness † of cause-of-death data and their source by years

 included

Country	WHO	MDB	Eurostat
	Years included	Completeness	Years included
Austria	1960-2017	100%	2018
Belgium	1960-2016	100%	2017
Bulgaria	1964–2015	100%	2016-2018
Croatia	1985–2016	100%	2017-2018
Cyprus	2004–2016	68%	2017-2018
Czechia	1986–2017	100%	2018
Denmark	1960-2015	100%	2016-2017
Estonia	1981–2016	100%	2017
Finland	1960–2016	100%	2017-2018
France	1960-2015	100%	2016
Germany	1973–2016	100%	2017
Greece	1961–2016	100%	2017
Hungary	1960-2017	100%	2018
Ireland	1960-2015	100%	2016-2017
Italy	1960-2015	100%	2016-2017
Latvia	1980–2015	100%	2016-2017
Lithuania	1981–2017	99%	2018
Luxembourg	1968–2016	100%	2017
Malta	1968–2015	100%	2016-2017
Netherlands	1960-2016	100%	2017-2018
Norway	1960-2016	100%	2017
Poland	1960–2016	100%	2017-2018
Portugal	1960-2016	100%	2017
Romania	1969–2017	100%	2018
Russia	1980–2015	100%	-
Slovakia	1992–2014	100%	2015-2018
Slovenia	1971-2015	100%	2016-2018
Spain	1960-2016	100%	2017-2018
Sweden	1960-2016	100%	2017
Switzerland	1960-2016	100%	2017
United Kingdom	1960-2016	100%	2017

+– available for the WHO MDB only; WHO MDB – the World Health Organization Mortality Data Base

across countries. However, since we assessed time trends of mortality rates within the countries in this study, the presented results' generalizability should not be limited.

Conclusions

In many European countries during the last decades, lung cancer has become the leading cause of cancer deaths among women. Ensuring the implementation of gender-tailored evidence-based smoking cessation services and primary smoking prevention actions should be a priority for European healthcare policymakers to decrease tobacco-attributable lung cancer mortality.

Acknowledgments

We are grateful to the WHO and Eurostat and all of the competent authorities of the countries concerned for providing cause-of-death data. The WHO and Eurostat are responsible only for the provision of the original information. The presented material does not imply the expression of any opinion whatsoever on the part of the WHO, Eurostat, or other parties involved in original data transmission. The authors assume full responsibility for the analyses and interpretation of these data.

Conflict of interests: none declared

Paweł Koczkodaj

M. Sklodowska-Curie National Research Institute of Oncology Cancer Epidemiology and Primary Prevention Department ul. Wawelska 15 B 02-034, Warszawa, Poland e-mail: pawel.koczkodaj@pib-nio.pl

Received: 14 Jan 2021 Accepted: 23 Jan 2021

References

- Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. 2020. https://gco.iarc.fr/today (11.01.2021).
- Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 2018; 103: 356–387, doi: 10.1016/j. ejca.2018.07.005, indexed in Pubmed: 30100160.
- Ozlü T, Bülbül Y. Smoking and lung cancer. Tuberk Toraks. 2005; 53(2): 200–209.
- Walser T, Cui X, Yanagawa J, et al. Smoking and lung cancer: the role of inflammation. Proc Am Thorac Soc. 2008; 5(8): 811–815, doi: 10.1513/ pats.200809-100TH, indexed in Pubmed: 19017734.
- Sulkowska U, Mańczuk M, Łobaszewski J, et al. Lung cancer, the leading cause of cancer deaths among women in Europe. Nowotwory Journal of Oncology. 2015; 65(5): 395–403.
- Segi M. Cancer Mortality for Selected Sites in 24 Countries (1950–57). Department of Public Health, Tohoku University of Medicine, Sendai 1960.
- Kim HJ, Fay MP, Feuer EJ, et al. Permutation tests for joinpoint regression with applications to cancer rates. Stat Med. 2000; 19(3): 335–351, doi: 10.1002/(sici)1097-0258(20000215)19:3<335::aid-sim336>3.0.co;2-z, indexed in Pubmed: 10649300.
- Vandenbroucke JP, von Elm E, Altman DG, et al. STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med. 2007; 4(10): e297, doi: 10.1371/journal.pmed.0040297, indexed in Pubmed: 17941715.
- Gallus S, Lugo A, Liu X, et al. TackSHS Project Investigators. Who Smokes in Europe? Data From 12 European Countries in the TackSHS Survey (2017-2018). J Epidemiol. 2021; 31(2): 145–151, doi: 10.2188/jea. JE20190344, indexed in Pubmed: 32249267.
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020; 396(10258): 1223–1249, doi: 10.1016/S0140-6736(20)30752-2, indexed in Pubmed: 33069327.
- Sharbaugh MS, Althouse AD, Thoma FW, et al. Impact of cigarette taxes on smoking prevalence from 2001-2015: A report using the Behavioral and Risk Factor Surveillance Survey (BRFSS). PLoS One. 2018; 13(9): e0204416, doi: 10.1371/journal.pone.0204416, indexed in Pubmed: 30235354.
- Ngo A, Fong GT, Craig LV, et al. Analysis of Gender Differences in the Impact of Taxation and Taxation Structure on Cigarette Consumption in 17 ITC Countries. Int J Environ Res Public Health. 2019; 16(7), doi: 10.3390/ijerph16071275, indexed in Pubmed: 30974749.

- Anderson SJ. Marketing of menthol cigarettes and consumer perceptions: a review of tobacco industry documents. Tob Control. 2011; 20 Suppl 2: ii20–ii28, doi: 10.1136/tc.2010.041939, indexed in Pubmed: 21504928.
- Ford A, Moodie C, Purves R, et al. Adolescent girls and young adult women's perceptions of superslims cigarette packaging: a qualitative study. BMJ Open. 2016; 6(1): e010102, doi: 10.1136/bmjopen-2015-010102, indexed in Pubmed: 26747040.
- 15. Directive 2014/40/EU of the European Parliament and of the Council of 3 April 2014 on the approximation of the laws, regulations and admini-

strative provisions of the Member States concerning the manufacture, presentation and sale of tobacco and related products and repealing Directive 2001/37/ECText with EEA relevance. https://ec.europa.eu/he-alth/sites/health/files/tobacco/docs/dir_201440_en.pdf (11.01.2021).

 World Health Organization. The Global Health Observatory. Completeness of cause-of-death data. https://www.who.int/data/gho/data/ indicators/indicator-details/GHO/completeness-of-cause-of-death--data-(-) (11.01.2021).

Original article

MRI utility in predicting extraprostatic extension of prostate cancer and biochemical recurrence after radical prostatectomy

Natalia Majchrzak¹, Piotr Cieśliński¹, Tomasz Milecki², Maciej Głyda^{1, 3}, Katarzyna Karmelita-Katulska⁴

¹Transplantology, General Surgery and Urology Department, Poznan District Hospital, Poznan, Poland ²Department of Urology and Oncological Urology, Poznan University of Medical Sciences, Poznan, Poland ³Hepatobiliary and General Surgery Department, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland ⁴Department of General Radiology and Neuroradiology, Poznan University of Medical Sciences, Poznan, Poland

Introduction. The study aimed to evaluate the performance of multiparametric magnetic resonance imaging (mpMRI) and the Martini model to predict extraprostatic extension (EPE) and biochemical recurrence (BCR) of prostate cancer (PCa). **Materials and methods.** 61 patients underwent a radical laparoscopic prostatectomy. The preoperative risk of EPE was determined using mpMRI and the Martini model.

Results. MpMRI predicts the presence of EPE of PCa with a sensitivity and specificity of 47.4% and 85.7%, respectively (AUC 0.66, 95% CI: 0.51-0.82, p = 0.046). The Martini model's sensitivity was higher, but the specificity was lower than that of mpMRI and was 84.2% and 66.7%, respectively (AUC 0.78, 95% CI: 0.66-0.89, p < 0.001). Univariate and multivariate Cox analysis indicated that EPE in mpMRI (HR 6.6, 95% CI: 1.8-24.1), and the presence of positive surgical margins (PSM) (HR 7.1, 95% CI: 1.9-26.7) are independent factors increasing the probability of BCR.

Conclusions. MpMRI and Martini model are valuable tools in local staging of PCa, managing and predicting the oncological treatment outcomes of patients with PCa.

Key words: prostate cancer, multiparametric magnetic resonance imaging, radical prostatectomy, biochemical recurrence, extraprostatic extension

Introduction

Prostate cancer (PCa) is the most commonly diagnosed malignant neoplasm in men in the world [1]. A radical prostatectomy (RP), next to radiotherapy (RT), is the treatment of choice in patients with non-metastatic PCa [2]. Biochemical recurrence (BCR) after RP affects 30% of patients and is one of the risk factors for disease progression and death [3, 4]. The confirmed risk factors for the occurrence of BCR in the postoperative report are: positive surgical margins (PSM) and extraprostatic extension (EPE)/locally advanced disease (stage T3–T4) [5]. The presence of the above parameters determines adjuvant treatment, i.e. local RT, aimed at reducing the risk of disease recurrence.

Precise local staging is an essential clinical issue due to its significance in treating patients with non-metastatic PCa.

How to cite:

Majchrzak N, Cieśliński P, Milecki T, Głyda M, Karmelita-Katulska K. MRI utility in predicting extraprostatic extension of prostate cancer and biochemical recurrence after radical prostatectomy. NOWOTWORY J Oncol 2021; 71: 197–201.

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.

According to the current standards, the local staging is based on clinical examination (digital rectal exam - DRE) or a transrectal ultrasound (TRUS) [2]. Apart from the clinical examination and TRUS, local staging can also be performed based on mpMRI. MpMRI provides valuable information about the clinical significance and localization of the lesion [6]. This information is used to qualify the patient for a prostate biopsy. According to the current guidelines, it is recommended to perform mpMRI in suspected PCa before the first prostate biopsy [2]. Moreover, mpMRI, in the case of PCa, allows for a characterization of such clinical parameters as lesion size, possible EPE or seminal vesicle invasion (SVI) [6]. The above information allows for an estimation of the appropriate risk group of disease progression, choose the treatment method (RP vs. RT), or plan the extension of the RP. Nevertheless, mpMRI is still not validated as a diagnostic tool for local staging and treatment planning [2, 7, 8].

The study aimed to evaluate the utility of mpMRI in the prediction of EPE and the impact of EPE on the occurrence of BCR in patients qualified for RP.

Material and methods

The study group consisted of 61 patients diagnosed with PCa who underwent laparoscopic RP. RP was performed either by the transor retroperitoneal approach. An extended lymphadenectomy was performed in the case of high-risk and intermediate-risk cancer with a predicted probability of lymph node involvement above 7%, according to the Briganti 2017 model [9]. The operation was performed with bilateral or unilateral NVB preservation or without NVB preservation. The NVB preserving technique involved inter-or intra-fascial dissection of the bundles, according to Walz [10]. The procedures without NVB preservation involved a wide extra-fascial prostatectomy [10]. The decision to preserve NVB was made depending on the EAU risk group. The preoperative risk of EPE was determined according to the Martini et al. model [11]. The decision to preserve NVB was also influenced by comorbidities, erectile dysfunction present before the planned procedure, age, and the patient's preferences.

The biopsy material and specimen acquired during RP underwent histopathological assessment conducted by three pathologists in accordance with the guidelines of the International Society of Urological Pathology (ISUP) 2014 in the field of pathomorphological diagnosis of PCa [12].

The study used mpMRI obtained when qualifying the patients for the first biopsy due to suspected PCa 1.5T (GE Healthcare Medical System Optima MR360, Chicago, IL, USA) and 3T equipment (Siemens HealthCare Magnetom Skyra, Erlangen, Germany) were utilized using 12- or 18-channel Body Matrix coils. The mpMRI scheme followed the PIRADS v. 2.0 guidelines of the American College of Radiology (ACR) [6]. It included a multiplanar assessment of the prostate in T1- and T2-weighted images, diffusion weighted imaging (DWI) and a dynamic contrast-enhanced (DCE) MRI. Apparent diffusion coefficient (ADC) maps were developed automatically. The mpMRI was evaluated by four radiologists experienced in prostate imaging who knew the PSA levels and rectal examination (DRE).

Based on mpMRI, a targeted cognitive biopsy of the prostate combined with a systematic biopsy was performed, guided with transrectal ultrasound using a biplane transducer with simultaneous imaging of both planes (BK Medical Flex 400, Herlev, Denmark).

The biopsy was performed according to the scheme recommended by the European Society of Urology (EAU) [2], 6–8 specimens were collected from each lobe, plus additionally 2–4 specimens from the suspicious lesion depending on its size [2, 13, 14]. The biopsy was performed by four urologists.

BCR was diagnosed when two PSA levels above 0.2 ng/ml were obtained. PSA was monitored every three months during the first year and every six months in consecutive years.

Statistical analysis

The analyzed parameters were described using an arithmetic mean, standard deviation, and median. The normality of distribution was verified using the Shapiro-Wilk test in each of the analyzed groups. In a normal distribution, the t-Student test for independent variables was used to compare the two groups. In the case of non-normal distribution, the non-parametric Mann--Whitney test was applied. Categorical variables in individual groups were described using percentage values; they were compared using the Chi² test with the Yates correction and with Fisher's exact test. Receiver operating characteristic (ROC) curves were determined for the analyzed parameters (Martini model and mpMRI). AUC (area under curve) was subsequently calculated, and their significance was analyzed. Cut-off points for which sensitivity and specificity reach optimal values were determined for parameters with significant AUC (Youden point).

Kaplan-Meier analysis and the log-rank test were used to compare BCR-free survival for patients with EPE in mpMRI. For BCR risk factors, hazard ratios (HRs) with 95% confidence intervals (Cls) were determined using the Cox model. The univariate and multivariate model was established. The assumed p-value was <0.05. The IBM SPSS Statistics statistical package was used for the calculations.

Results

Table I presents the clinical characteristics of 61 patients undergoing RP (n = 61). 19 patients (n = 19) were diagnosed with EPE(+) and 42 (n = 42) without EPE (-) in the final histopathological report post RP. Patients with EPE(+) differed statistically significantly from patients without EPE(-), in terms of the following clinical parameters: ISUP grade in the preoperative biopsy, maximum index lesion (IL) dimension in mpMRI, EPE diagnosis in mpMRI, ISUP Grade in the postoperative report, the incidence of PSM, and the incidence of BCR in follow-up. Table I. Clinical characteristics of patients. Comparison of clinical data between pEPE(-) and pEPE(+) patients

Total n (%) or median	Overall (n = 61)	pEPE(–) (n = 42)	pEPE(+) (n = 19)	pEPE(+) <i>vs</i> . pEPE(-) p value
age (median)	65	65.7	63.4	NS
PSA (ng/ml)	8.46	8.01	9.47	NS
PSAD (ng/ml/ml)	0.24	0.22	0.29	NS
DRE: • normal • abnormal	22 (36.1) 39 (63.9)	18 (42.9) 24 (57.1)	4 (21) 15 (79)	NS
biopsy ISUP grade: • 1 • >1	35(57.4) 26 (42.6)	29 (69) 13 (31)	6 (31.6) 13 (68.4)	*
prostate volume (ml) (median)	38.9	39.32	37.86	NS
PIRADS: • 1-3 • 4-5	21 (34.4) 40 (65.6)	15 (35.7) 27 (64.3)	6 (31.6) 13 (68.4)	NS
max diameter of IL in mpMRI (mm)	13.8	12.26	17.32	*
mpMRI EPE: • EPE(-) • EPE(+)	46 (75.4) 15 (24.6)	36 (85.7) 6 (14.3)	10 (52.6) 9 (47.4)	*
mpMRI zone location: • PZ • non-PZ	45 (73.8) 16 (26.2)	29 (69) 13 (31)	16 (84.2) 3 (15.8)	NS
BCR(+)	11 (18)	3 (7.1)	8 (42.1)	*
pathologic ISUP grade: • 1 • >1	25 (41) 36 (59)	22 (52.4) 20 (47.6)	3 (15.8) 16 (84.2)	*
PSM	18 (29.5)	8 (19)	10 (52.6)	*

PSA – prostate specific antigen; PSAD – PSA density; DRE – digital rectal exam; ISUP grade – 2014 International Society of Urological Pathology Grade; PIRADS – Prostate Imaging Reporting and Data System; mpMRI – multiparametric magnetic resonance imaging; EPE – extraprostatic extension ("-"absent, "+" present); pEPE – pathological extraprostatic extension ("-" absent, "+" present); PZ – peripheral zone; non-PZ – zone other than peripheral; BCR – biochemical recurrence; PSM – positive surgical margin; IL – index lesion; NS – not significant; " – p < 0.05

Analysis using the ROC curve showed that preoperative mpMRI might predict the presence of EPE of PCa with a sensitivity and specificity of 47.4% and 85.7%, respectively (AUC 0.66, 95% Cl: 0.51–0.82, p = 0.046). Taking into account the results of the first statistical analysis, which indicate that EPE may also be dependent on other clinical parameters, we examined the sensitivity and specificity of the Martini model, which uses the following data: PSA level, EPE status in mpMRI, ISUP Gleason grade, and the percentage of the biopsy specimen involvement. The Martini model's sensitivity was higher, but the specificity was lower than that of mpMRI and was 84.2% and 66.7%, respectively (AUC 0.78, 95% Cl: 0.66–0.89, p < 0.001) (fig. 1).

All patients in the study were subject to follow-up. The mean follow-up was 38 months (95% CI: 34.0–42.5 months). Patients with pEPE(+) more frequently experienced BCR 42% (n = 8) vs. pEPE(–) 7% (n = 3) (HR 6.4, 95% CI: 1.7–24). Using univariate and multivariate Cox analysis, it was examined whether other clinical factors may also influence the occurrence of BCR. Previous prognostic factors influencing the patient's prognosis (PSA, ISUP grade, DRE, prostate volume, SM) were analyzed, taking into account mpMRI (PIRADS of IL,

Figure 1. ROC curve – sensitivity and specificity of the Martini nomogram for EPE prediction before RP

EPE status, largest IL dimension) (tab. II). The final Cox model showed that EPE in mpMRI was an independent factor that increased the likelihood of BCR – HR 6.6 (95% CI: 1.8–24.1).

Table II. Univariate and multivariate Cox regression analysis of clinical factors for BCR in patients with localized PCa after RP

	Univariate and	alysis	Multivariate analy	sis
	HR (95% Cl)	p value	HR (95% CI)	p value
DRE, ref. normal	0.96 (0.28–3.3)	0.94		
PSA	0.95 (0.81-1.1)	0.4		
biopsy ISUP grade, ref. grade 1	1.76 (0.56–5.8)	0.35	NIA	
prostate volume	0.97 (0.92–1.0)	0.33	NA	
max diameter of IL in mpMRI (mm)	1.04 (0.97–1.1)	0.26		
PIRADS, ref. ≤3	1.025 (0.3–3.6)	0.97		
mpMRI – EPE, ref. EPE(–)	3.9 (1.2–12.9)	0.02	6.6 (1.8–24.1)	0.005
SM, ref. negative	4.7 (1.4–16.1)	0.01	7.1 (1.9–26.7)	0.004

DRE – digital rectal exam; PSA – prostate specific antigen; ISUP grade – 2014 International Society of Urological Pathology Grade; PIRADS – Prostate Imaging Reporting and Data System; mpMRI – multiparametric magnetic resonance imaging; EPE – extraprostatic extension; BCR – biochemical recurrence; SM – surgical margins; IL – index lesion; NA – not applicable in final model; CI – confidence interval; ref – reference

Figure 2. Kaplan-Meier survival curves for biochemical-free survival in patients with positive (+) and negative (–) mpMRI EPE

Another important factor, also significantly increasing the risk of BCR, was the presence of PSM in the postoperative report – HR 7.1 (95% CI: 1.9–26.7). Based on the above analysis, the Kaplan-Meier curve was determined for EPE assessment in mpMRI (fig. 2).

Discussion

The results obtained indicate that preoperative mpMRI may be a useful tool in local staging of PCa and for the prediction of recurrence; they are to a large extent consistent with the results of other similar studies [7, 8, 15, 16]. The mpMRI parameters analyzed by other researchers included: PIRADS score, volume and location of index lesions, presence of EPE, and/or SVI. Moreover, taking into account mpMRI parameters in conjunction with other clinical data, such as PSA levels and prostate biopsy reports, may contribute to a significant improvement in local staging. An example of this strategy is the model according to Martini et al., which takes into account mpMRI, PSA levels, and a report of the targeted biopsy based on MRI [11].

This retrospective study is one of the few studies available in the literature, which indicates that mpMRI and the Martini model may be tools that are helpful in determining the presence of EPE before surgical treatment [8, 11]. The sensitivity and specificity of mpMRI in assessing EPE in our study were 47.4% and 85.7%, respectively, while for the Martini model -84.2% and 66.7%, respectively. The meta-analysis conducted by de Rooij, assessing the diagnostic utility of mpMRI in the prediction of stage T3a (EPE), indicated a sensitivity of 0.57 (95% Cl: 0.49-0.64) and a specificity of 0.91 (95% Cl: 0.88-0.93) [8]. When creating this predictive model for the presence of EPE, Martini estimated the sensitivity of mpMRI alone at 40.7%. [11]. Then, considering the mpMRI and clinical variables, the created model resulted in a higher diagnostic value than mpMRI alone (AUC for mpMRI 0.68 vs. AUC for the model 0.82) [11]. We obtained similar results in our research.

Our study also confirmed the relationship between the presence of EPE in the postoperative histopathological report and an increased risk of BCR. Moreover, we demonstrated that EPE in preoperative mpMRI might also be an essential pre-surgical factor increasing the risk of BCR after RP. Therefore, the results obtained in our study indicate that mpMRI may improve the prediction of possible disease recurrence by improving local disease staging. In a study with a similar methodology, conducted on a large group of respondents (n = 804), Gandalgia et al. proved that preoperative information obtained from mpMRI and the report of systematic biopsy combined with a targeted biopsy based on mpMRI allows stratification of PCa recurrence after RP [15]. When assessing the influence of preoperative factors on BCR, Manceau et al. also proved that patients with EPE(+) diagnosed in mpMRI at the treatment planning stage more frequently experience BCR after RP [16]. Moreover, they showed a correlation between the occurrence of BCR and higher PIRADS scores, the greater maximum dimension of MRI lesions, and a higher ISUP Gleason grade in fusion biopsy [16].

From a clinical perspective, the presence of EPE in mpMRI may be a predictive factor for the risk of adjuvant RT implementation after RP. This knowledge at the treatment planning stage can help in the choice of a treatment method, i.e., RP vs. RT. If surgical treatment is chosen, the information about the presence of EPE in mpMRI and its location can be used to plan the procedure's technique and make decisions, for example, regarding the preservation of nerve bundles. It has been proven that planning RP based on mpMRI changes the operator's decision to preserve NVB in 35% (95% CI: 29–41%) of cases; this strategy is correct in 77% (95% CI: 72–81%) of cases and does not worsen oncological outcomes [17].

Our study has several limitations. The first significant limitation is that it was conducted on a small group studied in one center. The second limitation is the lack of assessment of the extent of EPE and its detailed location, which, according to available knowledge, may also be a significant factor influencing the risk of BCR.

Conclusions

MpMRI and the Martini model are helpful tools in the local staging of patients with PCa. Preoperative use of mpMRI can predict oncological treatment outcomes in patients with PCa after RP.

Conflict of interest: none declared

Natalia Majchrzak

Poznan District Hospital Transplantology, General Surgery and Urology Department ul. Juraszów 7–19 60-479 Poznań, Poland e-mail: drmajchrzak@gmail.com

Received: 7 Apr 2021 Accepted: 17 Apr 2021

References

- Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136(5): E359–E386, doi: 10.1002/ijc.29210, indexed in Pubmed: 25220842.
- Mottet N, van den Bergh RCN, Briers E et al. European Association of Urology Guidelines. 2020 Edition. [Internet]. Vol. presented at the EAU Annual Congress Amsterdam 2020. European Association of Urology Guidelines Office; 2020. http://uroweb.org/guideline/prostate-cancer/.
- Pound CR, Partin AW, Eisenberger MA, et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA.

1999; 281(17): 1591–1597, doi: 10.1001/jama.281.17.1591, indexed in Pubmed: 10235151.

- Van den Broeck T, van den Bergh RCN, Arfi N, et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur Urol. 2019; 75(6): 967–987, doi: 10.1016/j.eururo.2018.10.011, indexed in Pubmed: 30342843.
- Suardi N, Ficarra V, Willemsen P, et al. Long-term biochemical recurrence rates after robot-assisted radical prostatectomy: analysis of a single--center series of patients with a minimum follow-up of 5 years. Urology. 2012; 79(1): 133–138, doi: 10.1016/j.urology.2011.08.045, indexed in Pubmed: 22088567.
- Barentsz JO, Choyke PL, Cornud F, et al. PI-RADS Prostate Imaging Reporting and Data System: 2015, Version 2. Eur Urol. 2016; 69(1): 16–40, doi: 10.1016/j.eururo.2015.08.052, indexed in Pubmed: 26427566.
- Somford DM, Hamoen EH, Fütterer JJ, et al. The predictive value of endorectal 3 Tesla multiparametric magnetic resonance imaging for extraprostatic extension in patients with low, intermediate and high risk prostate cancer. J Urol. 2013; 190(5): 1728–1734, doi: 10.1016/j. juro.2013.05.021, indexed in Pubmed: 23680307.
- de Rooij M, Hamoen EHJ, Witjes JA, et al. Accuracy of Magnetic Resonance Imaging for Local Staging of Prostate Cancer: A Diagnostic Meta-analysis. Eur Urol. 2016; 70(2): 233–245, doi: 10.1016/j.eururo.2015.07.029, indexed in Pubmed: 26215604.
- Gandaglia G, Fossati N, Zaffuto E, et al. Development and Internal Validation of a Novel Model to Identify the Candidates for Extended Pelvic Lymph Node Dissection in Prostate Cancer. Eur Urol. 2017; 72(4): 632– 640, doi: 10.1016/j.eururo.2017.03.049, indexed in Pubmed: 28412062.
- Walz J, Epstein JI, Ganzer R, et al. A Critical Analysis of the Current Knowledge of Surgical Anatomy of the Prostate Related to Optimisation of Cancer Control and Preservation of Continence and Erection in Candidates for Radical Prostatectomy: An Update. Eur Urol. 2016; 70(2): 301–311, doi: 10.1016/j.eururo.2016.01.026, indexed in Pubmed: 26850969.
- Martini A, Gupta A, Lewis SC, et al. Development and internal validation of a side-specific, multiparametric magnetic resonance imaging-based nomogram for the prediction of extracapsular extension of prostate cancer. BJU Int. 2018; 122(6): 1025–1033, doi: 10.1111/bju.14353, indexed in Pubmed: 29676063.
- Epstein JI, Egevad L, Amin MB, et al. Grading Committee. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am J Surg Pathol. 2016; 40(2): 244–252, doi: 10.1097/PAS.00000000000530, indexed in Pubmed: 26492179.
- Eichler K, Hempel S, Wilby J, et al. Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol. 2006; 175(5): 1605–1612, doi: 10.1016/S0022-5347(05)00957-2, indexed in Pubmed: 16600713.
- Shariat, SF, Roehrborn, CG Using biopsy to detect prostate cancer. Rev Urol. 2008; 10: 262–280.
- Gandaglia G, Ploussard G, Valerio M, et al. Prognostic Implications of Multiparametric Magnetic Resonance Imaging and Concomitant Systematic Biopsy in Predicting Biochemical Recurrence After Radical Prostatectomy in Prostate Cancer Patients Diagnosed with Magnetic Resonance Imaging-targeted Biopsy. Eur Urol Oncol. 2020; 3(6):739–747, doi: 10.1016/j.euo.2020.07.008, indexed in Pubmed: 32847747.
- Manceau C, Beauval JB, Lesourd M, et al. MRI Characteristics Accurately Predict Biochemical Recurrence after Radical Prostatectomy. J Clin Med. 2020; 9(12), doi: 10.3390/jcm9123841, indexed in Pubmed: 33256176.
- Kozikowski M, Malewski W, Michalak W, et al. Clinical utility of MRI in the decision-making process before radical prostatectomy: Systematic review and meta-analysis. PLoS One. 2019; 14(1): e0210194, doi: 10.1371/ journal.pone.0210194, indexed in Pubmed: 30615661.

Original article

Does epidural analgesia modify the risk of complications after gastrectomy?

Tomasz Olesiński¹, Marta Urbańska¹, Anna Borkowska², Paulina Wieszczy^{1, 3}, Dariusz Król¹, Dorota Rucz⁴, Małgorzata Symonides¹

> ¹Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland ²City Hospital Czerniakowski, Warsaw, Poland ³Medical Centre for Postgraduate Education, Warsaw, Poland ⁴County Health Center, Otwock, Poland

Introduction. The surgical treatment of Gastric Cancer is associated with overall complication rates as high as 50%. The intent of this study was to assess the impact of epidural analgesia (EA) on postoperative complication rates among patients undergoing gastric resections.

Materials and methods. Of the 617 gastric cancer patients who between 2002 and 2010 had undergone stomach resection, 246 (39.8%) were administered EA. Groups with and without EA were compared.

Results. The general rate of complications was lower in the EA group in the univariable analysis – 38.5% vs. 54.2% (odds ratio [OR]: 0.47, 95% confidence interval [CI]: 0.34–0.66, p < 0.001), intra-abdominal abscess (OR 0,28, 95% CI: 0.14–0.59, p = 0.001), pneumonia (OR 0,39, 95% CI: 0.24–0.63, p < 0.001), temperature >38°C (OR 0.53, 95% CI: 0.37–0.74, p < 0.001) and re-operation (OR 0.53, 95% CI: 0.28–1.00, p = 0.049). These relationships were confirmed in a multivariable analysis for the general number of complications (OR 0.53, 95% CI: 0.37–0.75, p < 0.001), intra-abdominal abscess (OR 0.36, 95% CI: 0.16–0.77, p = 0.009), temperature >38°C (OR 0.56, 95% CI: 0.39–0.82, p = 0.009), pneumonia (OR 0.42, 95% CI: 0.25–0.71, p = 0.001).

Conclusions. Our findings indicate that postoperative treatment with EA for patients undergoing stomach resection is safe and contributes to a reduction in the number of postoperative complications.

Key words: gastric cancer, GEJ cancer, epidural analgesia, postoperative complications, gastrectomy, postoperative pain

Introduction

For the past 100 years, cases of stomach cancer (gastric cancer – GC) amongst developed countries have been systemically in decline. Possible contributing factors for this decline may be attributed to the increased use of refrigeration for food storage, dietary changes, and decreased incidents of infections with Helicobacter pylori [1]. Despite progress, stomach cancer remains the fourth

most frequently diagnosed cancer worldwide. In 2008, there were 980,000 new cases, of which, 83,000 were reported in the European Union and over 5000 in Poland alone [1, 2]. In Poland, the 5-year survival rate post stomach cancer diagnosis is about 18%, in Europe is about 25%, while in Japan about 70% [2–4].

Surgical resection of gastric cancer has produced suboptimal survival rates despite multidisciplinary treatment appro-

How to cite:

Olesiński T, Urbańska M, Borkowska A, Wieszczy P, Król D, Rucz D, Symonides M. Does epidural analgesia modify the risk of complications after gastrectomy? NOWOTWORY J Oncol 2021; 71: 202–211.

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.

aches and improvements in surgical techniques. The European Society for Medical Oncology (ESMO) guidelines of treatment for patients diagnosed with an advanced GC include perioperative chemotherapy [5]. However, a total or subtotal gastrectomy with removal of the surrounding lymph nodes, (D2 resection) remains the only curative method of treatment [5-8]. The vast extent of surgical intervention is one of the main contributing factors to the high risk of complications associated with the procedure. The estimated number of complications varies between 17 and 48%. Additionally, gastric resection in conjunction with splenectomy or spleno-pancreatectomy significantly increases the potential for complications [9–14]. The management of quality care in postsurgical settings that include administration of regional analgesia contributes to better treatment outcomes [15, 16]. Due to the limitations in the use of opioids, resulting from the recommendations of the ERAS protocol, the effectiveness of epidural analgesia (EA) is very important. Currently, EA is a standard procedure in our team and for this reason historical data were compared. On the other hand, surgical procedures did not undergo significant modification during the period under review.

Objective

To assess the impact of EA on postoperative complication rates in patients undergoing subtotal or total gastrectomy for gastric cancer.

Materials and methods

This study was conducted in a single institution using its administrative database. All patients were treated between 2002 and 2010 at The Maria Sklodowska-Curie Institute, Oncology Center in Warsaw. No neoadjuvant therapy was administered in the analyzed period. Of 723 GC resections performed, 617 cases had complete medical documentation that was adequate for retrospective review (study flow – fig. 1).

Figure 1. Flow-chart of the study

 Table I. Baseline characteristics – demographic data, nutrition status, and comorbidities

Characteristic	Epidural an	algesia (EA)	p value
	No n = 371 (%)	Yes n = 246 (%)	
gender: • female • male	119 (58.3) 252 (61)	85 (41.7) 161 (39)	0.522
age: (median) (IQR)	64 (53–71)	61 (54–72)	0.144
BMI • <19 • 19–25 • >25	31 (70.5) 164 (63.8) 176 (55.7)	13 (29.5) 93 (36.2) 140 (44.3)	0.050
comorbidities	296 (61.0)	189 (39.0)	0.381
diabetes	28 (54.9)	23 (45.1)	0.426
coronary disease	107 (60.1)	71 (39.9)	0.996
hypertension	125 (53.6)	108 (46.4)	0.010
peptic ulcer	93 (64.1)	52 (35.9)	0.260
anemia	304 (58.6)	215 (41.4)	0.069

EA - epidural analgesia; IQR - interquartile range

The data of 617 patients diagnosed with gastric cancer that underwent resection of the stomach was retrospectively reviewed and analyzed by univariable and multivariable methods. Patients were divided into two study groups based on the use of epidural analgesia and other methods. The group of patients treated without EA included patients who underwent treatment during a period of time when epidural catheterization use was not the treatment of choice (until the end of 2006); these cases primarily occurred historically earlier than those who were treated with EA. Another reason for non EA administration was the lack of patient consent. Our study included 413 males (66.9%) and 204 females (33.1%) with a median age of 63 (53–71). Epidural analgesia was administered in 246 patients (39.8%). The patients' demographic and clinical characteristics are illustrated in table I and table II.

Analysis of the two group of patients indicated differences in the location of the gastric tumor, the extent of the gastric resection, and spleen removal. Patients treated without EA more frequently experienced malnutrition (BMI < 19). We did not observe statistically significant differences among both studied groups in respect to demographic characteristics, pre-operative risk factors (excluding hypertension), and the length of the procedure. The statistical univariable and multivariable analysis of the factors contributing to postsurgical complications included:

- administered EA,
- gender,
- age,
- pre-surgical BMI,
- diabetes,
- hypertension,

Table II. Type and extent of surgical intervention

	Epidural ar	nalgesia (EA)	p value
	No n = 371 (%)	Yes n = 371 (%)	
operative approach: • laparotomy • thoracolaparotomy	270 (72.7) 101 (27.3)	164 (66.7) 82 (33.3)	0.104
 type of surgery: gastrectomy (TG) TG + distal esophagostomy distal resection (SG) proximal gastrectomy (PG) antrectomy 	216 (58.3) 97 (26.1) 55 (14.8) 2 (0.5) 1 (0.2)	105 (42.7) 77 (31.3) 55 (22.4) 4 (1.6) 5 (2.0)	<0.001
length of surgery (min.): • <140 • 140–169 • 170–209 • 210–570	63 (16.9) 93 (25.2) 101 (27.2) 114 (30.7)	62 (25.2) 55 (22.4) 61 (24.8) 68 (27.6)	0.102
perioperative blood transfusion	147 (39.6)	72 (29.3)	0.008
neighboring organ resection	178 (48.0)	110 (44.7)	0.426
splenectomy	138 (37.2)	65 (26.4)	0.005
distal pancreatectomy	15 (4.0)	6 (2.4)	0.282
large bowel resection	6 (1.6)	7 (2.8)	0.298
cholecystectomy	29 (7.8)	14 (5.7)	0.310

• coronary disease,

• and peptic ulcers.

Additionally, in our analysis we included perioperative transfusions, the length of the surgery, and the extent of the multi-organ resection.

Operative treatment

All cases included in this study contained patients who were operated on by the same experienced (over 30 operations per surgeon) surgical team. Post-operative care and management was provided using consistent post-surgical protocols that included enteral and parenteral nutrition for a period of 7 to 10 days. Total gastrectomy (TG) was performed on 321 patients (52%), 174 (28.2%) patients were treated with TG expanded by resection of the lower section of the esophagus, 110 (17.85%) patients underwent distal subtotal gastrectomy (SG), and in 6 (1%) of these cases proximal gastrectomy (PG) was performed. In 434 (70.3%) of these cases, surgery was performed by laparotomy, in 183 (29.7%) patient's a laparotomy was performed via the thoraco-abdominal approach. We performed curative gastrectomies and dissections of the lymph nodes expanded by removal of the additional organs in cases rendering more extensive surgical interventions. The range of surgical resections in both groups of patients is presented in table II.

Postoperative pain management

All patients (from 2007) were preoperatively evaluated for the postoperative use of epidural analgesia. Additionally, patients

that were administered epidural analgesia consented to the procedure in a separate preoperative assessment. We administered EA in all suitable cases, except in patients with clinical contraindications to the procedure, and in cases where the patient did not consent. Contraindications included:

- coagulation disorders or perioperative use of blood clotting medications,
- · inflammation at the catheter placemat area,
- neurological conditions.

Prior to administering general anesthesia, in the operating room, the epidural catheter was placed into the epidural space between Th6 and Th7 (when the patient's anatomy dictated, exact vertebral space varied by one up/down segments). The area designated for catheter placement was prepared according to surgical protocols, with the insertion site disinfected and surgical dressing administered. The skin and the subcutaneous tissue in the puncture site was anesthetized with a 2% solution of lidocaine and kept sterile. After the catheter was inserted into the epidural space, it was secured on the skin surface with clearly marked transparent dressing tape. Our postoperative pain management regimen of choice was epidural analgesia, administered via continuous infusion of Breivik's mixture into the epidural space using a syringe pump [17]. The mixture was composed of low concentrations of medications (22 µg/ml adrenaline, 2 µg/ml fentanyl and 1.25 mg/ml bupivacaine – which deviates slightly from the standard regimen) in a 0.9% solution of sodium chloride. The epidural infusion delivery rate was about 3:9 ml/h. Patients in both studied groups were intravenously administered coanalgesics (metamizol and paracetamol). Patients that were not postoperatively administered EA received a subcutaneously delivered morphine sulfate in fractionated doses (5–10 mg/ dose) in 4–6 hour intervals, accompanied with coanalgesics.

Statistical analysis

Information collected throughout our research was recorded. analyzed, and presented in tables with a cross-tabulation of data. The operative time and age are divided into four categories based on guartiles. The Chi² test and Wilcoxon test were used to compare the groups. The relationship between postoperative complications (outcomes) and the use of epidural analgesia is analyzed in a univariable logistic regression model and in a multivariable logistic regression model that controls for confounders. Multi-step forward regression was used to select significant disturbing variables in multivariate models, including significant variables at <0.1 (the multiple variables describing the EA was included in each model regardless of its significance level). The results of the models are presented in the form of odds ratios (OR) and 95% confidence intervals (CI). Variables for which p < 0.05 were considered significant. This analysis is performed with Stata software, version 13.1 (Stata Corporation, College Station, Texas, USA).

Bioethics

The study was conducted in compliance with the Declaration of Helsinki for medical research and was approved by the Local Bioethics Committee at The Maria Sklodowska-Curie Institute, Oncology Center in Warsaw (permit No. 20/2017 from 09.02.2017). As a retrospective study, according to the approval of the bioethical committee, the informed consent of the patient was not required.

Results

There were no EA-related complications (neurological deficits, postdural puncture headache), although not every patient managed to insert an epidural catheter. Patients who did not have an epidural catheter inserted for technical reasons were analyzed in the group without EA. Administration of epidural catheters or epidural analgesia is not associated with increased risk for postoperative complications. The postoperative mortality rate was 1%, (6 patients of 617). No thromboembolic or pulmonary complications were present amongst postoperative patients who had received EA. Due to an insignificant occurrence rate, we did not review incidents of hemoperitoneum (intra-abdominal leak), postoperative eventration, or cases of anastomotic strictures (tab. III).

Additionally, the univariable analysis of patients that were administered EA displayed a lower frequency of postoperative complications compared to the group treated with other methods (OR 0.47, 95% CI: 0.34–0.66, p < 0.001), intra-abdominal abscesses (OR 0.28, 95% CI: 0.14–0.59, p = 0.001), pneumonia (OR 0.39, 95% CI: 0.24–0.63, p < 0.001), temperature >38°C (OR

Table III. Postoperative complications

Complication type	Epidural an	algesia (EA)
	No n = 371 (%)	Yes n = 246 (%)
overall complications (total)	201 (54.2)	88 (35.8)
temperature >38°C	158 (42.6)	69 (28)
pneumonia	81 (21.8)	24 (9.8)
intra-abdominal abscess	44 (11.9)	9 (3.7)
anastomotic leak	40 (10.8)	20 (8.1)
re-operation	38 (10.2)	14 (5.7)
wound infections	28 (7.5)	13 (5.3)
catheter related sepsis	28 (7.5)	17 (6.9)
anatomic stricture	6 (1.6)	1 (0,4)
intra-abdominal bleeding	4 (1.1)	4 (1.6)
eventration	2 (0.5)	1 (0.4)

Figure 2. Risk of complications according to EA administration

0.53, 95% Cl: 0.37–0.74, p < 0.001) and reoperations (OR 0.53, 95% Cl: 0.28–1.00, p = 0.049) (fig. 2).

These relationships were confirmed in a multivariable analysis for the general number of complications (OR 0.53, 95% CI: 0.37–0.75, p < 0.001), intra-abdominal abscess (OR 0.36, 95% CI: 0.16–0.77, p = 0.009), temperature >38°C (OR 0.56, 95% CI: 0.39–0.82, p = 0.009), pneumonia (OR 0.42, 95% CI: 0.25–0.71, p = 0.001) – tables: IV, V and VI. The relationship between administering EA and reoperation in a multivariable analysis was not confirmed. Diagnosis of pneumonia was based on the correlation of clinical symptoms and radiological determinations. There were no significant statistical differences in univariable and multivariable analysis of wound infections, infection of the central line, or the anastomotic stricture, (table VI and table VII).

Discussion

Complications associated with gastrectomy with D2 lymphadenectomy for the treatment of gastric cancer presents multiple clinical considerations against extensive lymphadenectomy [10, 13, 14]. The overall rate of complications is between 17 to 48%. The most frequent postoperative complications in gastric resection surgeries for curative gastric

			Total compli	ications		Tem	perature >38°C					
		Univar	iable		Multivar	iable		Univaria	ble		Multivaria	ible
variable	OR	95% CI	p value	OR	95% CI	p value	OR	95% CI	p value	OR	95% CI	p value
EA	0.47	0.34-0.66	<0.001	0.53	0.37-0.75	<0.001	0.53	0.37-0.74	<0.001	0.56	0.39–0.82	0.003
BMI:												
 19–25 	1.49	0.77–2.88	0.241	1.67	0.81-3.44	0.162	1.41	0.69–2.88	0.341	1.61	0.75-3.45	0.225
• >25	1.68	0.88–3.24	0.117	2.25	1.09-4.65	0.029	1.77	0.88-3.56	0.111	2.38	1.11-5.10	0.026
diabetes	1.31	0.74–2.32	0.363				1.59	0.89–2.83	0.115			
C	1.16	0.82–1.64	0.410				1.02	0.71-1.46	0.925			
hypertension	0.67	0.49–0.94	0.019	0.64	0.44-0.94	0.023	0.75	0.53-1.05	0.094			
peptic ulcer	1.29	0.89–1.88	0.178				1.68	1.15-2.44	0.007	1.88	1.25–2.81	0.002
OT (ref. <140):												
 140–169 	1.81	1.10-3.00	0.021	1.43	0.83-2.47	0.194	1.82	1.06-3.13	0.030			
• 170–209	2.38	1.45–3.89	0.001	1.58	0.92-2.69	0.096	2.51	1.48-4.23	0.001			
 210–570 	3.39	2.09–5.51	0.000	2.18	1.28–3.70	0.004	2.72	1.63-4.54	<0.001			
ВТ	1.69	1.21–2.36	0.002	1.58	1.10-2.28	0.014	1.50	1.07-2.10	0.019	1.45	1.00-2.10	0.047
Spl	2.77	1.95–3.92	<0.001	2.17	1.49–3.18	<0.001	2.73	1.93–3.87	<0.001	2.57	1.77–3.72	0.000
SP	2.33	0.93-5.87	0.071				1.59	0.66–3.80	0.299			
gender (male)	1.85	1.31v2.61	<0.001	1.60	1.09–2.33	0.016	1.63	1.14–2.33	0.008	1.59	1.08–2.35	0.020
age (ref. <53):												
• 54-62	1.23	0.78-1.95	0.367	1.39	0.84–2.32	0.203	1.02	0.64-1.64	0.921	0.96	0.58-1.61	0.885
• 63-70	1.89	1.18-3.03	0.008	2.05	1.21–3.48	0.007	1.60	0.99–2.58	0.053	1.49	0.89–2.49	0.131
• 71-87	1.00	0.64-1.58	0.995	1.21	0.71-2.05	0.483	0.81	0.50-1.30	0.385	0.75	0.45-1.28	0.293

Table IV. Analysis of complications (total complications and temperature >38°C) based on the administration of epidural analgesia

EA - epidural analgesia; CD - coronary disease; BT - blood transfusion; OT - operation time (minutes); Spl - splenectomy; SP - splenopancreatectomy

 <0.001 0.42 0.948 0.948 1.28 0.4 0.323 2.74 1.0 0.9 0.199 0.199 0.191 0.9 0.192 0.191 0.9 	variat
	0.694
1.1	0.453 0.017 2.34
0.9	0.038 2.10 0.363
1.3	<0.001 2.39
	0.228 0.68 0
9	0.804 1.08 0
and a second sec	0.607 0.86 0.4

ress) hased on the ahs lanim -ahdo and intra-2 00) Table V. Analysis of complicati EA – epidural analgesia; CD – coronary disease; BT – blond transfusion; OT – operation time (minutes); Spl – splenectomy; SP – splenopancreatectomy

	אורמווס) לווטווסטור	מוומור ובמעמות ובר	יט שמשמעון אמצבת טו	ו מחוז ווווווו ומו	i ui chiuuiai ai laiyi							
			Anastomotic	c leak						Re-operation		
	Univariable				Multivari	able		Univaria	ble		Multivaria	ble
Variable	OR	95% CI	p value	OR	95% CI	p value	OR	95% CI	p value	OR	95% CI	p value
EA	0.73	0.42-1.29	0.278	0.83	0.46-1.48	0.523	0.53	0.28-1.00	0.049	0.72	0.37-1.40	0.328
BMI:												
• 19–25	0.53	0.20-1.42	0.208				0.62	0.22-1.76	0.373			
• >25	0.76	0.30-1.94	0.570				0.76	0.28-2.08	0.591			
diabetes	2.16	1.00-4.70	0.051	2.35	1.07-5.19	0.034	1.20	0.45-3.17	0.712			
CD	1.06	0.59-1.90	0.836				1.11	0.60-2.05	0.750			
hypertension	0.81	0.46-1.42	0.457				0.78	0.43-1.44	0.431			
peptic ulcer	1.59	0.89–2.83	0.119				0.76	0.37-1.55	0.449			
OT (ref. <140):												
• 140–169	1.09	0.39–3.02	0.866				0.96	0.34–2.73	0.944			
• 170-209	2.37	0.97-5.81	0.058				1.59	0.62-4.08	0.330			
 210–570 	2.56	1.07-6.14	0.035				2.44	1.01-5.87	0.047			
ВТ	2.10	1.23–3.59	0.007	2.06	1.19–3.56	600:0	4.70	2.54-8.68	<0.001	4.77	2.53-9.01	<0.001
Spl	1.91	1.12-3.27	0.018	1.78	1.03-3.09	0.039	3.37	1.88-6.04	<0.001	2.90	1.58-5.33	0.001
SP	0.98	0.22-4.30	0.975				3.65	1.28-10.40	0.015			
gender (male)	1.70	0.91–3.17	0.095				3.44	1.52-7.77	0.003	3.51	1.51-8.14	0.003
age (ref. <53):												
• 54-62	0.92	0.42-2.02	0.830				1.02	0.44-2.34	0.972			
· 63-70	1.36	0.64–2.90	0.421				1.64	0.74-3.60	0.221			
• 71-87	0.94	0.43-2.04	0.872				0.73	0.30-1.77	0.482			

Table VI. Analysis of complications (anastomotic leak and reoperation) based on administration of epidural analgesia

EA – epidural analgesia; CD – coronary disease; BT – blond transfusion; OT – operation time (minutes); Spl – splenectomy; SP – splenopancreatectomy

							5					
MOM	und intection	s						Catheter related	sepsis			
		Univaria	able		Multiva	riable		Univari	able		Multivari	able
Variable	К	95% CI	p value	OR	95% CI	p value	OR	95% CI	p value	OR	95% CI	p value
EA	0.68	0.35-1.35	0.272	0.73	0.37–1.45	0.368	0.91	0.49–1.70	0.766	1.08	0.57-2.08	0.808
BMI:												
• 19–25	3.05	0.39–23.49	0.285				0.79	0.22-2.86	0.716			
• >25	3.38	0.44-25.64	0.240				1.33	0.39–4.57	0.652			
diabetes	0.87	0.26-2.92	0.820				2.21	0.93-5.24	0.072			
CD	1.02	0.51-2.05	0.951				1.72	0.92-3.20	0.089	1.78	0.92-3.42	0.085
hypertension	0.58	0.29-1.19	0.139				1.11	0.60-2.06	0.748			
peptic ulcer	0.91	0.42-1.95	0.809				1.52	0.79–2.94	0.214			
OT (ref. <140):												
• 140–169	1.50	0.43-5.25	0.524				1.50	0.43-5.25	0.524			
• 170-209	2.64	0.84-8.30	0.097				3.55	1.16-10.82	0.026			
 210–570 	3.12	1.02-9.50	0.046				3.12	1.02-9.50	0.046			
ВТ	1.62	0.86–3.07	0.136				1.50	0.81–2.77	0.195			
Spl	1.65	0.87–3.14	0.124				2.28	1.24–4.19	0.008	2.52	1.32-4.80	0.005
SP	3.55	1.14–11.10	0.029	2.85	0.90–9.02	0.075	0.63	0.08-4.78	0.653			
gender (male)	2.52	1.10-5.80	0.029	2.38	1.03-5.50	0.042	0.54	0.29-0.99	0.047	0.50	0.26-0.94	0.032
age (ref. <53):												
• 54–62	1.08	0.41–2.81	0.879				0.96	0.36–2.57	0.940	0.98	0.36–2.66	0.961
• 63-70	1.74	0.70-4.28	0.230				2.45	1.04-5.80	0.041	2.32	0.96-5.60	0.062
• 71-87	0.92	0.34-2.44	0.860				0.92	0.34-2.44	0.860	0.94	0.34-2.61	0.902

Table VII. Analysis of complications (wound infections and catheter related sepsis) based on the administration of epidural analgesia

EA - epidural analgesia; CD - coronary disease; BT - blond transfusion; OT - operation time (minutes); Spl - splenectomy; SP - splenopancreatectomy

cancer interventions are pneumonia, surgical site infections, (incision infections, intra-abdominal abscesses) and leaking anastomosis [9–14, 18]. Despite the potential for postoperative complications, extensive surgical resection with lymph nodes dissection remains the only curative therapy for gastric cancer worldwide. Experienced medical institutions specializing in surgical oncology routinely perform extensive curative resections for gastric cancer [9, 10, 14, 19].

Effective analgesia is an essential part of postsurgical management and provides statistically and clinically significant improvements in treatment outcomes. Most published clinical studies have demonstrated that the administration of epidural analgesia in gastric surgery patients is a safe practice as a means to improve perioperative outcomes [16, 20–24]. Effective postoperative pain management, as well as the reduction of stress response to surgery along with management of the cardiovascular system and microcirculation significantly reduces complications. Furthermore, studies suggest that administering EA contributes to the reduction of perioperative blood loss. The recommended technique requires continuous infusion of pain medications assisted by intermitted bolus injections [25, 26].

A comprehensive literature review of the effect of postoperative analgesia on surgical outcomes [24] showed the impact of administering epidural analgesia on complications rates following major abdominal surgery. Throughout this study, authors established that the administration of epidural analgesia significantly reduces the risk of pulmonary and cardiovascular complications, as well as thromboembolism, postoperative occlusions, and hastens the return of bowel function. Our study was performed retrospectively and is therefore subject to associated biases. During the extensive research period in which the review of this data occurred. our standards of postoperative care and surgical experience have improved; possibly affecting our findings had this data included newer cases. Therefore, based on this study alone, we cannot definitively conclude that administering EA decreases the risk of complications after gastrectomy. There is, however increasing evidence of the overall positive impact that EA has on treatment outcomes. When considering the retrospective review of 84 patients that underwent laparoscopic SG [27], all data suggests that administering EA has no significant impact on treatment outcomes, except for patients treated with EA who experienced urinary retention.

In a prospective study of 1021 patients, the analysis confirmed more effective pain management, a lower need for analgesics, and a shorter stay in the intensive care unit [28]. No statistically significant differences were reported for mortality and the postoperative complication rate. Further analysis demonstrated a reduction of postoperative complications in the group of patients administered EA that underwent vascular surgical interventions. In the relatively smaller groups of patients that underwent gastrectomy (77 patients), large intestine or bile duct operation, the difference between the number of postoperative complications remains insignificant. The results of the Cochrane Database analysis [29] in which 94 studies were evaluated, (total of 5864 patients) suggests effective pain management and an accelerated return of gastrointestinal transit in patients treated with EA. With the use of the open surgery technique, EA reduces the length of the hospital stay. There was no difference in vomiting incidence or anastomotic leak. Complications of epidural analgesia are rare, but additional studies to examine the impact of administering epidural analgesia in extensive surgical interventions for gastric cancer are needed.

A recently publish retrospective review of the American College of Surgeons National Surgical Quality Improvement Program [30] performed for patients undergoing open elective esophagectomies and gastrectomies for nonmetastatic cancer, analyzed a group of 2599 gastrectomies, among which 18% received EA. The only conclusion from the analysis is that EA was associated with a longer length of stay (EA median [IQR] 8 [7, 11] vs. no EA 7 [6, 11], p = 0.0002). No other differences between the groups were noted.

Of the retrospective review of 723 gastric cancer resections performed at our institution, 617 cases had complete medical documentation that was adequate for review (85.3%). Data not included in this study amounting to the remaining 14.7% of cases was excluded due to random issues such as incomplete medical records and other associated factors. The analyzed group of patients was treated with comparable surgical techniques, postoperative care, and perioperative management protocols. Patients administered EA did not experience a higher number of complications than the group of patients treated with other methods. Thus, administering EA has proven to be safe in the perioperative care of patients undergoing gastric resection. Research indicates that the frequency of wound infections (fever > 38°C, intra-abdominal abscess) pneumonia and reoperations is reduced in the group of patients with EA. Metaanalysis [26] as well as our assessments confirm that effective postoperative pain management decreases the incidence of pulmonary complications. We observed a decreased number of other complications, (except for frequency of anastomotic leak), however in conclusion, they offer no statistical significance.

Conclusions

Our findings indicate that administering EA to patients undergoing major stomach resection for gastric cancer is safe. Furthermore, postoperative treatment with epidural analgesia following stomach resection contributes to a reduction in the number of postoperative complications; this is most notable in the reduced number of cases of pneumonia, sepsis, and the need for additional surgical interventions.

Conflict of interest: none declared

Tomasz Olesiński

Maria Sklodowska-Curie National Research Institute of Oncology ul. Roentaena 5

02-781 Warszawa, Poland e-mail: tolesinski@coi.pl

Received: 20 Mar 2021 Accepted: 23 May 2021

References

- Ferlay J, Shin HR, Bray F, et al. GLOBOCAN 2008 v1.2. Cancer Incidence and Mortality Worldwide: IARC Cancer Base No.10. Lyon, France: International Agency for Research on Cancer. 2010. http://globocan.iarc.fr.
- European Union Network of Excellence (EUNE) for Gastric Cancer Steering Group. Gastric cancer in Europe. Br J Surg. 2008; 95(4): 406–408, doi: 10.1002/bjs.6197, indexed in Pubmed: 18314930.
- 3. Krajowy rejestr nowotworów. www.onkologia.org.pl.
- Angelis RDe, Sant M, Coleman M, et al. Cancer survival in Europe 1999–2007 by country and age: results of EUROCARE-5—a population-based study. Lancet Oncol. 2014; 15(1): 23–34, doi: 10.1016/ s1470-2045(13)70546-1.
- Smyth EC, Verheij M, Allum W, et al. ESMO Guidelines Committee. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016; 27(suppl 5): v38–v49, doi: 10.1093/annonc/ mdw350, indexed in Pubmed: 27664260.
- Brar SS, Mahar AL, Helyer LK, et al. Processes of care in the multidisciplinary treatment of gastric cancer: results of a RAND/UCLA expert panel. JAMA Surg. 2014; 149(1): 18–25, doi: 10.1001/jamasurg.2013.3959, indexed in Pubmed: 24225775.
- Ajani JA, Bentrem DJ, Besh S, et al. National Comprehensive Cancer Network. Gastric cancer, version 2.2013: featured updates to the NCCN Guidelines. J Natl Compr Canc Netw. 2013; 11(5): 531–546, doi: 10.6004/ jnccn.2013.0070, indexed in Pubmed: 23667204.
- Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2010 (ver. 3). Gastric Cancer. 2011; 14(2): 113–123, doi: 10.1007/s10120-011-0042-4, indexed in Pubmed: 21573742.
- Sano T, Sasako M, Yamamoto S, et al. Gastric cancer surgery: morbidity and mortality results from a prospective randomized controlled trial comparing D2 and extended para-aortic lymphadenectomy–Japan Clinical Oncology Group study 9501. J Clin Oncol. 2004; 22(14): 2767–2773, doi: 10.1200/JCO.2004.10.184, indexed in Pubmed: 15199090.
- Wu CW, Hsiung CA, Lo SS, et al. Randomized clinical trial of morbidity after D1 and D3 surgery for gastric cancer. Br J Surg. 2004; 91(3): 283–287, doi: 10.1002/bjs.4433, indexed in Pubmed: 14991627.
- Memon MA, Subramanya MS, Khan S, et al. Meta-analysis of D1 versus D2 gastrectomy for gastric adenocarcinoma. Ann Surg. 2011; 253(5): 900–911, doi: 10.1097/SLA.0b013e318212bff6, indexed in Pubmed: 21394009.
- Ichikawa D, Kurioka H, Yamaguchi T, et al. Postoperative complications following gastrectomy for gastric cancer during the last decade. Hepatogastroenterology. 2004; 51(56): 613–617, indexed in Pubmed: 15086217.
- Cuschieri A, Fayers P, Fielding J, et al. Postoperative morbidity and mortality after D1 and D2 resections for gastric cancer: preliminary results of the MRC randomised controlled surgical trial. The Surgical Cooperative Group. Lancet. 1996; 347(9007): 995–999, doi: 10.1016/ s0140-6736(96)90144-0, indexed in Pubmed: 8606613.
- Barchi LC, Charruf AZ, de Oliveira RJ, et al. Management of postoperative complications of lymphadenectomy. Transl Gastroenterol Hepatol. 2016; 1: 92, doi: 10.21037/tgh.2016.12.05, indexed in Pubmed: 28138657.
- 15. Yamada T, Hayashi T, Cho H, et al. Usefulness of enhanced recovery after surgery protocol as compared with conventional perioperative

care in gastric surgery. Gastric Cancer. 2012; 15(1): 34–41, doi: 10.1007/ s10120-011-0057-x, indexed in Pubmed: 21573918.

- Sugisawa N, Tokunaga M, Makuuchi R, et al. A phase II study of an enhanced recovery after surgery protocol in gastric cancer surgery. Gastric Cancer. 2016; 19(3): 961–967, doi: 10.1007/s10120-015-0528-6, indexed in Pubmed: 26260875.
- Niemi G, Breivik H. Adrenaline markedly improves thoracic epidural analgesia produced by a low-dose infusion of bupivacaine, fentanyl and adrenaline after major surgery. A randomised, double-blind, cross-over study with and without adrenaline. Acta Anaesthesiol Scand. 1998; 42(8): 897–909, doi: 10.1111/j.1399-6576.1998.tb05348.x, indexed in Pubmed: 9773133.
- Gil-Rendo A, Hernández-Lizoain JL, Martínez-Regueira F, et al. Risk factors related to operative morbidity in patients undergoing gastrectomy for gastric cancer. Clin Transl Oncol. 2006; 8(5): 354–361, doi: 10.1007/ s12094-006-0182-x, indexed in Pubmed: 16760011.
- Songun I, Putter H, Kranenbarg EMK, et al. Surgical treatment of gastric cancer: 15-year follow-up results of the randomised nationwide Dutch D1D2 trial. Lancet Oncol. 2010; 11(5): 439–449, doi: 10.1016/S1470--2045(10)70070-X, indexed in Pubmed: 20409751.
- Liu S, Carpenter RL, Neal JM. Epidural anesthesia and analgesia. Their role in postoperative outcome. Anesthesiology. 1995; 82(6): 1474–1506, doi: 10.1097/00000542-199506000-00019, indexed in Pubmed: 7793661.
- Harukuni I, Yamaguchi H, Sato S, et al. The comparison of epidural fentanyl, epidural lidocaine, and intravenous fentanyl in patients undergoing gastrectomy. Anesth Analg. 1995; 81(6): 1169–1174, doi: 10.1097/00000539-199512000-00009, indexed in Pubmed: 7486099.
- Wu Y, Liu F, Tang H, et al. The analgesic efficacy of subcostal transversus abdominis plane block compared with thoracic epidural analgesia and intravenous opioid analgesia after radical gastrectomy. Anesth Analg. 2013; 117(2): 507–513, doi: 10.1213/ANE.0b013e318297fcee, indexed in Pubmed: 23744953.
- Wheatley RG, Schug SA, Watson D. Safety and efficacy of postoperative epidural analgesia. Br J Anaesth. 2001; 87(1): 47–61, doi: 10.1093/ bja/87.1.47.
- Holte K, Kehlet H, Kehlet H, et al. Effect of postoperative analgesia on surgical outcome. Br J Anaesth. 2001; 87(1): 62–72, doi: 10.1093/ bja/87.1.62, indexed in Pubmed: 11460814.
- Komatsu H, Matsumoto S, Mitsuhata H, et al. Comparison of patient-controlled epidural analgesia with and without background infusion after gastrectomy. Anesth Analg. 1998; 87(4): 907–910, doi: 10.1097/00000539-199810000-00030, indexed in Pubmed: 9768792.
- Ballantyne JC, Carr DB, deFerranti S, et al. The comparative effects of postoperative analgesic therapies on pulmonary outcome: cumulative meta-analyses of randomized, controlled trials. Anesth Analg. 1998; 86(3): 598–612, doi: 10.1097/00000539-199803000-00032, indexed in Pubmed: 9495424.
- Yanagimoto Y, Takiguchi S, Miyazaki Y, et al. Comparison of pain management after laparoscopic distal gastrectomy with and without epidural analgesia. Surg Today. 2016; 46(2): 229–234, doi: 10.1007/ s00595-015-1162-y, indexed in Pubmed: 25861994.
- Park WY, Thompson JS, Lee KK. Effect of epidural anesthesia and analgesia on perioperative outcome: a randomized, controlled Veterans Affairs cooperative study. Ann Surg. 2001; 234(4): 560–9; discussion 569, doi: 10.1097/00000658-200110000-00015, indexed in Pubmed: 11573049.
- Guay J, Nishimori M, Kopp SL, et al. Epidural local anaesthetics versus opioid-based analgesic regimens for postoperative gastrointestinal paralysis, vomiting and pain after abdominal surgery. Cochrane Database Syst Rev. 2016; 7(6): CD001893–1602, doi: 10.1002/14651858. CD001893.pub2, indexed in Pubmed: 27419911.
- Pesco J, Young K, Nealon K, et al. Use and Outcomes of Epidural Analgesia in Upper Gastrointestinal Tract Cancer Resections. J Surg Res. 2021; 257: 433–441, doi: 10.1016/j.jss.2020.08.018, indexed in Pubmed: 32892142.

Original article

The quality of life of patients with head neoplasms and incidence of depression treated with radiotherapy. A preliminary research report

Bogumiła A. Lubińska-Żądło¹, Anna Pych², Bożena Kowalczyk¹, Bożena Zawadzka³

¹Podhale State College of Applied Sciences in Nowy Targ, Nowy Targ, Poland ²Jedrzej Sniadecki Specialist Hospital in Nowy Sacz, Nowy Sacz, Poland ³Jan Kochanowski University in Kielce, Kielce, Poland

Introduction. The diagnosis of a primary tumor of the central nervous system is a source of huge fear and anxiety for a patient, because the prognosis is usually unfavorable. Very often, the cancer is accompanied by depression, which reduces the effectiveness of treatment and worsens the patient's functioning in everyday life.

The aim. The aim of the study is to determine the cause-and-effect relationship between quality of life and incidence of depression, as well as the side effects of treatment in people treated with radiation for head cancer.

Material and methods. The study group consisted of 103 patients during treatment in the Radiotherapy Ward of the Specialist Hospital in Nowy Sącz. The research tools were: the WHO QOL-Bref questionnaire, the Beck Depression Scale and a questionnaire of the author's own design regarding patients treated with radiation therapy for head cancer.

Results. The general perception of the quality of life in the studied group was 2.88 points, the general perception of the patient's own health was 1.88 points. The average quality of life was the highest in the environmental field: 62.50 ± 23.21 , while the lowest in the physical field: 44.24 ± 28.65 .

Conclusions. Both the overall assessment of the quality of life in the assessed areas and the perception of health by patients treated with radiation therapy for head cancer are low.

Key words: head cancer, depression, quality of life

Introduction

Radiation therapy is a very effective and one of the most commonly used methods of cancer treatment; at the same time it is one of the factors that cause increased stress in the oncological patient. This is associated with anxiety and the occurrence of side effects that can significantly affect the quality of life [1]. Treatment methods used in oncology are usually very aggressive, which causes anxiety in patients. As Walden-Gałuszko emphasizes, not knowing about the side effects and their consequences as well as the method of treatment is the most common reason for a patient's anxiety. The quality of life in patients treated with radiation therapy depends on multiple factors. The patient's ability to quickly adapt mentally to the situation has a significant impact. Moreover, the ability to deal with the side effects of early and late treatment is also of crucial importance during the treatment [2].

How to cite:

Lubińska-Żądło BA, Pych A, Kowalczyk B, Zawadzka B. The quality of life of patients with head neoplasms and incidence of depression treated with radiotherapy. A preliminary research report. NOWOTWORY J Oncol 2021; 71: 212–219.

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.

Radiotherapy is usually a kind of treatment that requires the patient to stay in an oncological center for several weeks, which can lead to anxiety for the patient. For a long time during the treatment, the patient can experience discomfort in life caused by various undesirable symptoms brought on by the radiation therapy [3]. Irradiation treatment is associated with a reduced intensity of side effects when compared to chemotherapy [4]. A diagnosis of cancer heightens the patient's fear, elevates anxiety, a sense of danger and the uncertainty of life. The image of this disease, which is common in society, evokes negative emotions [2]. On the one hand, the quality of life of a cancer patient is determined through the prism of the ailments or fears that accompany the disease, on the other hand, there is faith in treatment and a reduction of discomfort [5]. When diagnosing cancer, it seems necessary to start treatment as soon as possible.

For most patients, even staying in hospital is a big psychological problem and experience. A patient's value system is often radically changed. The onset of illness means that the person is at a level of basic needs, such as health, life and psychosomatic comfort. Safety and physical comfort are usually provided by the hospital, but the need for peace of mind is often not met. This is usually caused by a lack of communication between the patient and the medical staff. Providing information on the state of health, the course of the disease, the treatment and side effects, as well as establishing and maintaining vital emotional contact are all factors that are responsible for a patient's mental comfort. Another factor that reduces the quality of life of a hospitalized patient is the feeling of helplessness and passivity [2]. In scientific research, the basic and very often only criteria for assessing the effectiveness of oncological treatment was the survival time and remission period. Currently, more attention is paid to the impact of the disease and its treatment than on the patient's functional and psychological condition and their place in society [5].

The assessment of the quality of life of patients treated oncologically is of great interest in recent years. Cancer and depression are causes of a patient's suffering [6]. The concept of depression in the aspect of cancer is very important in many aspects. One of them is the occurrence of depression and mood disorders as a cause or factor of cancer [7, 8]. In such patients, there are disturbances and obstacles regarding cooperation in the treatment process [6]. Incidence of depression in patients with cancer is 3.5 times higher than in patients with diabetes, hypertension, heart disease, rheumatic arthritis, chronic lung disease or stroke [9].

The aim of the study was to determine the cause-and-effect relationship between the quality of life and the frequency and severity of depression and the side effects of radiation therapy in people treated for head cancer.

In order to achieve the aim of the work, the following research questions were asked:

1. How do patients treated with radiation for head cancer assess their quality of life?

- 2. What is the relationship between the assessment of the quality of life and the occurrence of depression in patients treated with radiation therapy for head cancer?
- 3. What is the relationship between the quality of life and the occurrence of side effects in the course of radiation therapy in patients treated for head cancer?
- 4. What is the relationship between the quality of life and the patient's attitude to the disease?

Material and methods

The research was conducted in the Radiotherapy Ward of the Specialist Hospital J. Śniadeckiego in Nowy Sącz. The diagnostic survey method was used. To assess the quality of life, the Polish version of the standardized WHO QOL-Bref guestionnaire developed by Laura Wołowicka and Krystyna Jaracz, containing 26 questions, was used [10]. To assess the severity of depression, the Beck Depression Scale was used, consisting of 21 questions considering the most common symptoms of depression, whose translation and initial adaptation was undertaken by Parnowski and Jernajczyk [11]. The third tool was the author's own guestionnaire focused on a group of patients treated with radiation for head cancers. The study group consisted of 103 adults, over 18 years of age, in whom radiotherapy was performed using an accelerator emitting photon radiation with the following energies: X6MV, X15MV, and electrons: E6MeV, E9MeV, E12MeV, E15MeV, E18MeV, E22MeV. The accelerator was equipped with multileaf colimators enabling conformal therapies in any location and IMRT (intensity modulated radiotherapy) therapies in the step and shot and sliding window technique [12]. In the case of multifocal metastases to the brain, the whole brain was irradiated. In primary lesions or single brain metastases, the area of the lesion was irradiated with a margin along with edema or the tumor bed. In the case of irradiation of the whole brain (palliative treatment), the hypothalamus was not protected. By contrast, in the case of irradiation of the primary tumor area (if possible), the minimum dose per hypothalamus was used.

Participation in the study was voluntary, the patients were informed about the purpose of the study, and they verbally agreed to take part in it.

The Chi² independence test, the Mann-Whitney test and the Kruskel-Wallis test were used in the statistical analysis of the results. The choice of nonparametric tests was dictated by the lack of normality of variables (verified with the Kolmogorov-Smirnov and Shapiro-Wilk tests) or by the lack of group equivalence (verified with the Chi² compliance test). A significance level of p < 0.05 was adopted. The calculations were carried out using the IBM SPSS Statistics 20 program.

Results

One hundred three people aged 20–70 were examined (53.4% men; 46.6% women). The largest group among all the respondents were patients between 41 and 50 years of age (34.0%). Over half of the respondents (55.3%) declared having

secondary education. Few respondents (8.7%) had higher education. Analyzing the marital status of the respondents, it was found that 68.9% of them were married. Single people accounted for only 18.4% of the respondents, and widowed patients constituted 12.6% of the respondents. Most frequently, respondents were diagnosed with glioblastoma multiforme (ICD-094) (34.0%) or a metastatic tumor (ICD-094) (31.1%) of the central nervous system. Less frequent was anaplastic astrocytoma (ICD-094) (14.6%), anaplastic oligospermia (ICD-094) (10.7%), germinal spinal cord (ICD-094) (6.8%) or meningioma (ICD-095) (2.9%).

Radiotherapy at a dose of 20 Gy in fractions of 4 Gy was used in 29.1% of patients and lasted 1 week. The most numerous group of 37.9% were patients treated for 2–3 weeks with 30 Gy of irradiation in 3 Gy fractions; 24.3% of patients diagnosed with meningioma and/or patients who did not complete the treatment were treated for 4 to 5 weeks. Treatment with a dose of 60 Gy was used in 8.7% of the patients, in fractions of 2.0 Gy, which lasted 6 weeks.

The most common effects of radiation were headaches (68.0%). Slightly less often, the subjects suffered from nausea (44.7%) or hair loss (42.7%). Vomiting occurred in 25.2% of the respondents, and 16.5% of the respondents did not experience radiation side effects. Some patients experienced balance disorders (14.6%) or blurred vision (5.8%). Only a few of the respondents (13.6%) used the help of a psychologist from the moment of diagnosis to the present. Most respondents (86.4%) did not benefit from such assistance.

Analysis of the research showed that the respondents rated their quality of life higher (2.88) than their quality of health (1.88). In both cases, the self-assessment of the quality of life and health was very low (1–5 points scale) (tab. l).

The highest quality of life was observed in the environment field (62.50 \pm 23.21), a lower one in the social field (50.16 \pm 31.35). The lowest indicator of the quality of life was observed

Table I. Individual overall perception of the quality of life and health	۱
--	---

	Individual overall perception of the quality of life	Individual overall perception of the quality of health
mean	2.88	1.88
median	3.00	2.00
SD	1.41	0.97

in the psychological field (46.93 \pm 31.73) and the physical field (44.24 \pm 28.65) (tab. II).

On the basis of the Beck scale, it was found that 32.0% of people did not have symptoms of depression. Mild depression was observed in the group of 20.4% of respondents. Moderately severe depression was found in 34.0% of respondents, and very severe depression occurred in 13.6% of the respondents. It was shown that the lack of depression in 44.2% of the respondents or mild depression in 27.9% of the respondents was significantly more common in patients aged 20–40 years. In 48.6% of people aged 41–50 and 40.0% of people over 51 years of age, moderate depression was more frequent than in the rest of the respondents.

Analysis of the author's research shows that respondents without depression rated their overall quality of life the highest (4.30), slightly lower than the respondents with mild depression (3.67), the lowest quality of life rating was respondents with moderately severe (1.57) or very severe depression (1.64). The respondents rated their quality of health in a similar way. The respondents without depression rated their quality of life the highest (2.88), lower (1.81) – the respondents with mild depression, and those with moderately severe (1.34) or severe depression (1.00) rated their quality of health the lowest. Statistical analysis showed a relationship between depression and satisfaction with one's life and health (p < 0.0001). In this respect, people without depression showed a statistically significantly higher level of overall perception of quality of life and health than people with depression (tab. III).

It was shown that the lower the severity of depression, the higher the quality of life in individual subscales. The author's research shows that the quality of life in each of the assessed fields was significantly better in people without depression than in those with depression. As a result of the analysis, the differences found were statistically significant (p < 0.0001) (tab. IV).

Analysis of the research showed that respondents who had headaches as a side effect of radiation therapy rated their overall quality of life (3.10) and quality of health (2.10) higher than respondents who did not have headaches, who rated their overall quality of life (2.42) and quality of health (1.42) lower. Relationships were observed in each of the fields of the quality of life. People with headaches obtained average values of the quality of life in individual subscales at the level: in the physical field – 47.50, in the psychological field – 50.24, in the social field – 55.24, in the environmental field – 65.67;

Table II. The quality of life of patients treated for head cancer with radiation therapy

		.,		
	Physical field	Psychological field	Social field	Environment
mean	44.24	46.93	50.16	62.50
median	39.29	41.67	41.67	59.38
SD	28.65	31.73	31.35	23.21
min.	0	4	0	16
max.	89	96	100	94

Table III. Individual perception of the quality of life and health

Depression (Be Depression Sca	eck ale)	Individual overall perception of the quality of life	Individual overall perception of the quality of health
without	mean	4.30	2.88
depression	SD	0.47	0.86
mild	mean	3.67	1.81
depression	SD	0.86	0.40
moderately	mean	1.57	1.34
severe depression	SD	0.70	0.68
very severe	mean	1.64	1.00
depression	SD	0.50	0.00
in total	mean	2.88	1.88
	SD	1.41	0.97
р		<0.0001	<0.0001

Table IV. The quality of life and depression in patients treated for head cancer

and these values were higher than in people who did not have headaches. In the case of other side effects: vomiting, nausea, hair loss, and vision and balance disorders in patients treated with radiation for head tumors, similar relationships were observed as in the case of the headache. Both the respondents who did not have side effects of radiation therapy and those who did, assessed their overall quality of life and health in a similar way. A statistically significant dependence on all analyzed side effects of radiotherapy was found in the general perception of the quality of life and health, as well as in the social and environmental field. The obtained results concerning the most statistically significant relationships between variables at the significance level of p < 0.0001 revealed a relationship between hair loss and balance disorders and a subjective assessment of guality of life and health, and the guality of life for individual subscales (tab. V).

Depression (Beck scale)		Physical field	Psychological field	Social field	Environment
without depression	mean	78.03	84.97	87.37	88.45
	SD	7.37	8.59	7.55	6.42
mild depression	mean	52.21	54.56	58.73	69.35
	SD	10.13	14.90	11.92	9.04
moderately severe	mean	21.22	21.79	23.81	43.21
depression	SD	12.49	10.98	11.81	10.21
very severe depression	mean	10.20	8.63	15.48	39.29
	SD	8.03	3.45	13.81	19.02
in total	mean	44.24	46.93	50.16	62.50
	SD	28.65	31.73	31.35	23.21
р		<0.0001	<0.0001	<0.0001	<0.0001

Table V. The relationship between the quality of life and the side effects of radiation treatment

Side effects	Occurent	ce	Individual overall perception of the quality of life	Individual overall perception of the quality of health	Physical field	Psychological field	Social field	Environment
headache	no	mean	2.42	1.42	37.34	39.90	39.39	55.78
		SD	1.56	0.50	28.19	29.57	30.64	26.68
	yes	mean	3.10	2.10	47.50	50.24	55.24	65.67
		SD	1.29	1.07	28.48	32.38	30.60	20.85
р			0.0208	0.0027	0.0877	0.0714	0.0168	0.0422
vomiting	no	mean	3.19	1.99	51.02	52.44	57.03	68.63
		SD	1.21	0.87	24.17	29.52	28.20	18.77
	yes	mean	1.96	1.58	24.18	30.61	29.81	44.35
		SD	1.56	1.21	31.82	33.00	31.90	25.88
р			0.0001	0.0022	<0.0001	0.0039	0.0001	<0.0001
nausea	no	mean	3.33	2.05	56.39	58.85	62.43	71.44
		SD	1.31	0.89	25.43	30.40	29.26	20.96
	yes	mean	2.33	1.67	29.19	32.16	34.96	51.43
		SD	1.33	1.03	25.23	27.01	27.14	21.17
р			0.0003	0.0070	< 0.0001	0.0001	<0.0001	0.0001
Side effects	Occuren	ce	Individual overall perception of the quality of life	Individual overall perception of the quality of health	Physical field	Psychological field	Social field	Environment
-----------------	---------	------	--	--	-------------------	------------------------	-----------------	-------------
vision	no	mean	3.00	1.94	45.66	48.28	51.72	63.66
disorders		SD	1.37	0.98	28.94	32.22	31.66	23.43
	yes	mean	1.00	1.00	21.43	25.00	25.00	43.75
		SD	0.00	0.00	0.00	0.00	0.00	0.00
р			0.0006	0.0088	0.0686	0.2520	0.0460	0.0157
balance	no	mean	3.20	2.03	49.84	51.94	55.30	67.05
disorders		SD	1.27	0.98	27.03	31.61	31.08	21.84
	yes	mean	1.00	1.00	11.43	17.50	20.00	35.83
		SD	0.00	0.00	9.47	6.34	4.23	8.34
р			<0.0001	<0.0001	<0.0001	0.0006	< 0.0001	<0.0001
hair loss	no	mean	2.24	1.47	29.72	31.78	34.04	51.64
		SD	1.43	0.88	26.00	28.80	26.23	21.80
	yes	mean	3.75	2.43	63.72	67.23	71.78	77.06
		SD	0.78	0.82	18.90	23.08	23.86	16.08
р			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
no side	no	mean	2.88	1.95	44.73	47.72	51.55	62.86
effects		SD	1.38	1.03	29.80	32.28	32.20	23.93
	yes	mean	2.88	1.53	41.81	42.89	43.14	60.66
		SD	1.58	0.51	22.51	29.38	26.39	19.74
р			1.0000	0.2064	0.5808	0.4589	0.3348	0.3585

It was shown that respondents who accepted their illness perceived their quality of life the highest (4.33), which was higher than in respondents who somehow got used to it (2.85) or did not accept it (1.39). When analyzing the results of the research, the overall perception of the quality of health was similar. Those who had accepted their disease had a higher score (2.64) than those who had become used to the disease (1.85). The overall perception of the quality of health was rated the lowest by respondents who had not accepted their disease (1.13). The differences were statistically significant (tab. VI).

 Table VI. Individual perception of the quality of life and the acceptance of the disease

The acceptance of the disease		Individual overall perception of the quality of life	Individual overall perception of the quality of health	
I accept the	mean	4.33	2.64	
disease.	SD	0.69	1.06	
I do not accept the	mean	1.39	1.13	
disease.	SD	0.50	0.34	
I feel accustomed	mean	2.85	1.85	
to the disease.	SD	1.04	0.74	
in total	mean	2.88	1.88	
	SD	1.41	0.97	
р		<0.0001	<0.0001	

It was found that the patients who had fully accepted their illness had the highest quality of life in each of the fields, the respondents who had got used to the disease had a lower guality of life, and the lowest were the patients who had not accepted their disease. A higher quality of life in particular fields was demonstrated by people accepting their illness: in the physical field: 72.75, in the psychological field: 80.18, in the social field: 79.55, and in the environmental field: 84.28. The respondents who had not accepted their disease had the lowest quality of life in all fields: in the physical field: 17.51, in the psychological field: 15.86, in the social field: 20.97, and in the environmental field: 40.83. In terms of acceptance of the disease, the compared groups are the most diverse in the psychological field. While analyzing the obtained test results, there was a statistically significant relationship between the acceptance of the disease and the individual fields, which was p < 0001 (tab. VII).

Discussion

The Scientific Council of the National Cancer Registry states that in 2016 there was an increase in cancer incidence by about one thousand cases compared to 2015. This number also systematically increases in relation to cases of cancers of the central nervous system [13]. One of the methods of treating cancers of the central nervous system is the use of radiation therapy [14]. Very often, along with the occurrence of cancer, patients at various stages of the disease are accompanied by

The acceptance of the disease		Physical field	Psychological field	Social field	Environment
I accept the disease.	mean	72.51	80.18	79.55	84.28
	SD	14.87	16.24	17.32	9.49
I do not accept the disease.	mean	17.51	15.86	20.97	40.83
	SD	10.65	8.96	15.35	13.33
I feel accustomed to the disease.	mean	41.58	43.48	48.50	61.30
	SD	25.35	25.65	27.43	20.82
in total	mean	44.24	46.93	50.16	62.50
	SD	28.65	31.73	31.35	23.21
р		<0.0001	<0.0001	<0.0001	<0.0001

anxiety, anger and depression, which negatively affects the healing process and affects the quality of life [15].

Cancers of the central nervous system are not very common. However, the most common ones have a poor prognosis. According to the Scientific Council of the National Cancer Registry in Warsaw, cancer occurrence is estimated at 2% per annum [16]. Dziadziuszko and Fijuth indicate that the incidence of glioblastoma multiforme is as much as 40%, while metastatic tumors account for 15–20% in patients with all cancers [15]. The research conducted in the radiotherapy ward confirms the fact that the most common cancers of the central nervous system are glioblastoma multiforme 34.0% and metastatic tumors to the central nervous system 31.1%.

Kowalska and Szemik's research conducted among 225 people aged 25–44, using the WHO QOL-BREF questionnaire, showed that the average values of the quality of life for individual subscales were at these levels: for the physical field – 53.5, for the psychological field – 62.8, for social relations – 70.0, and for the environmental field – 57.3 [17]. Kowalska et al. also assessed the quality of life of 746 healthy, professionally active people aged 45–60. The average of the individual fields was: somatic – 54.4, psychological – 60.8, social – 68.3 and environmental – 57.6 [18]. Patients' quality of life deteriorates after the start of radiation and this condition persists for up to three months after the end of the treatment, as reported by Kozak et al. [19].

The analysis of the results of research showed that cancer and the treatment that is used significantly affect the quality of life of respondents in the physical, psychological and social field. The quality of life in the individual fields was as follows: the best results were obtained in the field of social relations – the average: 62.50; in the social field – the average: 50.16; in the environmental field – the average: 46.93; in the physical field – the average: 44.24.

The occurrence of depression during cancer is a fairly common phenomenon. Studies by Mitchell et al. on the occurrence of depression during cancer show that the co-

-occurrence of cancer and depression exceeds 50% in many cases [20]. Onitilo et al. note in their publication that regardless of the etiology, the occurrence of depression in cancer patients has an additional impact on the results of the treatment. Patients with depression who are diagnosed with cancer experience a lower quality of life, their cooperation with medical staff is negatively affected and the patients are hospitalized longer [6]. The incidence of depression in patients treated with irradiation of the central nervous system is confirmed by the author's research. Based on the Beck Depression Scale, it was found that 32.0% of the respondents had no symptoms of depression. One in five patients - 20.4% - had mild depression. Moderately severe depression was found in 34.0% of the people, and 13.6% of the respondents had very severe depression. The results of research by Mitchell et al. conducted in a group of 279 oncological patients revealed the occurrence of major depression in 12.7%, and depressive disorders in 29.6% of the subjects [21]. According to the authors, the diagnosis of depression in cancer patients should be more frequently analyzed, as depression in cancer patients can undoubtedly have a negative impact on the treatment process as well as on their cooperation with the medical staff.

Treating the central nervous system with irradiation is very often associated with the occurrence of various types of side effects. Ionizing radiation affects both cancerous and healthy tissues. The author's research carried out in the radiotherapy ward indicates that the most common effects of radiation were headaches – 68.0%. Slightly less frequently, the respondents had nausea 44.7% or hair loss 42.7%. In the study of Kapela et al., 20.7% of respondents experienced pain during chemotherapy [22]. A cancer patient undergoing ionizing radiation treatment is a person who is suffering. Nowak et al. show that pain management results in better coping with its side effects, and in looking at the future – dealing with changes in the quality of life [23]. The author's research has shown that the side effects of radiation therapy: headache, vomiting, nausea,

hair loss, vision and balance disorders significantly affect the overall perception of the quality of life and health.

Assessing the quality of life, especially its psychological sphere, it is crucial to adapt to the disease, i.e. the level of its acceptance, which is emphasized by Kurpas et al. [24]. In the studies by Smoleń et al., adapting to the disease in the studied group of cancer patients was at a medium level, however, people who did not experience pain and assessed their health well adapted better [25]. Szczepańska-Gieracha et al. indicate that among 71 patients with malignant neoplasms, strategies of coping with neoplastic disease may change with the time that elapses since the start of the treatment [26]. Research on the acceptance of cancer was carried out by Smoleń et al. on a group of 229 randomly selected respondents. It was demonstrated that the higher the degree of cancer acceptance, the lower the severity of the helplessness-hopelessness relationship [27]. Ślusarska et al. assessed the level of acceptance of the disease and quality of life during treatment of patients with lymphoma using the WHO QOL-Bref guestionnaire. Among 105 respondents, 7.6% of them showed a very low level of acceptance, and 15.2% – a high level. The higher the level of acceptance, the better the quality of life of patients [28].

In the author's research, correlations were found between the level of the acceptance of the disease and the individual general perception of the quality of life and health in its individual areas.

Cancer puts people in a difficult position. Our physicality, mentality, community and human spirituality are all burdened. The reason for this can be any changes that occur in the patient's body, as well as various social factors. Very often, oncological diseases are accompanied by depression and anxiety, which significantly reduce the patient's quality of life and may affect the course of their treatment. Having the necessary knowledge about all stages of treatment and recovery, in both the physical and mental context, as well as the active participation in the process of treating of the patient and the family, can significantly affect the patient's self-esteem. The state of health of a patient treated with head irradiation for metastatic tumors often deteriorates rapidly, which is why J. Zapała et al. drew attention to the importance of health education; this is not only the transfer of knowledge and skills, but also instilling motivation to change one's behavior in order to have more effective treatment [29]. At present, there are few publications regarding the quality of life of patients undergoing radiation therapy for cancers of the central nervous system.

Conclusions

- Respondents treated with radiation for head cancers rated their quality of life higher than their quality of health. In both cases, the self-assessment of the quality of life and health was very low.
- 2. Patients who did not have symptoms of depression rated their quality of life higher. Similarly, the higher the

assessment of the quality of health, the lower the level of depression. It was shown that the higher the quality of life in specific fields, the lower the severity of depression in patients.

- 3. The intensity of side effects of radiation therapy for head tumors affects the assessment of the quality of life in specific fields. The greater the intensity of side effects of radiation therapy, the lower the quality of life in all fields. Patient education, carried out by a radiotherapy nurse that refers to how to deal with radiation reactions may significantly affect the patient's assessment of their quality of life.
- 4. The acceptance of the disease affects the perception of the quality of life. Patients who accepted their disease assessed their quality of life and health the highest, and those who did not accept the disease – rated it the lowest. It was shown that patients who fully accepted their disease had the highest quality of life in every field, a lower quality of life had those who got used to the disease, and the lowest the quality of life had patients who did not accept the disease.

Conflict of interest: none declared

Bogumiła A. Lubińska-Żądło

Podhale State College of Applied Sciences in Nowy Targ ul. Kokoszków 71 34-400 Nowy Targ, Poland e-mail: bogumila.lubinska@interia.pl

Received: 29 Dec 2020 Accepted: 20 Jan 2021

- Kozakiewicz B. Nowotwory złośliwe narządu rodnego. Nowa Med. 2003: 122–127.
- Walden-Gałuszko K. Psychoonkologia. 1st ed. Polskie Towarzystwo Psychiatryczne, Kraków 2000: 23–43.
- Faller H, Olshausen B, Flentje M. [Emotional distress and needs for psychosocial support among breast cancer patients at start of radiotherapy]. Psychother Psychosom Med Psychol. 2003; 53(5): 229–235, doi: 10.1055/s-2003-38864, indexed in Pubmed: 12709891.
- Jacobsen PB, Andrykowski MA, Thors CL. Relationship of catastrophizing to fatigue among women receiving treatment for breast cancer. J Consult Clin Psychol. 2004; 72(2): 355–361, doi: 10.1037/0022-006X.72.2.355, indexed in Pubmed: 15065968.
- Jassem J. Paliatywna radioterapia, chemioterapia i leczenie hormonalne. In: Zapaśnik A, Żylicz Z. ed. Leczenie objawowe w chorobie nowotworowej – w okresie daleko zaawansowanym i terminalnym. Akademia Medyczna w Gdańsku, Gdańsk 1993.
- Onitilo AA, Nietert PJ, Egede LE. Effect of depression on all-cause mortality in adults with cancer and differential effects by cancer site. Gen Hosp Psychiatry. 2006; 28(5): 396–402, doi: 10.1016/j.genhosppsych.2006.05.006, indexed in Pubmed: 16950374.
- Jabłoński M, Furgał M, Dudek D, et al. [The position of psychooncology in contemporary psychiatry]. Psychiatr Pol. 2008; 42(5): 749–765, indexed in Pubmed: 19445357.
- Pössel P, Adams E, Valentine J. Depression as a risk factor for breast cancer: investigating methodological limitations in the literature. Cancer Causes & Control. 2012; 23(8): 1223–1229, doi: 10.1007/ s10552-012-0014-y.
- Polsky D, Doshi JA, Marcus S, et al. Long-term risk for depressive symptoms after a medical diagnosis. Arch Intern Med. 2005; 165(11): 1260–1266, doi: 10.1001/archinte.165.11.1260, indexed in Pubmed: 15956005.

- Wołowicka L, Jaracz K. Wybrane problemy metodologii badań jakości życia związane ze stanem zdrowia. In: Wołowicka L. ed. Jakość życia w naukach medycznych. Wyd. Ucz. AM im. Karola Marcinkowskiego w Poznaniu, Poznań 2001: 233–258.
- Zawadzki B, Popiel A, Pragłowska E. Psychometric Properties of the Polish Version of the Aaron T. Beck's Depression Inventory BDI-II). Psychologia-Etologia- Genetyka. 2009; 19: 71–95.
- Oficjalna strona internetowa Szpitala Specjalistycznego im. J. Śniadeckiego w Nowym Sączu. http://www.szpitalnowysacz.pl/zaklad--radioterapii (06.05.2018).
- Wojciechowska U, Didkowska J. Zachorowania i zgony na nowotwory złośliwe w Polsce. Krajowy Rejestr Nowotworów, Centrum Onkologii -Instytut im. Marii Skłodowskiej-Curie. http://onkologia.org.pl/raporty (01.03.2019).
- Tao Y, Daly-Schveitzer N, Lusinchi A, et al. Advances in radiotherapy of head and neck cancers. Curr Opin Oncol. 2010; 22(3): 194–199, doi: 10.1097/cco.0b013e3283388906, indexed in Pubmed: 20401975.
- Szatkowska K, Dreger E, Basińska M. The sense of coherence and the attachment to God among oncological patients and their quality of life. Psychoonkologia. 2016; 20(1): 37–46, doi: 10.5114/pson.2016.60928.
- Dziaduszko R, Fijuth J. Epidemiologia i etiologii. In: Dziaduszko R, Fijuth J. ed. Nowotwory ośrodkowego układu nerwowego. 2013: 36–37.
- Kowalska M, Humeniuk M, Danso F, et al. [Quality of life of occupationally active people, aged 45-60, living in the Polish industrial region (Silesian agglomeration)]. Med Pr. 2011; 62(5): 455–463, indexed in Pubmed: 22312959.
- Kowalska M, Szemik S. Quality of life in adult inhabitants of Silesian voivodeship, aged 25-44 years – preliminary results. Probl Hig Epidemiol. 2016; 97(2): 172–176.
- Kozaka J, Senkus-Konefka E, Kowalczyk A, et al. 310. Wpływ amifostyny na jakość życia chorych na nowotwory głowy i szyi otrzymujących radioterapię. Reports of Practical Oncology & Radiotherapy. 2003; 8: S345–S346, doi: 10.1016/s1507-1367(03)70793-7.

- Mitchell AJ, Lord K, Symonds P. Which symptoms are indicative of DSMIV depression in cancer settings? An analysis of the diagnostic significance of somatic and non-somatic symptoms. J Affect Disord. 2012; 138(1-2): 137–148, doi: 10.1016/j.jad.2011.11.009, indexed in Pubmed: 22310033.
- Mitchell A, Chan M, Bhatti H, et al. Prevalence of depression, anxiety, and adjustment disorder in oncological, haematological, and palliativecare settings: a meta-analysis of 94 interview-based studies. The Lancet Oncology. 2011; 12(2): 160–174, doi: 10.1016/s1470-2045(11)70002-x.
- Kapela I, Bąk E, Krzemińska S, et al. Evaluation of the level of acceptance of the disease and of satisfaction with life in patients with colorectal cancer treated with chemotherapy. Nursing and Public Health. 2017; 7(1): 53–61, doi: 10.17219/pzp/64689.
- Nowak A, Babiarczyk B, Skoczylas K. The effect of pain control and management strategies on psychological adaptation to cancer. Journal of Public Health, Nursing and Medical Rescue. 2018; 3: 6–12.
- Kurpas D, Bąk E, Seń M, et al. Quality of life in patients of the interventional cardiology unit. Family Medicine and Primary Care Review. 2014; 16(2): 120–123.
- Smoleń E, Słysz M, Jarema M, et al. Czynniki warunkujące styl przystosowania do choroby u pacjentów leczonych onkologicznie. Journal of Education, Health and Sport. 2017; 7(08): 1715–1732.
- Szczepańska-Gieracha J, Malicka I, Rymaszewska J, et al. Psychological adjustment of women after oncological surgery and at the end of treatment. Współczesna Onkologia. 2010; 6: 403–410, doi: 10.5114/ wo.2010.19166.
- Smoleń E, Hombek K, Jarema M, et al. Factors determining the acceptance of the disease in patients treated oncologically. Medycyna Ogólna i Nauki o Zdrowiu. 2018; 24(1): 37–43, doi: 10.26444/monz/86142.
- Ślusarska B, Nowicki GJ, Serwata M. Level of disease acceptance and quality of life in people with lymphoma. Palliative Medicine. 2016; 8(2): 88–95.
- 29. Zapała J, Zawadzka B, Pyk M. Cancer and diabetes similarities and differences in prevention. Probl Hig Epidemiol. 2018; 99(3): 205–210.

Original article

NOWOTWORY Journal of Oncology 2021, volume 71, number 4, 220–224 DOI: 10.5603/NJO.2021.0041 © Polskie Towarzystwo Onkologiczne ISSN 0029–540X, e-ISSN: 2300-2115 www.nowotwory.edu.p1

Chronic obstructive pulmonary disease assessment test predicts postoperative complications in patients with lung cancer qualified for lobectomy

Stefan Wesołowski¹, Tadeusz Orłowski², Paweł Bujnowski³

¹Department of Respiratory Physiopathology, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland ²Department of Thoracic Surgery, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland ³Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Introduction. Patients considered for radical surgery for lung cancer need a functional evaluation to identify those at increased risk of postoperative complications.

Material and methods. We performed an analysis of clinical data of 1214 patients who underwent a single lobectomy for lung cancer. To assess the risk of complications, we used the chronic obstructive pulmonary disease assessment test (CAT). **Results.** 254 pulmonary and 51 cardiovascular complications occurred in 216 (17.8%) patients. In 204 patients with a CAT score \geq 12 complications occurred more often than in patients with a lower score (26.5% vs. 16.0%; p < 0.001). **Conclusions.** In patients undergoing lobectomy for lung cancer, pulmonary complications occurred much more frequently than cardiovascular complications. Patients with a CAT score \geq 12 had a higher rate of postoperative complications as compared to those with a lower score.

Key words: lung cancer, lung resection, preoperative evaluation, CAT

Introduction

The goal of preoperative decision making is to minimise postoperative complications. Knowing which clinical factors are associated with complications permits oncologists, pulmonologists or surgeons to assess which candidates are appropriate for major thoracic surgery. Patients with lung cancer qualified for curative lung resection need an assessment of their health status, as they frequently suffer from comorbidities, mainly chronic obstructive pulmonary disease (COPD) and cardiovascular disease [1, 2], which are considered significant prognostic factors [3, 4]. The joint European Respiratory Society/European Society of Thoracic Surgeons and the American College of Chest Physicians [5, 6] recommend a stepwise functional workup of lung resection candidates. The assessment begins with a cardiovascular evaluation using the thoracic revised cardiac risk index (ThRCRI), then pulmonary function tests are performed with the calculation of predicted postoperative lung function. Patients with reduced predictive postoperative lung function are referred for exercise tests.

Current guidelines endorse the thoracic revised cardiac risk index (ThRCRI), as a first-line screening tool assessing the

How to cite:

Wesołowski S, Orłowski T, Bujnowski P. Chronic obstructive pulmonary disease assessment test predicts postoperative complications in patients with lung cancer qualified for lobectomy. NOWOTWORY J Oncol 2021; 71: 220–224.

cardiac risk before lung resection [7]. The ThRCRI includes cardiac ischaemia, cerebrovascular disease, renal disease and the extent of resection (pneumonectomy). However, simple registration of comorbidities does not provide information on the impact of comorbidities on patients' health. Besides, an assessment of the risk of pulmonary complications is not included at this stage of the preoperative evaluation. The chronic obstructive pulmonary disease assessment test (CAT) was introduced in 2009 as a tool to measure health status impairment in patients with COPD [8]. The CAT is a simple, patient-completed guestionnaire, that covers a broad range of effects of COPD on patients' health. It is a standardised assessment tool consisting of only 8 items, that provides reliable and valid information on symptoms, activity limitation and other manifestations of COPD. We assumed that the CAT could also measure the symptomatic effect of other comorbidities and be useful in assessing the risk of complications in all patients qualified for lung resection, regardless of whether they have COPD or not.

The current study aimed to:

- rate the incidence of pulmonary complications and evaluate the need to include these type of complications at an early stage of preoperative evaluation;
- determine the utility of incorporating the CAT in the initial stage of the overall risk assessment of perioperative pulmonary and cardiovascular complications in patients with lung cancer qualified for lobectomy.

Materials and methods

The study was accepted by the local ethics committee. The participating subjects were patients who had undergone a single lobectomy for lung cancer at the Department of Thoracic Surgery, Institute of Tuberculosis and Lung Diseases in Warsaw, between March 2014 and March 2019. Preoperative staging included a complete medical history and physical examination, blood and urine examinations, a 12-lead resting electrocardiogram, pulmonary functional tests (PFT), computed tomography of the chest, and a fibrobronchoscopy. In the presence of symptomatic or previously documented cardiovascular disease, echocardiography, neck or lower limb ultrasound studies were performed. PFT included spirometry with measurements of forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) and a lung transfer factor for carbon monoxide (TL_{co}) measurements using the single breath method.

Tests were performed using a MasterScreen system (software version 4.65; Jaeger, Würzburg, Germany). We used reference values from the 2012 Global Lung Function Initiative for spirometry [9] and from the 1993 ERS/European Community for Coal and Steel for TL_{co} [10]. The spirometric criterion of COPD diagnosis was FEV₄/FVC ratio < 0.7 in line with the Global Initiative for Chronic Obstructive Lung Disease (GOLD) [11]. The classification of airflow limitation severity was also taken from the GOLD, mild – FEV1 \geq 80% predicted, moderate – FEV1 <80% and \geq 50% predicted, severe – FEV1 <50% and \geq 30% predicted. The ThRCRI score was calculated according to Brunelli et al. [8].

In our study, the ThRCRI included only three classes, as patients undergoing pneumonectomy were not included in the analysis. The Polish version of the CAT, obtained from the website www.catestonline.org, was administered to patients while they were waiting for PFT. The patients were briefly informed on how to complete the questionnaire and then filled it in independently. The CAT consists of eight items assessing cough, phlegm, chest tightness, breathlessness going up a hill/ stairs, activity limitations at home, confidence in leaving home, sleep and energy, with 6-point ordinal scales (scored 0–5) of severity for each item, that provides a scoring range of 0–40.

Lobectomies were performed by either thoracotomy or video-assisted thoracoscopic surgery. Stage I tumours were removed using a minimally invasive technique. The surgical approach was decided by experienced thoracic surgeons. Extended lobectomies (e.g. chest wall resections) were excluded from the analysis. Complications and deaths were those occurring within 30 days postoperatively or later if the patient was still in the hospital. The following pulmonary and cardiovascular complications were included: prolonged air leak, respiratory failure requiring mechanical ventilation for more than 48 hours, atelectasis or retention of secretions in the airways requiring bronchoscopy, pneumonia, myocardial infarction, cardiac failure, pulmonary embolism and death of the patient. The degree of severity of complications was assigned according to the Clavien-Dindo classification [12]. Only life-threatening complications or those requiring surgical or endoscopic intervention (category >2) were included in the analysis.

Figure 1. The incidence of complications by CAT score and COPD diagnosis

Table I. Demographic and clinical characteristics of the study patients (n = 1214)

	All patients	COPD patients n = 630	Non-COPD patients n = 584	p value
age in years, mean (SD)	65.2 (8.6)	66.4 (7.6)	63.9 (9.3)	<0.0001*
male, n (%)	647 (53)	388 (61.6)	259 (44.3)	<0.0001**
FEV ₁ , % predicted (SD)	84.0 (19.1)	73.3 (15.7)	95.4 (15.5)	<0.0001*
FVC, % predicted (SD)	96.0 (15.4)	94.1 (15.5)	98.1 (15.1)	<0.0001*
FEV ₁ /FVC, mean (SD)	0.67 (0.10)	0.60 (0.07)	0.76 (0.04)	<0.001*
TL _{co} % predicted (SD)	72.8 (17.6)	68.0 (16.7)	78.0 (17.1)	<0.0001*
CAT, mean (SD)	6.4 (5.7)	6.8 (6.0)	5.9 (5.5)	0.006*
ThRCRI [^] , mean (SD)	0.32 (0.66)	0.35 (0.68)	0.28 (0.63)	0.08*
comorbidity				
COPD, n (%)	630 (51.9)			
IHD, n (%)	223 (18)	123 (20%)	100 (17)	0.28**
CVD, n (%)	29 (2.4)	19 (3)	10 (2)	0.21**
renal insufficiency, n (%)	5 (0.4)	3 (0.5)	2 (0.4)	0.72**

Tests for COPD vs. non-COPD patients – *T-Test for means; ** Chi² test; FEV₁ – forced expiratory volume in the first second; FVC – forced vital capacity; TL_{co} – lung transfer factor for carbon monoxide; IHD – ischemic heart disease; CVD – cerebrovascular disease; SD – standard deviation; ^ – ThRCRI included only three items, without pneumonectomy (score range 0–4.5).

Statistical analysis

Categorical data were tested by the Chi² test. Tests for complications for CAT score \geq 12 vs. CAT score <12 and two more such tests included separately COPD and non-COPD patients (fig. 1) were adjusted using the Holm-Bonferroni method for multiple comparisons with p value thresholds adjusted to be respectively: 0.017, 0.025 and 0.05. Lower test p-values were met in testing.

Numerical data statistics were presented in the form of means with standard deviations (SD). Examining table I, means of numerical variables for COPD and non-COPD groups were tested using the independent-samples T-Test. P values below 0.05 for 2-tailed tests were considered statistically significant to reject the hypothesis for equality. Analyses were performed using scientific computation libraries, SciPy (ver. 1.3) and Numpy (ver. 1.16.2), in the Python programming language (ver. 3.8).

Results

The demographic and clinical characteristics of the study subjects are shown in table I. Among 1214 subjects, 630 (52%) patients met the spirometric criteria of the COPD diagnosis (FEV₁/FVC < 0.7), of whom 95% were smokers, with mean pack-years 35.9 (SD: 21.9). There were 206 (33%) cases with mild, 384 (61%) moderate and 40 (6%) with severe airway limitation. COPD was the most common comorbidity, followed by ischaemic heart disease. Cerebrovascular disease and renal insufficiency were rare, found in less than 3% of patients. The incidence of ischaemic heart disease, cerebrovascular disease and renal insufficiency was similar in COPD patients and non-COPD patients. The mean CAT score was 6.4 (SD: 5.7, range 0–32) and was higher in patients with COPD 6.8 (SD: 5.9) than in non-COPD patients 5.9 (SD: 5.5; p = 0.005). Surgical

Table II. The distribution of patients in each class of the ThRCRI and the CAT

	Number of cases n (%)	Number of cases with pulmonary and cardiovascular complications n (%)
ThRCRI*		
0	972 (80)	164 (16.9)
1-1.5	224 (18.5)	50 (22.2)
2–2.5	5 (0.5)	0
>2.5	12 (1)	2 (16)
CAT		
<12	1010 (83)	162 (16.0)
≥12	204 (17)	54 (26.5)

* - ThRCRI included only three items, without pneumonectomy (score range 0-4.5).

interventions comprised 434 (36%) right upper, 288 (24%) left upper, 210 (17%) left lower, 193 (16%) right lower, and 89 (7%) middle lobe lobectomies.

From the entire group of 1214 patients, 235 pulmonary and 51 cardiovascular complications were registered, which occurred in 216 (17.8%) patients. Grade 3a complications (surgical or endoscopic intervention not under general anaesthesia) occurred in 168 (13.8%), grade 3b complications (surgical or endoscopic intervention under general anaesthesia) in 4 (0.3%), grade 4a (life-threatening single organ dysfunction) in 23 (1.9%), grade 4b (life-threatening multi organ dysfunction) in 12 (1.0%), and grade 5 (the death of the patient) complications in 9 (0.7%) patients.

Based on the analysis of the discrimination of CAT scores in relation to complications, patients were divided into two groups, CAT score <12 and \geq 12. At this CAT bound, the variable was more precise in terms of assessing complications, compared to other tested thresholds, and at the same time included a fairly large number of patients with complications. The distribution of patients in classes of the ThRCRI and the CAT, and the number of cardiovascular and pulmonary complications in each class are shown in table II.

In the analysed group, the maximum value of the ThRCRI could be 4.5, not 5.5, because pneumonectomy was an exclusion criterion. 20% of patients had ThRCRI greater than zero, mainly due to comorbid ischaemic heart disease. The rate of pulmonary and cardiovascular complications increased in patients with a ThRCRI score \geq 1, 21.5% vs. 16.9% (Chi² test; p = 0.048). The incidence of complications by CAT score in the whole group, in COPD and non-COPD patients, is shown in figure 1.

There were 204 (16.8% of the whole group) patients with a CAT score \geq 12, and in these patients, complications occurred more often than in patients with a lower score (26.5% vs. 16.0%, Chi² test; p < 0.001). This difference was true both in COPD patients (30,9% vs. 21,9%, p < 0.04) and in non-COPD patients (19.7% vs. 10.1%, p < 0.02). In COPD patients, the rate of complications increased with the severity of airway limitation, 16%, 27% and 30% in patients with mild, moderate and severe airway obstruction respectively.

Conclusions

Thoracic surgery is considered high-risk surgery but remains the best therapeutic option for a cure in patients with resectable non-small cell lung cancer. Patients with lung cancer who are considered for radical surgery should be assessed to identify subjects at increased risk of perioperative complications. The initial step in the current algorithm of functional qualification focused on cardiovascular complications has limitations. The incidence of major cardiac complications is low – 3.3% in the series by Brunelli et al. [8], 4.1% in the series by Ferguson et al. [13] and in our group.

We found major pulmonary complications more than four times more common than cardiovascular complications, so the risk of this type of complication should be assessed from the beginning of the functional workup. Pulmonary function tests, which are the second step of the functional workup, allow for the calculation of predictive postoperative lung function, but they are not a good tool for health status assessment. Several studies have indicated that the relationship between lung function and health status scores is weak [14, 15]. We used the CAT, a simple instrument to assess the symptomatic impact on patients' health. The CAT was developed as an instrument to measure the health status of patients with COPD in an easy way [9]. The CAT covers all the important symptomatic areas of COPD and consists of only 8 items that provides a quantified measure of health status.

The item selection process followed a vigorous methodology and created a questionnaire with very good measurement properties. It requires only 2–3 minutes to complete

and score, which enables rapid and reliable assessment of a patient's health status that can be readily incorporated into routine care [16, 17]. The CAT was extensively evaluated in COPD patients with varying severity of the disease across Europe [18]. In our opinion, symptoms assessed by CAT are not limited to COPD and many of them, e.g. breathlessness going up a hill/stairs, activity limitation at home, confidence in leaving home, sleep and energy levels, are common to lung and cardiovascular diseases. That was the reason we decided to use the CAT as a tool to assess the risk of pulmonary and cardiovascular complications in all patients gualified for lung resection. We found that patients with a CAT score \geq 12 had more complications than patients with a lower CAT score and the higher incidence of complications was independent of the COPD diagnosis. The CAT identified the high-risk group at a very early stage of functional workup before PFT or exercise tests were performed. It is difficult to compare the results of our study with other series because we have found only one study aimed at verifying the usefulness of symptoms or quality of life-based scores, including the CAT, in predicting the risk of pulmonary postoperative complications in patients with early-stage COPD [19].

Our study is the first in which the CAT was used in a large group of patients qualified for thoracic surgery regardless of COPD diagnosis. It is worth mentioning that the analysis in the current study differs from those by Brunelli et al. [7] and Ferguson et al. [13]. The series by Brunelli and Ferguson included patients who underwent lung resection for benign and malignant diagnoses, and our study group included only patients with lung cancer undergoing a single lobectomy - the most common type of resection (89% of resection surgeries for lung cancer in our hospital). In this way, we got a large and homogeneous group of patients in terms of the extent of surgery, something we consider a strength of our study. Patients undergoing elective pneumonectomy were excluded from the analysis because we think these patients should undergo a separate functional workup, since such an extensive procedure is a very strong risk factor - independent of the accompanying diseases and the patient's state of health. In practice, in patients undergoing lobectomy, only ischaemic heart disease was a prevalent ThRCRI criterion, since renal insufficiency and cerebrovascular disease were rare, and found in less than 3% of patients. Moreover, our analysis embraced not only cardiovascular, but also pulmonary perioperative complications, which were much more common. In this context, the CAT, which turned out to be more effective, could replace the THRCRI in the pre-operative functional assessment algorithm.

In conclusion, pulmonary complications, occurring much more frequently than cardiovascular complications, should be included in the risk assessment scheme for lung resection. The CAT turned out to be an effective and easy to apply in practice instrument for initial risk assessment in patients with lung cancer qualified for lobectomy. Patients with a CAT score \geq 12 had a higher rate of pulmonary and cardiovascular complications as compared to those with a lower score. The CAT has enabled simple early identification of patients in the high-risk group who require the most thorough further functional assessment.

Conflict of interest: none declared

Stefan Wesołowski

Institute of Tuberculosis and Lung Diseases Department of Respiratory Physiopathology ul. Płocka 26 01-138 Warszawa, Poland e-mail: s.wesolowski@igichp.edu.pl

Received: 15 Apr 2021 Accepted: 28 Apr 2021

- 1. López-Encuentra A. Comorbidity in operable lung cancer. Lung Cancer. 2002; 35(3): 263–269, doi: 10.1016/s0169-5002(01)00422-6.
- Birim O, Kappetein AP, Bogers AdJ. Charlson comorbidity index as a predictor of long-term outcome after surgery for nonsmall cell lung cancer. Eur J Cardiothorac Surg. 2005; 28(5): 759–762, doi: 10.1016/j. ejcts.2005.06.046, indexed in Pubmed: 16157485.
- Lüchtenborg M, Jakobsen E, Krasnik M, et al. The effect of comorbidity on stage-specific survival in resected non-small cell lung cancer patients. Eur J Cancer. 2012; 48(18): 3386–3395, doi: 10.1016/j. ejca.2012.06.012, indexed in Pubmed: 22795582.
- Ambrogi V, Pompeo E, Elia S, et al. The impact of cardiovascular comorbidity on the outcome of surgery for stage I and II non-small-cell lung cancer1. Eur J Cardiothorac Surg. 2003; 23(5): 811–817, doi: 10.1016/ s1010-7940(03)00093-9.
- Brunelli A, Charloux A, Bolliger CT, et al. European Respiratory Society and European Society of Thoracic Surgeons joint task force on fitness for radical therapy. ERS/ESTS clinical guidelines on fitness for radical therapy in lung cancer patients (surgery and chemo-radiotherapy). Eur Respir J. 2009; 34(1): 17–41, doi: 10.1183/09031936.00184308, indexed in Pubmed: 19567600.
- Brunelli A, Kim AW, Berger KI, et al. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013; 143(5 Suppl): e1665–e1905, doi: 10.1378/chest.12-2395, indexed in Pubmed: 23649437.

- Brunelli A, Varela G, Salati M, et al. Recalibration of the revised cardiac risk index in lung resection candidates. Ann Thorac Surg. 2010;90(1): 199–203, doi: 10.1016/j.athoracsur.2010.03.042, indexed in Pubmed: 20609775.
- Jones PW, Harding G, Berry P, et al. Development and first validation of the COPD Assessment Test. Eur Respir J. 2009; 34(3): 648–654, doi: 10.1183/09031936.00102509, indexed in Pubmed: 19720809.
- Quanjer PH, Stanojevic S, Cole TJ, et al. ERS Global Lung Function Initiative. Multi-ethnic reference values for spirometry for the 3-95yr age range: the global lung function 2012 equations. Eur Respir J. 2012; 40(6): 1324–1343, doi: 10.1183/09031936.00080312, indexed in Pubmed: 22743675.
- Cotes JE, Chinn DJ, Quanjer PH, et al. Standardization of the measurement of transfer factor (diffusing capacity). Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl. 1993; 16: 41–52, indexed in Pubmed: 8499053.
- Global Initiative for Chronic Obstructive Lung Disease (GOLD)[internet]. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease. 2019. https://goldcopd.org/ gold-reports/ (10.04.2020).
- Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004; 240(2): 205–213, doi: 10.1097/01. sla.0000133083.54934.ae, indexed in Pubmed: 15273542.
- Ferguson MK, Celauro AD, Vigneswaran WT. Validation of a modified scoring system for cardiovascular risk associated with major lung resection. Eur J Cardiothorac Surg. 2012; 41(3): 598–602, doi: 10.1093/ ejcts/ezr081, indexed in Pubmed: 22345181.
- Jones PW. Health status measurement in chronic obstructive pulmonary disease. Thorax. 2001; 56(11): 880–887, doi: 10.1136/thorax.56.11.880, indexed in Pubmed: 11641515.
- Agusti A, Calverley PMA, Celli B, et al. Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) investigators. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir Res. 2010; 11: 122, doi: 10.1186/1465-9921-11-122, indexed in Pubmed: 20831787.
- Kelly JL, Bamsey O, Smith C, et al. Health status assessment in routine clinical practice: the chronic obstructive pulmonary disease assessment test score in outpatients. Respiration. 2012; 84(3): 193–199, doi: 10.1159/000336549, indexed in Pubmed: 22441322.
- Raghavan N, Lam YM, Webb KA, et al. Components of the COPD Assessment Test (CAT) associated with a diagnosis of COPD in a random population sample. COPD. 2012; 9(2): 175–183, doi: 10.3109/15412555.2011.650802, indexed in Pubmed: 22409441.
- Jones PW, Brusselle G, Dal Negro RW, et al. Health-related quality of life in patients by COPD severity within primary care in Europe. Respir Med. 2011; 105(1): 57–66, doi: 10.1016/j.rmed.2010.09.004, indexed in Pubmed: 20932736.
- Kim ES, Kim YT, Kang CH, et al. Prevalence of and risk factors for postoperative pulmonary complications after lung cancer surgery in patients with early-stage COPD. Int J Chron Obstruct Pulmon Dis. 2016; 11: 1317–1326, doi: 10.2147/COPD.S105206, indexed in Pubmed: 27366059.

Review article

A review of methods of intraoperative margin assessment in breast conserving surgery

Tomasz Sachańbiński¹, Barbara Radecka^{2, 3}

¹Oncological Surgery Department with a Sub-department of Breast Diseases, Tadeusz Koszarowski Oncology Centre in Opole, Opole, Poland ²Institute of Medical Sciences, Faculty of Medicine, University of Opole, Opole, Poland ³Clinical Oncology Department with an Outpatient Unit, Tadeusz Koszarowski Oncology Centre in Opole, Opole, Poland

Breast conserving therapy is the primary treatment modality in early-stage breast cancer patients. Despite the development of methods for the intraoperative assessment of tumor margins, 20–30% of patients still require re-resection due to postoperative tumor infiltration at the surgery margins. In recent years, many methods have been developed to reduce the number of re-resections due to margin infiltration. Here we review the current methods together with several more techniques under investigation.

Key words: breast conserving surgery, surgical margin, re-resection

Introduction

Breast conserving surgery (BCS) is the standard of care in patients with early-stage breast cancer (BC) [1]. In stage I and II, BCS is at least as effective as a mastectomy [2]. It includes resection of the primary breast tumor as well as diagnostic and therapeutic axillary procedures. Then the remaining mammary gland is irradiated. Most patients receive additional systemic (adjuvant) therapies depending on the pathological stage of the cancer and the biological subtype. One of the conditions for effective breast conserving therapy is obtaining clean margins, e.g. a site free of cancer cells, after surgical tumor resection [3]. The current definition of free surgical margins for invasive cancer is the absence of tumor cells in the surgical incision line (no ink on tumor) [4, 5]. In ductal carcinoma *in situ* (DCIS), it is recommended to maintain a margin of not less than 2 mm from the surgical incision line [5].

Due to increasingly common screening tests and progress in imaging diagnostics, more and more breast cancers are detected during the preclinical phase. The early stage at diagnosis enables the widespread use of breast conserving therapy. Progress in adjuvant treatment – both systemic and radiotherapy – has significantly reduced the risk of local recurrence after BCS. Currently, the ten-year recurrence risk ranges between 4 and 7% [6]. In patients without tumor-free margins, the local recurrence risk increases two- to three-fold; therefore radical breast tumor resection is the main goal of conserving therapy [4, 7].

The intraoperative assessment of surgical margins remains a challenge for conserving therapy. Despite significant progress in this area, in 20–30% of cases the final histopathological examination still indicates the presence of cancer cells in the surgical incision line [3, 7]. This results in reoperation – a local scar excision or mastectomy, which in turn extends the treatment duration, adversely affect the aesthetic effect, increasing the patient's stress and anxiety levels, and exacerbating the total treatment costs. Reoperation rates are higher for DCIS and breast invasive ductal carcinoma coexisting with ductal carcinoma *in situ* (IDC-DCIS), accounting for 46% and 45%, respectively [8, 9]. Therefore, the use of sufficiently sensitive

How to cite:

Sachańbiński T, Radecka B. A review of methods of intraoperative margin assessment in breast conserving surgery. NOWOTWORY J Oncol 2021; 71: 225–231.

and specific methods of intraoperative assessment of resection margins is very important. None of the methods currently used are ideal, and research is ongoing to evaluate the different approaches. In the following sections we will present the available methods that increase the effectiveness of conserving therapy by reducing the rate of microscopic irradicality resulting in the need for reoperation.

Surgical methods

Intraoperative gross clinical evaluation of the lumpectomy specimen

This technique consists of an intraoperative clinical evaluation of the removed specimen and the resection bed to establish possible indications for extended resection. During the operation, the surgeon palpates the resected part of the breast and assesses the margins macroscopically. The surgeon assesses the tissue of the tumor bed and feels around for any suspicious lumps. The advantages of this procedure include its simplicity and relatively short duration; however, the sensitivity and specificity is low (<70%), which significantly limits its usefulness in reducing the need for reoperation [3, 10].

Routine resection of cavity shave margins (CSM)

During the operation, the surgeon, after tumor resection, collects four, and if the preparation does not reach the skin and pectoral fascia, even six additional samples corresponding to the upper, lateral, medial and lower margins, and possibly the anterior (on the skin side) and the posterior (on the pectoral fascia side) [11]. Each of these tissue samples should be about 1 cm thick. Two meta-analyzes, comparing wide excision alone versus tumor excision with CSM, showed that routine use of the CSM significantly reduced the reoperation rate for margins infiltrations from 32% to 16% and from 31% to 12%, respectively [12, 13]. The size of the total part of breast removed in the CSM group is greater than in the group without CSM; however, according to the cited meta-analyzes, this does not affect the postoperative aesthetic effect [12, 13]. On the contrary, there are single analyzes available that negate the beneficial effect of routinely used CSM in reducing reoperation rates [14].

Microscopic method

Frozen section analysis (FSA)

After processing, freezing and staining, the removed specimen is subjected to an intraoperative histopathological evaluation. This method requires transport of preparation to the histopathological laboratory and its preparation while the patient remains under anesthesia. This increases surgery duration by an average of 15–30 minutes [15, 16]. Ad hoc margin assessment does not completely eliminate the reoperations due to non-clean margins, although it can significantly reduce their rates even from 35% to 10% [15–17]. The sensitivity of this method ranges from 65% to 83% and the specificity exceeds 90% [15, 16]. Sensitivity decreases in DCIS, as well as when surgery is preceded by systemic treatment [17]. In some cases, tissue freezing may cause its damage and artifacts that hinder or prevent post-operative histopathological margin assessment.

Ad hoc macroscopic margin assessment (MMA)

In this method, the margin of the specimen removed is assessed macroscopically and intraoperatively by a pathologist, after marking the edges with ink. If any of the margins is smaller than 10 mm, then it is simultaneously excised as an additional, extended margin. This procedure allows a reduction in the reexcision rate compared to surgery alone, from 34% to 26% [7].

Touch imprint cytology/preparation

This can be an alternative to the intraoperative margin assessment using FSA. This method is based on the increased ability of cancer cells to adhere to glass surfaces as opposed to fat cells [15]. During surgery, each margin of the removed specimen is pressed against a glass plate. The obtained cytological preparations are assessed by a pathologist. The advantage of this method compared to FSA is no consumption of tissue material and shorter evaluation time [15]. Additionally, the assessed impression captures the entire surface of the specimen (the entire margin), and not only selected areas [15, 18]. The sensitivity and specificity of this method is comparable to FSA and account for up to 72% and 97%, respectively [15]. However, cauterization (thermal damage) or drying of the margins can lead to false results in the cytological evaluation. For this reason, it is necessary to cooperate with a pathologist who has extensive experience in cytological assessment. It is worth noting that there are attempts to automate this assessment method [18].

Radiological methods

Two-dimensional 2D mammography specimen

After resection of part of the breast, an X-ray of the removed preparation is made. It allows to determine whether the target lesion has been removed and to assess the width of the radiological resection margins. Two images should be taken in perpendicular planes. This procedure is considered the gold standard in most cancer centers, and is also in line with the Polish Society of Oncological Surgery recommendations [19].

The advantages of this method include the relatively low complexity, and the availability and existing experience of radiologists. Thanks to standard mammography performed as part of preoperative diagnosis, it is possible to compare the images of the removed preparation with the preoperative ones. Thanks to the appropriate mammographic chambers, the intraoperative mammographic evaluation of removed tissue can also be performed directly in the operating room. This not only significantly reduces the rate of reoperations due to infiltrated margins, but also shortens the total procedure duration [20]. There is some criticism of specimen mammography usefulness as an ineffective method of margins assessment, while emphasizing its high value in confirming the removal of the target lesion [21, 22]. The method allows for a reduction in the volume of the resected breast in the case of palpable lesions, which results in a better aesthetic effect [20]. It should be added that the accuracy of the mammographic margin assessment is significantly lower in the case of pre-invasive and lobular carcinomas [23].

Digital breast tomosynthesis (DBT)

DBT consists of taking a series of digital X-ray images of the preparation at different angles; from these photos a three--dimensional (3D) image is reconstructed (synthesized). Tomosynthesis improves assessment sensitivity by about 8% compared to conventional 2D imaging [24]. Assessment with this method is guick and requires little contribution of the support staff. The images obtained can be assessed in the operating room by the operating surgeon or sent for radiological evaluation. Using this imaging method, it is possible to verify the positive resection margins with a sensitivity of 77% and a specificity of 98% [25]. In traditional mammography, the spatial image of the removed specimen is compressed into one flat image, which can result in a misassessment of the margins. Tomosynthesis enables evaluation of the entire resected specimen in 1 mm slices, which significantly reduces the risk of error [24, 26].

Ultrasound of the removed part of breast

An intraoperative ultrasound examination enables the localization and precise resection of palpable and nonpalpable breast masses. In the case of palpable lesions, an ultrasound allows better margin control compared to removal only under palpation, reducing the re-resection rate from 17% to 6% [27]. The volume of the removed preparation is also smaller, which may translate into better aesthetic effects [28]. In the case of nonpalpable lesions, the use of an intraoperative ultrasound with a high-frequency linear probe in combination with gross clinical evaluation in 223 patients allowed to obtain a precise lesion visualization in 99.6% of cases and to reduce the need for reoperation due to infiltrated margins to levels as low as 4% [28].

The challenges in using this method include invisible or poorly visible lesions on the ultrasonography (microcalcifications, small lesions in adipose tissue), as well as difficulties in visualizing pre-invasive cancer, or pre-invasive components around invasive cancer. In contrast, the assessment of lesions in breast glandular tissue may be better than using X-ray methods [29]. However, this requires the surgeon to be skilled in using ultrasound and the availability of high-class ultrasound machines in the operating theater.

Micro CT

The principle of operation is the same as in the case of conventional computed tomography, however, higher resolution is necessary. CT enables a spatial analysis of the removed specimen to be performed in order to assess resection margins, which eliminates the limitations of conventional 2D mammography. The studies conducted so far in a small group of patients show the possibility of reducing the need for reoperation from 31% to 14%, however, they do not allow for an unequivocal assessment of the usefulness of this method in reducing the positive margins after conserving surgeries [30]. Furthermore, despite the higher resolution and high contrast between soft tissues, it is still difficult to distinguish between fibroglandular breast tissue and a tumor, which results in a low sensitivity of 56–60% [30, 31].

Magnetic resonance imaging (MRI)

The advantage of MRI in the intraoperative assessment of a resected breast is the high possibility of differentiating soft tissues on the obtained images. The sensitivity of the cancer extent assessment in the resected specimen may reach up to 93% [32]. Due to the high spatial resolution, attempts are made to assess the lesions by a pathologist based on magnetic resonance images, which would eliminate the need to process and fix histopathological preparations. So far, the accuracy of this assessment is unsatisfactory (distinguishing a malignant from a benign lesion in 57% of cases) [33]. Until recently, the time needed to obtain images, the need for pre-operative contrast administration and the size of the entire system were a serious limitation in the intraoperative use of this method. Lately, mobile MRI scanners have become available that do not require additional covers and enable developing satisfactory images without enhancing contrast. In a study involving 22 patients, a sensitivity of 91% and a specificity of 93% were achieved in distinguishing malignant from healthy tissues in the resected breast [32].

Electromagnetic methods

Radiofrequency spectroscopy

Radio waves emitted by the probe are absorbed, scattered and reflected differently by healthy and cancerous tissues. This is due to the lower electric potential of the tumor cell membrane compared to a normal cell, less mutual adhesion of tumor cells, greater vascularization of tumor tissues and the different morphology of the tumor cell nucleus. Due to these phenomena, the device emitting radiofrequency waves can distinguish between neoplastic and normal tissues. The transducer should be placed on the surface of the removed specimen. A positive reading indicates the presence of cancer cells to a depth of 1 mm from the edge of the specimen and obliges the surgeon to extent resection margin [34]. It is recommended to use the device in conjunction with standard techniques for imaging the removed tissue (mammography). Device sensitivity in the studies was estimated at 75–76% with a specificity of 46%. The researchers emphasize that the device is not an ideal solution to the margins issue in BSC, but it is a considerable help, significantly reducing reoperation rates [35].

Bioimpedance spectroscopy

In a clinical setting, mobile, handheld devices are used; their principle of operation in margin assessment is based on the spectroscopic analysis of tissue impedance (the phenomenon of different dielectric properties of normal and neoplastic tissues is used). Due to different cell morphology, increased vascularization and mutual adherence of cells, neoplastic tissue has a lower impedance as well as higher conductivity and electrical permeability compared to healthy tissues. The technique is fast (the turnaround time is about 5 minutes) and does not require tissue damage (e.g. cutting and fixing). Limitations include the possibility of false results in inflammatory tissues, which bioimpedance may be similar to neoplastic tissues. In the analysis performed by Dixon et al., the need for reoperation due to infiltrated margins was reduced from 37% to 17%, and after gaining more experience in using the device, even up to 9% of patients undergoing surgery compared to intraoperative margin assessment using a 2D radiograph [36]. One of the advantages of this device is its usefulness in assessing resection margins for both invasive and DCIS cancer and other atypical proliferative lesions [36]

It should be mentioned that a device operating on a similar principle was developed in 2017 in Wroclaw by M. Rząca et al. and is currently under study [37].

Optical methods

Optical coherence tomography (OCT)

This method uses infrared radiation and the phenomenon that cancer cells scatter waves differently. Cancer cells, due to the larger nucleus, higher cytosol density, and lower nuclear to cytoplasmic ratio, have greater capacity to scatter and reflect of electromagnetic waves compared to normal cells. The emitted and reflected radiation is captured by the detector and based on this the image is formed [38]. Since infrared permeability into the tissues reaches about 2 mm, this method is very promising in the margin assessment of the resected breast. In the first studies comparing this method with postoperative histopathological assessment, the sensitivity and specificity of optical tomography was 91.7% and 92.1%, respectively [39]. However, in subsequent clinical trials, much lower sensitivity and specificity was obtained, e.g. 55–65% and 68–70%, respectively [40].

Photoacoustic tomography

The method, currently being evaluated in preclinical studies, consists of treating the examined tissue with laser pulses.

The laser energy is partially reflected and radiated in the form of ultrasound waves detected by a suitable detector. The laser pulses penetrate into the tissue up to 3 mm deep. The difference in ultrasound wave frequency depends on the hemoglobin level and fat content in the tissues. So far, attempts to use this method concern only very small tissue surfaces and it performs well in fatty fragments, and much worse in glandular tissue [41].

Fluorescence imaging

There have been some attempts to use fluorescence for imaging and assessment of resection margins. These methods require dye administration (e.g., methylene blue or indocyanine green) prior to surgery. Thanks to the faster "washing out" of the dye from healthy cells and its longer retention in cancer cells, it is possible to assess (in infrared) whether there is dye accumulation in the resection margin [42]. Attempts are also being made to combine a dye (fluorophore) with a targeted antibody, such as an antibody binding to a vascular endothelial growth factor (VEGF), to increase the dye concentration in the tumor [43]. The limitation of this method, which is still under investigation, is the need to administer the substance before surgery and the fact that the currently used fluorophores are not selectively retained in breast tissues.

Microscopy with ultraviolet surface excitation (MUSE)

This method, currently being evaluated in preclinical studies, is based on stimulation of fluorophores by ultraviolet radiation falling on the surface. Ultraviolet radiation does not penetrate deeply and therefore has limited utility for assessing deeper layers of tissues. Assessing resection margins in DCIS can be problematic, but in the case of margins in invasive cancer, it is sufficient, according to the accepted consensus no ink on the tumor. MUSE seems to be a promising technique. An additional advantage of this method is that it does not damage tissues [44].

Hybrid methods

The combination of different methods of assessing the resected breast would make it possible to use the advantages of each of them, while partially compensating for their disadvantages. For example, radiological methods are very accurate when it comes to confirming complete resection, while spectroscopic or optical methods assess the surface of the resected breast with high accuracy, i.e. an infiltrationfree resection margin. An example of such a hybrid system is mammography of a resected breast combined with a spectroscopy using electromagnetic waves. Mammography confirms the removal of a neoplastic lesion with high accuracy, while a spectroscopy assesses whether the margins of a resected specimen are free of cancer cells. The combination of these two assessments reduces the need for reoperation by up to 50% [45, 46]. Another hybrid approach is a device combining photoacoustic tomography with ultrasonography. The study on a small group of patients showed very high (100%) sensitivity and high specificity in margin assessment [45].

Other methods

Intelligent knife

This technique analyzes the smoke produced by the electrocoagulation used to resect the specimen. Cell damage during the use of surgical diathermy results in the evaporation of their contents and transformation into an aerosol state. Using smoke spectrometric analysis and having established smoke models when cutting normal tissue and neoplastic tissue, it is possible to assess whether the cut is performed within normal or neoplastic tissues. Preliminary studies show a sensitivity of 77% with a very low number of false positive results [46, 47].

Nuclear medicine

The use of positron emission tomography (PET) to assess the margins of a resected breast in clinical practice is currently not possible, taking into account the availability and complexity of the apparatus. However, there have been attempts involving preoperative administration of 18-fluorodeoxyglucose for the intraoperative evaluation of sentinel node and the margins of the resected breast. The unique evaluation which was carried out in two patients showed the high sensitivity and specificity of this method, however, the small number of patients makes it impossible to draw definitive conclusions regarding the effectiveness in resection margin assessment [48].

Conclusions

Numerous techniques have been developed for the intraoperative assessment of resection margins, which can significantly reduce reoperation rates. Some of these methods, however, are time and labor-intensive as well as expensive and with difficult access, which prevents their use in daily clinical practice in most centers. At the same time, intraoperative margin assessment according to the standard of care is necessary in every center specializing in the management of BC patients. The procedure still in force in Poland is the intraoperative mammographic evaluation of the resected part of the breast. Intraoperative ultrasound, tomosynthesis and microtomography are increasingly used. Some centers use ad hoc histopathological margin assessment, although this is associated with a significant extension of the total procedure duration. Spectroscopic techniques are noteworthy due to their short evaluation time and simple operation. In combination with standard imaging techniques – mammography, ultrasound - they can be a significant help in margin assessment in the future. Other methods, as promising as they are, are not yet developed enough to be used as a standard of care.

However, it is important that each breast cancer center monitors the rate of re-resections due to margin infiltration, ensuring every effort is made to reduce it. A standard of care in the intraoperative evaluation of the preparation should be developed based on the Polish Society of Oncological Surgery recommendations and, depending on the availability of additional methods, should be systematically improved. The key to success is an accurate preoperative diagnosis, precise marking of malignant lesion and a refined method of intraoperative margin assessment [49].

Conflict of interest: none declared

Tomasz Sachańbiński

Tadeusz Koszarowski Oncology Centre in Opole Oncological Surgery Department with a Sub-department of Breast Diseases ul. Katowicka 66 a 45-060 Opole, Poland e-mail: saszkin73@gmail.com

Received: 24 Jan 2021 Accepted: 18 Mar 2021

- Jeziorski A, Rutkowski P, Wysocki W. Chirurgia onkologiczna t. 2. PZWL, Warszawa 2018: 820–821.
- Veronesi U, Cascinelli N, Mariani L, et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med. 2002; 347(16): 1227– 1232, doi: 10.1056/NEJMoa020989, indexed in Pubmed: 12393819.
- Houssami N, Macaskill P, Marinovich ML, et al. The association of surgical margins and local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy: a meta-analysis. Ann Surg Oncol. 2014; 21(3): 717–730, doi: 10.1245/s10434-014-3480-5, indexed in Pubmed: 24473640.
- Moran MS, Schnitt SJ, Giuliano AE, et al. Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. Int J Radiat Oncol Biol Phys. 2014; 88(3): 553–564, doi: 10.1016/j.ijrobp.2013.11.012, indexed in Pubmed: 24521674.
- Morrow M, Van Zee KJ, Solin LJ, et al. Society of Surgical Oncology-American Society for Radiation Oncology-American Society of Clinical Oncology Consensus Guideline on Margins for Breast-Conserving Surgery with Whole-Breast Irradiation in Ductal Carcinoma In Situ. Ann Surg Oncol. 2016; 23(12): 3801–3810, doi: 10.1245/s10434-016-5449-z, indexed in Pubmed: 27527714.
- Morrow M, Van Zee KJ, Solin LJ, et al. Society of Surgical Oncology, American Society for Radiation Oncology. Surgical margins in lumpectomy for breast cancer–bigger is not better. N Engl J Med. 2012; 367(1): 79–82, doi: 10.1056/NEJMsb1202521, indexed in Pubmed: 22762325.
- Bolger JC, Solon JG, Khan SA, et al. A comparison of intra-operative margin management techniques in breast-conserving surgery: a standardised approach reduces the likelihood of residual disease without increasing operative time. Breast Cancer. 2015; 22(3): 262–268, doi: 10.1007/s12282-013-0473-3, indexed in Pubmed: 23649303.
- Dillon MF, Mc Dermott EW, O'Doherty A, et al. Factors affecting successful breast conservation for ductal carcinoma in situ. Ann Surg Oncol. 2007; 14(5): 1618–1628, doi: 10.1245/s10434-006-9246-y, indexed in Pubmed: 17443388.
- Dunne C, Burke JP, Morrow M, et al. Effect of margin status on local recurrence after breast conservation and radiation therapy for ductal carcinoma in situ. J Clin Oncol. 2009; 27(10): 1615–1620, doi: 10.1200/ JCO.2008.17.5182, indexed in Pubmed: 19255332.
- Balch G, Mithani S, Simpson J, et al. Accuracy of Intraoperative Gross Examination of Surgical Margin Status in Women Undergoing Partial Mastectomy for Breast Malignancy. The American Surgeon. 2005; 71(1): 22–28, doi: 10.1177/000313480507100104.

- Chagpar AB, Killelea BK, Tsangaris TN, et al. A Randomized, Controlled Trial of Cavity Shave Margins in Breast Cancer. N Engl J Med. 2015; 373(6): 503–510, doi: 10.1056/NEJMoa1504473, indexed in Pubmed: 26028131.
- Wang Ke, Ren Yu, He J. Cavity Shaving plus Lumpectomy versus Lumpectomy Alone for Patients with Breast Cancer Undergoing Breast-Conserving Surgery: A Systematic Review and Meta-Analysis. PLoS One. 2017; 12(1): e0168705, doi: 10.1371/journal.pone.0168705, indexed in Pubmed: 28046058.
- CLEMENT Z. Should cavity shave margins be performed as a routine in breast conserving surgery? A review of randomised controlled trials. Int J Surg Med. 2017; 3(2): 1, doi: 10.5455/ijsm.cavity-shave-marginbreast-conserving-surgery.
- Tang R, Coopey SB, Buckley JM, et al. Lumpectomy cavity shaved margins do not impact re-excision rates in breast cancer patients. Ann Surg Oncol. 2011; 18(11): 3036–3040, doi: 10.1245/s10434-011-1909-7, indexed in Pubmed: 21947583.
- Esbona K, Li Z, Wilke LG. Intraoperative imprint cytology and frozen section pathology for margin assessment in breast conservation surgery: a systematic review. Ann Surg Oncol. 2012; 19(10): 3236–3245, doi: 10.1245/s10434-012-2492-2, indexed in Pubmed: 22847119.
- Nowikiewicz T, Śrutek E, Głowacka-Mrotek I, et al. Clinical outcomes of an intraoperative surgical margin assessment using the fresh frozen section method in patients with invasive breast cancer undergoing breast-conserving surgery - a single center analysis. Sci Rep. 2019; 9(1): 13441, doi: 10.1038/s41598-019-49951-y, indexed in Pubmed: 31530867.
- Riedl O, Fitzal F, Mader N, et al. Intraoperative frozen section analysis for breast-conserving therapy in 1016 patients with breast cancer. Eur J Surg Oncol. 2009; 35(3): 264–270, doi: 10.1016/j.ejso.2008.05.007, indexed in Pubmed: 18706785.
- Martin DT, Sandoval S, Ta CN, et al. Quantitative automated image analysis system with automated debris filtering for the detection of breast carcinoma cells. Acta Cytol. 2011; 55(3): 271–280, doi: 10.1159/000324029, indexed in Pubmed: 21525740.
- Nowecki ZJ, Jeziorski A. Chirurgiczne leczenie zmian nowotworowych piersi Konsensus Polskiego Towarzystwa Chirurgii Onkologicznej. Onkol W Prakt Klin - Eduk. 2017; 3(3): 93–153.
- Layfield DM, May DJ, Cutress RI, et al. The effect of introducing an in--theatre intra-operative specimen radiography (IOSR) system on the management of palpable breast cancer within a single unit. Breast. 2012; 21(4): 459–463, doi: 10.1016/j.breast.2011.10.010, indexed in Pubmed: 22119488.
- Bimston DN, Bebb GG, Wagman LD. Is specimen mammography beneficial? Arch Surg. 2000; 135(9): 1083–6; discussion 1086, doi: 10.1001/ archsurg.135.9.1083, indexed in Pubmed: 10982514.
- Britton PD, Sonoda LI, Yamamoto AK, et al. Breast surgical specimen radiographs: how reliable are they? Eur J Radiol. 2011; 79(2): 245–249, doi: 10.1016/j.ejrad.2010.02.012, indexed in Pubmed: 20303687.
- McCormick JT, Keleher AJ, Tikhomirov VB, et al. Analysis of the use of specimen mammography in breast conservation therapy. Am J Surg. 2004; 188(4): 433–436, doi: 10.1016/j.amjsurg.2004.06.030, indexed in Pubmed: 15474443.
- Schulz-Wendtland R, Dilbat G, Bani MR, et al. Use of Tomosynthesis in Intraoperative Digital Specimen Radiography - Is a Reduction of Breast Re-excision Rates Possible? Geburtshilfe Frauenheilkd. 2011; 71(12): 1080–1084, doi: 10.1055/s-0031-1280427, indexed in Pubmed: 25253902.
- Amer HA, Schmitzberger F, Ingold-Heppner B, et al. Digital breast tomosynthesis versus full-field digital mammography-Which modality provides more accurate prediction of margin status in specimen radiography? Eur J Radiol. 2017; 93: 258–264, doi: 10.1016/j.ejrad.2017.05.041, indexed in Pubmed: 28668424.
- Chand JT, Sharma MM, Dharmarajan JP, et al. Digital Breast Tomosynthesis as a Tool in Confirming Negative Surgical Margins in Non-palpable Breast Lesions. Indian J Surg Oncol. 2019; 10(4):624–628, doi: 10.1007/ s13193-019-00956-z, indexed in Pubmed: 31857754.
- Karanlik H, Ozgur I, Sahin D, et al. Intraoperative ultrasound reduces the need for re-excision in breast-conserving surgery. World J Surg Oncol. 2015; 13: 321, doi: 10.1186/s12957-015-0731-2, indexed in Pubmed: 26596699.
- Ramos M, Díaz JC, Ramos T, et al. Ultrasound-guided excision combined with intraoperative assessment of gross macroscopic margins decreases the rate of reoperations for non-palpable invasive breast cancer. Breast. 2013; 22(4): 520–524, doi: 10.1016/j.breast.2012.10.006, indexed in Pubmed: 23110817.

- Mesurolle B, El-Khoury M, Hori D, et al. Sonography of postexcision specimens of nonpalpable breast lesions: value, limitations, and description of a method. AJR Am J Roentgenol. 2006; 186(4): 1014–1024, doi: 10.2214/AJR.05.0002, indexed in Pubmed: 16554572.
- Qiu SQ, Dorrius MD, de Jongh SJ, et al. Micro-computed tomography (micro-CT) for intraoperative surgical margin assessment of breast cancer: A feasibility study in breast conserving surgery. Eur J Surg Oncol. 2018; 44(11): 1708–1713, doi: 10.1016/j.ejso.2018.06.022, indexed in Pubmed: 30005963.
- McClatchy DM, Zuurbier RA, Wells WA, et al. Micro-computed tomography enables rapid surgical margin assessment during breast conserving surgery (BCS): correlation of whole BCS micro-CT readings to final histopathology. Breast Cancer Res Treat. 2018; 172(3): 587–595, doi: 10.1007/s10549-018-4951-3, indexed in Pubmed: 30225621.
- 32. Papa M, Allweis T, Karni T, et al. An intraoperative MRI system for margin assessment in breast conserving surgery: Initial results from a novel technique. J Surg Oncol. 2016; 114(1): 22–26, doi: 10.1002/jso.24246, indexed in Pubmed: 27080211.
- Dashevsky BZ, D'Alfonso T, Sutton EJ, et al. The Potential of High Resolution Magnetic Resonance Microscopy in the Pathologic Analysis of Resected Breast and Lymph Tissue. Sci Rep. 2015; 5: 17435, doi: 10.1038/ srep17435, indexed in Pubmed: 26639673.
- Thill M. MarginProbe: intraoperative margin assessment during breast conserving surgery by using radiofrequency spectroscopy. Expert Rev Med Devices. 2013; 10(3): 301–315, doi: 10.1586/erd.13.5, indexed in Pubmed: 23668703.
- Schnabel F, Boolbol SK, Gittleman M, et al. A randomized prospective study of lumpectomy margin assessment with use of MarginProbe in patients with nonpalpable breast malignancies. Ann Surg Oncol. 2014; 21(5): 1589–1595, doi: 10.1245/s10434-014-3602-0, indexed in Pubmed: 24595800.
- Dixon JM, Renshaw L, Young O, et al. Intra-operative assessment of excised breast tumour margins using ClearEdge imaging device. Eur J Surg Oncol. 2016; 42(12): 1834–1840, doi: 10.1016/j.ejso.2016.07.141, indexed in Pubmed: 27591938.
- Rząca M, Orzechowski K, Wolny A, et al. Chirurgia raka gruczołu piersiowego wspomagana technikami dielektrycznymi. Biuletyn PTO NOWOTWORY. 2017; 2(2): 140–147.
- Nguyen FT, Zysk AM, Chaney EJ, et al. Intraoperative evaluation of breast tumor margins with optical coherence tomography. Cancer Res. 2009; 69(22): 8790–8796, doi: 10.1158/0008-5472.CAN-08-4340, indexed in Pubmed: 19910294.
- Erickson-Bhatt SJ, Nolan RM, Shemonski ND, et al. Real-time Imaging of the Resection Bed Using a Handheld Probe to Reduce Incidence of Microscopic Positive Margins in Cancer Surgery. Cancer Res. 2015; 75(18): 3706–3712, doi: 10.1158/0008-5472.CAN-15-0464, indexed in Pubmed: 26374464.
- Zysk AM, Chen K, Gabrielson E, et al. Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast--Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study. Ann Surg Oncol. 2015; 22(10): 3356–3362, doi: 10.1245/s10434-015-4665-2, indexed in Pubmed: 26202553.
- Nyayapathi N, Xia J. Photoacoustic imaging of breast cancer: a mini review of system design and image features. J Biomed Opt. 2019; 24(12): 1–13, doi: 10.1117/1.JBO.24.12.121911, indexed in Pubmed: 31677256.
- Tummers QR, Verbeek FPR, Schaafsma BE, et al. Real-time intraoperative detection of breast cancer using near-infrared fluorescence imaging and Methylene Blue. Eur J Surg Oncol. 2014; 40(7): 850–858, doi: 10.1016/j.ejso.2014.02.225, indexed in Pubmed: 24862545.
- Lamberts LE, Koch M, de Jong JS, et al. Tumor-Specific Uptake of Fluorescent Bevacizumab-IRDye800CW Microdosing in Patients with Primary Breast Cancer: A Phase I Feasibility Study. Clin Cancer Res. 2017; 23(11): 2730–2741, doi: 10.1158/1078-0432.CCR-16-0437, indexed in Pubmed: 28119364.
- Xie W, Chen Ye, Wang Yu, et al. Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins. J Biomed Opt. 2019; 24(2): 1–11, doi: 10.1117/1.JBO.24.2.026501, indexed in Pubmed: 30737911.
- Goh Y, Balasundaram G, Moothanchery M, et al. Ultrasound Guided Optoacoustic Tomography in Assessment of Tumor Margins for Lumpectomies. Transl Oncol. 2020; 13(2): 254–261, doi: 10.1016/j. tranon.2019.11.005, indexed in Pubmed: 31869750.
- 46. St John ER, Balog J, McKenzie JS, et al. Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: towards an intelligent knife for breast cancer surgery. Breast Cancer Res. 2017; 19(1): 59, doi: 10.1186/s13058-017-0845-2, indexed in Pubmed: 28535818.

- John ESt, Rossi M, Balog J, et al. Real time intraoperative classification of breast tissue with the intelligent knife. Eur J Surg Oncol. 2016; 42(5): S25, doi: 10.1016/j.ejso.2016.02.102.
- Hall NC, Povoski SP, Murrey DA, et al. Combined approach of perioperative 18F-FDG PET/CT imaging and intraoperative 18F-FDG handheld gamma probe detection for tumor localization and verification of

complete tumor resection in breast cancer. World J Surg Oncol. 2007; 5: 143, doi: 10.1186/1477-7819-5-143, indexed in Pubmed: 18154677.

49. Dixon JM, Newlands C, Dodds C, et al. Association between underestimation of tumour size by imaging and incomplete excision in breastconserving surgery for breast cancer. Br J Surg. 2016; 103(7): 830–838, doi: 10.1002/bjs.10126, indexed in Pubmed: 27171027.

Review article

Sexual well being of breast cancer patients

Milena Lachowicz¹, Joanna Kufel-Grabowska^{2, 3}, Mikołaj Bartoszkiewicz⁴, Rodryg Ramlau⁵, Krzysztof Łukaszuk^{6, 7}

¹Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland ²Chair and Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland ³Department of Chemotherapy, University Hospital of Lord's Transfiguration, Poznan, Poland ⁴Department of Immunobiology, Poznan University of Medical Sciences, Poznan, Poland ⁵Department of Oncology, Poznan University of Medical Sciences, Poznan, Poland ⁶Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland ⁷INVICTA Fertility and Reproductive Center, Gdansk, Poland

Introduction. Breast cancer is the most common cancer in women – both in Poland and around the world. In terms of the mortality rate, it subsides brest cancer with lung cancer. In 2018, almost 2 million new cases were reported worldwide, and almost 44 million women have been diagnosed with breast cancer in the last 5 years.

Material. The aim of this paper is to present ways to improve the sexual well being of breast cancer patients.

Methods. Analysis of the literature by oncologists, gynecologists, and psychologists was used for theoretical discussion. **Results.** Sexuality is an extremely important part of every woman's life, including those suffering from breast cancer. Surgery of the breast, a symbol of a woman's sexuality, and the negative effects of cancer therapy can alter a woman's perception of her own body and lower her libido. Sexual therapy which should be based on multi-faceted activities, is an extremely important part of breast cancer treatment.

Conclusions. Therapeutic possibilities may be based on psychological and sexual therapies as well as pharmacological support (moisturizers, silicone lubricants, tampons inserted for several minutes with 4% vaginal lidocaine before intercourse, topical gels with estrogens, ospemifen, DHEA, testosterone).

Key words: sexuality well being, breast cancer, sexual satisfaction, sexual therapy, treatment, surgery

Introduction

Breast cancer is the most common cancer in women in Poland and around the world. In terms of the mortality rate, it subsides breast cancer with lung cancer. In 2018, almost 2 million new cases were reported worldwide, and almost 44 million women have been diagnosed with breast cancer in the last 5 years [1].

Early and modern diagnostics as well as effective treatments have improved the prognosis of women with breast cancer, i.e. increasing the time of total survival and improving the overall quality of life. The majority (about 70–80%) of breast cancers show expression of hormonal (estrogen and/or progesterone) receptors, about 15–20% are cancers showing an overexpression of the HER2 receptor or amplification of its gene, about 15% are the worst case prognoses – the so-called triple negative (without expression of hormonal receptors and an overexpression of the HER2 receptor). The expression of hormonal receptors has a predictive meaning, conditioning treatment that inhibits or significantly reduces the level of

How to cite:

Lachowicz M, Kufel-Grabowska J, Bartoszkiewicz M, Ramlau R, Łukaszuk K. Sexual well being of breast cancer patients. NOWOTWORY J Oncol 2021; 71: 232–237.

sexual hormones. The treatment is usually applied by patients for 5–10 years.

Chemotherapy is used in most patients with triple negative and HER2-positive breast cancer, also occasionally in patients with hormone dependent breast cancer. Side effects of chemotherapy appear early in the course of treatment, such as nausea, vomiting, diarrhea, alopecia; some, after weeks, months or years of therapy – cardiomyopathy, myelodysplastic syndrome, or secondary malignancies.

Sexuality is an extremely important part of every woman's life, including those suffering from breast cancer. Surgery of the breast, a symbol of a woman's sexuality, and the negative effects of cancer treatment alter a woman's perception of her own body and lower her libido. The aim of this paper is to present ways to improve the sexual well being of breast cancer patients.

Influence of systemic treatment on premature cessation of ovarian function

Up to ½ of women with recently diagnosed breast cancer, menstruate when the cancer is diagnosed. Chemotherapy causes premature cessation of ovarian function in about 30–40% of women under 40 years of age, and even in 90% of women over 40 years of age. In 90% of women under 35 years of age, menstruation only returns up to 2 years after the end of chemotherapy [2].

Approximately 64% of premenopausal women complain of hot flashes or night sweats during or after treatment, 42% of them have vaginal atrophy, 29% of them have osteoporosis, 28% even think about discontinuing breast cancer hormonal treatment because of the accompanying symptoms. Studies show that almost 1/3 of these women have never been asked by their physician about the possible presence of vasomotor symptoms (hot flashes, sweats, increased blood pressure) [3].

The symptoms caused by menopause induced by cancer treatment are usually exacerbated. Physiological menopause is a long-term process, which is slow for many months, while menopause induced by cancer therapy often affects young patients experiencing a decrease in sexual hormone levels within a short time, even overnight. The changes in the body can be rapid and the symptoms rather troublesome.

Influence of systemic treatment on fertility

Extra attention is also being paid to reproductive issues. Women want to be mothers and enjoy motherhood, despite their cancer. Current anticancer treatments have a significant impact on a woman's reproductive abilities.

Over the years, women have been deciding to have offspring later. Now the average age of a European woman at the birth of her first child is 39 years. Subsequently, a breast cancer diagnosis can appear before or during a woman's procreation plans. Systemic treatment can not precipitate the cessation of ovarian function, but also postpone the moment when it is possible and safe to become pregnant. Pregnancy after breast cancer treatment is possible and safe. Every woman of childbearing age should be informed about the side effects of treatment as well as the possibility of using fertility preservation techniques; they can also be referred to a reproductive medicine specialist before starting cancer treatment. The most commonly used techniques with proven effectiveness include: the collection and freezing of oocytes or embryos. The choice of an appropriate method depends on age, a woman's ovarian reserve, and the planned oncological treatment.

It is worth taking care to maintain fertility before cancer treatment, which will make a woman's life more comfortable. Sex need not only be a way to get pregnant, but can also be a source of pleasure.

Reproduction after breast cancer

Indeed, for many young women, the possibility of having children after completing cancer treatment is significant. Of course, a decision about pregnancy may be challenging and problematic due to prevailing myths and distortions regarding the safety of the future mother's pregnancy, the impact of chemotherapy on the fetus and the child, and breastfeeding issues.

A breast cancer diagnosis is usually accompanied by shock, fear, disbelief, anxiety, and high-stress levels. Hence, patients accumulate all their thoughts around treatment, rejecting decisions related to functioning, fertility, and motherhood after treatment. After undergoing anticancer treatment, the possibility of becoming pregnant may be significantly limited or completely unavailable. This is caused by the toxic effects of drugs on the gonads [4–6].

Young female patients, premenopausal, who became sterile due to anticancer treatment, may experience many psychological difficulties, including depression. In addition, some patients may experience intense fear and the fear of a recurrence of the disease and related problems or e.g. the inability to raise a child. This fear can be so overwhelming that some women stop trying to get pregnant. Therefore, it is worth emphasizing the role of psychological counseling therapy, and the benefit of support from a psycho-oncologist or sexologist who can help women and their partners make the right decisions, and choose the best solutions during diagnosis and post-treatment [7–9].

Unfortunately, it still happens all too often that physicians do not sufficiently and adequately inform patients at the time of diagnosis about the possibility of preserving fertility. Such inconsistent and hard communication with the patient causes frustration and anger and is associated with increased stress. Therefore, it should be remembered how vital motherhood is, for it can be a significant element in aiding women's psychological rehabilitation after breast cancer treatment.

The influence of surgical treatment on the perception of one's body

Breast cancer and the methods involved in its treatment have a very important impact, not only on somatic health or the patients' quality of life, but above all on the extremely important psychological and sexual sphere, as well as on the attitude to one's body. This is particularly evident in the case of a one-sided or two-sided mastectomy, which changes the way patients perceive, feel, and experience emotional, social, and family life. Surgical treatment of cancer causes a woman to start perceiving their body differently. In addition, the sense of aesthetics deteriorates and there is increased restraint of women body, which undoubtedly has a significant impact on one's awareness of beauty and self-esteem, causing a disparity between the idealized, sexually attractive image of a woman ubiquitous in popular media, and the body of a cancer patient after treatment [10–12].

The process of cancer treatment has a significant impact on the patient's quality of life, as well as on the satisfaction level of sexual well being. Unfortunately, the sexual aspect is still often neglected, without due diligence. Sexuality is one of the important components of general health and quality of life.

The Declaration of Human Sexual Rights established by the World Sexual Health Organization (2014) [13] assumes that: "Sexuality is a key aspect of a person's life throughout its entire duration and includes gender, roles and sexual identities (sociocultural gender-related), sexual orientation, eroticism, pleasure, intimacy and reproduction. Sexuality is experienced and expressed in the form of thoughts, fantasies, desires, beliefs, attitudes, values, behaviors, practices, roles and relationships. Sexuality can include all of the above, but not all of its dimensions must be experienced or expressed. Human sexuality is influenced by complex biological, psychological, social, economic, political, cultural, legal, historical, religious and spiritual factors".

Of course, the psychological aspect, emotional sphere, or sense of attraction for the patient's partner should not be omitted here; this undoubtedly affects the quality of one's sexual life, as it is associated with self-esteem, a sense of self--respect, and an acceptance of the body that was changed by the cancer. According to Zdończyk S.A. [14], women after cancer surgery show a worryingly low self-esteem as sexual partners. Therefore, it seems appropriate to rationally approach this type of disorder.

The psychophysical condition and psychological wellbeing of a breast cancer patient are often very unsatisfactory. Their reduced level of self-esteem and the presence of the disease are often the main factors that cause sexual disorders. The patient's approach to their own body, sexuality, well-being, sense of attraction, and relationship with their partner are all extremely important. If before surgery, the patient had a low opinion of their attractiveness, and exhibited low self-esteem, these feelings will be all the more exacerbated after treatment. Many women struggle with the so-called half-woman complex – the loss of one breast, the resulting asymmetry of the body, scarring; these are all reasons for a serious reduction in the level of one's visual self confidence regarding appearance [15]. In addition to the patient's lack of self confidence, their mood or depression, which may develop during the cancer and cancer treatment process, is also worth noting. In such a case, the therapy to combat depression should be undertaken with the appropriate diagnosis. The socio-cultural standards of beauty, ubiquitous sexuality, and the perfect ideal of woman's body present in the mass media are also important factors that may speed up the development of these disorders.

Patients often feel that sex is unnatural, forced, and often involves internal compulsion. The woman feels guilty of her indisposition, her attitude begins to become more restrictive, until she finally gives up on sexual activity completely.

Sexual satisfaction

It is safe to say that sexual satisfaction is largely related to the quality of relationship in which the woman realizes herself sexually. Furthermore, the satisfaction that results from sexual intercourse should be considered a vital element of any successful original meaning [16]. There is no doubt that sexual satisfaction is a very important element of sexual activity. It is recognized as an important indicator of health in the sexual sphere, as well as an exponent of well being and quality of life; a satisfying sex life determines both the quality and endurance of a partnership [17, 18].

The frequency of initiated behaviors and sexual activities is associated with sexual satisfaction and, consequently, the satisfaction of a partnership or marriage [19, 20]. The forms of breast cancer treatment, and the methods used are often very aggressive, subsequently causing a number of inconveniences and side effects. These include, among others, sexual disorders, which significantly reduce the state of one's sexual health. The patient feels a recurring problem of a sexual nature, and discomfort and dissatisfaction with sexual activity [21]. There are four basic categories of sexual disorders in women:

- reduced desire a reduction or loss of interest in sexual issues, images related to sexual activity, a reduction of feelings of desire and thoughts regarding sex-related matters,
- sexual arousal disorders the genital response is insufficient in terms of lack of vaginal lubrication and inadequate swelling of the lips of the vulva,
- orgasm disorders associated with an orgasm dysfunction, its delay or complete absence,
- dyspareunia permanent or recurring pain of the genitals occurring during the course of penis penetration into the vagina throughout intercourse (including during a gynecological examination).

Sexual dysfunctions resulting from cancer treatment may have serious consequences and significantly affect the patient's quality of life, their relationship with a partner, psychological difficulties. They may cause the patient to avoid sexual intercourse, in addition, there may be unpleasant associations with sexual activity, or shifting the blame to the partner, which, in turn may lead to a complete breakdown of their intimate relationship.

It should be clearly emphasized that patients treated for breast cancer experience a decrease in physical activity and satisfaction with their sexual life. In addition, desire disorders, orgasm problems, breast sensation disorders, vulvovaginal atrophy, menopausal symptoms appear (hot flashes, sweating, fatigue, joint and muscle pains, irregular menstruation, irritability, intimate infections, weight loss), or lubrication disorders [13, 22].

Pain associated with sexual activity results in a negative attitude towards sexuality, and thus increases the impairment of sexual function. Patients with dyspareunia are accompanied by reduced frequency of sexual intercourse and are less enthusiastic about initiating this type of behavior. They also have a reduced desire level, excitement is diminished, with less intense feelings of orgasm during intercourse [23].

Sexual therapy

The issue of women's sexuality after breast cancer treatment still seems taboo. It is possible to observe an increased number of publications devoted to this subject, but this is still insufficient. Patients, their families, and even medical staff often feel too much embarrassment and shame to report problems, with regards to the prospect of discussing the diagnosis and analyzing the sexual concerns that arise. There is still an inner conviction that compared to the grave severity of cancer, which is a real threat to life, the subject of possible sexual dysfunction is trivialized.

Sexual therapy, which should be based on multi-faceted activities, is an extremely important process that has a key role:

- first stage conversation with the patient about the problem in the sexual sphere related to the disease or its treatment,
- second stage gathering as much knowledge as possible about the problem, its origin, details and aspects of the patient's sexual life by the physician,
- third stage detailed suggestions, i.e. conversation/consultation with specialists in the field of sexology, psychology or oncology based on an individual approach to the problem,
- fourth stage intensive care for patients who require it or who have been recommended, which may include psychotherapy, pharmacological therapy or surgery [24].

Pharmacological treatment

Problems during intercourse can be permanent or recurring. They may appear during penetration or intercourse. They may even arise earlier as a fear of penetration or intercourse, and the associated tension and tightening of the pelvic floor muscles.

Treatment must first start with awareness and discussion of the problem. If there is openness in the relationship, the partner should also be involved in the treatment. The patient should be listened to but also be aware that the range of standards and expectations of sexuality are very different, not only between people, but even during the individual process of puberty, maturity, and aging. The disease, and especially the treatment of the disease, will have a significant impact on the leap in sexual stimulation and excitement curve that is appropriate for the patient. Expectations about the necessity of intercourse may also be relative. However, if penetration is expected, additional measures to increase comfort and facilitate sexual activity are desirable. The definition of expected sexual satisfaction is a reference point for proposing further treatment. Based on the diagnosed problems and expectations, individualized treatment should be chosen.

Therapeutic possibilities may be based on psychological and sexual therapies as well as pharmacological support. Treatment of physical problems during intercourse can be based on an algorithm of gradually increasing the invasiveness of treatment, depending on the difficulty of obtaining the expected effect [25]. In the first stage, moisturizers are proposed, while opinions about lubricants are more ambiguous. Using the former in doses larger than standard, achieves good vaginal lubrication and a transient positive effect during intercourse [26]. If a positive effect is obtained, its stability should be verified and the treatment in case of its loss should be modified. In case of further problems with the use of maximum amounts of silicone lubricants, it is proposed to use tampons for several minutes before intercourse with 4% vaginal lidocaine.

In the next stage, the use of topical gels with estrogens in minimal doses may be considered. As both opinions and published data on the potential risk of steroid use in patients treated for breast cancer are divided [27], a decision on hormone treatment should be made together with the patient. Approximately 30–50% of women opt for estrogen treatment under medical supervision [28]. Some of them would also accept an increase of ½ of the risk of relapse, if the treatment resulted in cessation of symptoms [29]. It is assumed that doubling the level of estradiol in the blood increases the risk of relapse by about ½ [30]. Therefore, estradiol levels should oscillate within this range.

There is no direct correlation between serum estrogen levels and the resolution of symptoms associated with vaginal atrophy, thus the dose should be adjusted to the quality of vaginal mucosa and function required. The period of epithelial regeneration under the influence of hormones takes about 4 weeks. During this period, estrogens more easily penetrate the atrophic vaginal mucosa into the bloodstream. Therefore, minimum doses should be used to rebuild the vaginal epithelium at the expense of prolonging its regeneration time.

It is also worth noting that most breast cancer patients with hormone receptor expressions use tamoxifen or aromatase inhibitor based therapy for 5–10 years. Tamoxifen is an estrogen receptor modulator (selective estrogen receptor modulator – SERD), it stimulates or blocks its activity, depending on its location in the body. Aromatase inhibitors inhibit the aromatization of androgens to estrogen primarily in the fat tissue, inhibiting their production, but without affecting the effects of estrogen on the receptor. Due to their mechanism of action (aromatase inhibitors), it seems that for those patients who use tamoxifen, the vaginal estrogen effect will be mainly limited to topical effects.

Among the possible estrogens to use, the selective estrogen receptor modulator ospemifen should be mentioned. It is recommended in post-menopausal women with severe symptoms: dryness and vaginal atrophy. Due to its beneficial effect profile, it is not contraindicated in women with breast cancer after the completion of adjuvant therapy [31].

The use of DHEA is also considered both orally and vaginally. In both cases, this treatment seems to reduce the symptoms of vaginal atrophy and improve sexual function without increasing estrogen levels above the expected levels [32]. The use of testosterone is more controversial. It improves satisfaction from intercourse, increases libido, improves mood and general well-being, but there are no clear data on the safety of its use in women who are being treated for breast cancer [33].

It is extremely important to educate patients to be open to conversations related to sexuality in order for them to enjoy life to the fullest, despite the disease, and to feel satisfaction and contentment. It is worthwhile informing patients about available methods and strategies for dealing with sexual dysfunction. Providing basic knowledge on how to properly lubricate vaginal walls before sexual intercourse with the use of water or silicone based lubricants, as well as the systematic use of vaginal globules or gel applications with hyaluronic acid can significantly contribute to improving the sex life of women.

It is also worth referring the patient to a urogynelogical physiotherapist, in order to stimulate the blood supply to the genitals through the use of appropriate relaxation exercises for vaginal muscles.

Conclusions

Sexual activity and performance are extremely important in human life. Treatment of breast cancer certainly has a negative impact on a patient's emotional state, their mental state, but also on the sexual satisfaction and intimate relations with a partner [34]. Patients treated with breast-conserving therapy are still relatively few in Poland [35]. Proper breast oncology surveillance during pregnancy, using safe and inexpensive methods including ultrasonography and biopsy of suspicious masses, can ensure the prevention of cancer development and progression [36]. The stage of the disease at diagnosis is also a major prognostic factor in pregnancy-related cervical cancer [37].

Sexual dysfunctions may also occur after treatment is completed, which is undoubtedly associated with a decrease in satisfaction and contentment resulting from a decrease in the quality of intimate relationships. Unfortunately, in most cases, women are not informed about the possibilities of dealing with this problem. The diagnosis and consequences of treatment affect intimate relationships [38]. Relationship with one's partner is a very important factor that determines the psychosocial health of patients.

Unfortunately, women's knowledge of changes in their body during the disease and their knowledge of solutions to sexual disorders is still inadequate. Patients are ashamed to talk to an oncologist about sexuality or dysfunctions that have arisen as a result of oncological treatment. Zdończyk (2015) points out that there is still a big taboo evident; a barrier is created by shame, lack of trust from the patient, ignorance of proper terminology, and a basic lack of openness or empathy from the physician. All this is further exacerbated by the lack of sufficient time and knowledge of physicians or other health care representatives.

It is worth noting that the subject of sexuality of patients treated for breast cancer is becoming more discussed. This paper does not exhaust the entire subject, and the area of issues could be more detailed with regard to the psychophysical difficulties associated with the disease, as well as the various approaches to the subject of the disease and the disorders resulting from it, along with the communication problems between the patient and the health service.

Conflict of interest: none declared

Mikołaj Bartoszkiewicz

University of Medical Sciences Department of Immunobiology ul. Rokietnicka 8 60-806 Poznań, Poland e-mail: m.bartoszkiewicz@ump.edu.pl

Received: 11 Mar 2021 Accepted: 30 Apr 2021

- Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394–424, doi: 10.3322/caac.21492, indexed in Pubmed: 30207593.
- Oktay K, Harvey BE, Partridge AH, et al. Fertility Preservation in Patients With Cancer: ASCO Clinical Practice Guideline Update. J Clin Oncol. 2018; 36(19): 1994–2001, doi: 10.1200/JCO.2018.78.1914, indexed in Pubmed: 29620997.
- Fiorentino L, Rissling M, Liu L, et al. The Symptom Cluster of Sleep, Fatigue and Depressive Symptoms in Breast Cancer Patients: Severity of the Problem and Treatment Options. Drug Discov Today Dis Models. 2011; 8(4): 167–173, doi: 10.1016/j.ddmod.2011.05.001, indexed in Pubmed: 22140397.
- Henry NL, Xia R, Schott AF, et al. Prediction of postchemotherapy ovarian function using markers of ovarian reserve. Oncologist. 2014; 19(1): 68–74, doi: 10.1634/theoncologist.2013-0145, indexed in Pubmed: 24319018.
- Rossi L, Pagani O. Impact of Breast Cancer Treatment on Fertility. Breast Cancer, Fertility Preservation and Reproduction. 2015: 29–43, doi: 10.1007/978-3-319-17278-1_3.
- Meirow D, Schiff E. Appraisal of chemotherapy effects on reproductive outcome according to animal studies and clinical data. J Natl Cancer Inst Monogr. 2005(34): 21–25, doi: 10.1093/jncimonographs/lgi025, indexed in Pubmed: 15784816.

- Carneiro MM, Cota AM, Amaral MC, et al. Motherhood after breast cancer: can we balance fertility preservation and cancer treatment? A narrative review of the literature. JBRA Assist Reprod. 2018; 22(3): 244– 252, doi: 10.5935/1518-0557.20180032, indexed in Pubmed: 29932615.
- Knabben L, Mueller MD. Breast cancer and pregnancy. Horm Mol Biol Clin Investig. 2017; 32(1), doi: 10.1515/hmbci-2017-0026, indexed in Pubmed: 28850544.
- Christian N, Gemignani ML. Issues with Fertility in Young Women with Breast Cancer. Curr Oncol Rep. 2019; 21(7): 58, doi: 10.1007/s11912-019-0812-4, indexed in Pubmed: 31098718.
- Słowik AJ, Jabłoński MJ, Michałowska-Kaczmarczyk AM, et al. Evaluation of quality of life in women with breast cancer, with particular emphasis on sexual satisfaction, future perspectives and body image, depending on the method of surgery. Psychiatr Pol. 2017; 51(5): 871–888, doi: 10.12740/PP/OnlineFirst/63787, indexed in Pubmed: 29289967.
- 11. Montazeri A. Health-related quality of life in breast cancer patients: a bibliographic review of the literature from 1974 to 2007. J Exp Clin Cancer Res. 2008; 27: 32, doi: 10.1186/1756-9966-27-32, indexed in Pubmed: 18759983.
- Howard-Anderson J, Ganz PA, Bower JE, et al. Quality of life, fertility concerns, and behavioral health outcomes in younger breast cancer survivors: a systematic review. J Natl Cancer Inst. 2012; 104(5): 386–405, doi: 10.1093/jnci/djr541, indexed in Pubmed: 22271773.
- World Association for Sexual Health. Declaration of Sexual Rights. https://worldsexualhealth.net/wp-content/uploads/2013/08/Declaration-of-Sexual-Rights-2014-plain-text.pdf (15.01.2021).
- Zdończyk SA. [The effect of selected socio-medical factors on quality of life and psychosexual functioning in women after surgical treatment of breast cancer]. Pomeranian J Life Sci. 2015; 61(2): 199–206, indexed in Pubmed: 27141607.
- Jarząbek-Bielecka G. An outline of sexual problems in patients with breast cancer. Curr Gynecol Oncol. 2018; 16(1): 50–56, doi: 10.15557/ cgo.2018.0006.
- Specjalski R, et al. Greń M, Bulińska K, Sexual satisfaction and relationship satisfaction in homosexual men. Seksuologia Pol. 2014; 12(2): 64–69.
- Janowski K, Czyżowska A. Psychometric properties of the Polish version of the sexual life satisfaction scale for women. Przegl Seks. 2013; 9: 36–40.
- 18. Lew-Starowicz Z, Skrzypulec V. Fundamentals of sexology. PZWL Wydawnictwo Lekarskie, Warszawa 2010.
- Yucel D, Gassanov M. Exploring actor and partner correlates of sexual satisfaction among married couples. Soc Sci Res. 2010; 39(5): 725–738, doi: 10.1016/j.ssresearch.2009.09.002.
- Izdebski Z. Sex in Polish. Sexual behavior as an element of Poles' lifestyle. Wydawnictwo MUZA S.A., Warszawa 2003.
- Ratner ES, Erekson EA, Minkin MJ, et al. Sexual satisfaction in the elderly female population: A special focus on women with gynecologic pathology. Maturitas. 2011; 70(3): 210–215, doi: 10.1016/j.maturitas.2011.07.015, indexed in Pubmed: 21943557.
- Ussher J, Perz J, Gilbert E. Changes to Sexual Well-Being and Intimacy After Breast Cancer. Cancer Nursing. 2012; 35(6): 456–465, doi: 10.1097/ ncc.0b013e3182395401.
- Heim LJ. Evaluation and differential diagnosis of dyspareunia. Am Fam Physician. 2001; 63(8): 1535–1544, indexed in Pubmed: 11327429.

- Lindert O, Skrzypulec-Plinta V, Plinta R, et al. Use of hormone therapy in gynaecological oncology and therapy of breast cancer. Menopausal Rev. 2010; 14(2): 78–83.
- Carter J, Goldfrank D, Schover LR. Simple strategies for vaginal health promotion in cancer survivors. J Sex Med. 2011; 8(2): 549–559, doi: 10.1111/j.1743-6109.2010.01988.x, indexed in Pubmed: 20722792.
- Biglia N, Peano E, Sgandurra P, et al. Low-dose vaginal estrogens or vaginal moisturizer in breast cancer survivors with urogenital atrophy: a preliminary study. Gynecol Endocrinol. 2010; 26(6): 404–412, doi: 10.3109/09513591003632258, indexed in Pubmed: 20196634.
- Rossouw JE, Anderson GL, Prentice RL, et al. Writing Group for the Women's Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA. 2002; 288(3): 321–333, doi: 10.1001/jama.288.3.321, indexed in Pubmed: 12117397.
- Marsden Jo, Whitehead M, A'Hern R, et al. Are randomized trials of hormone replacement therapy in symptomatic women with breast cancer feasible? Fertil Steril. 2000; 73(2): 292–299, doi: 10.1016/s0015-0282(99)00510-5.
- Ganz PA, Greendale G, Kahn B, et al. Are breast cancer survivors willing to take hormone replacement therapy (HRT) (abstract A102). Proceedings of the Annual Meeting of Society Clinical Oncology. 1996; 15.
- Key T, Appleby P, Barnes I, et al. Endogenous Hormones and Breast Cancer Collaborative Group. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst. 2002; 94(8):606–616, doi: 10.1093/jnci/94.8.606, indexed in Pubmed: 11959894.
- Portman DJ, Bachmann GA, Simon JA. Ospemifene, a novel selective estrogen receptor modulator for treat- ing dyspareunia associated with postmenopausal vul- var and vaginal atrophy. Menopause. 2013; 20(6): 623–630.
- Labrie F, Archer D, Bouchard C, et al. Serum steroid levels during 12-week intravaginal dehydroepiandrosterone administration. Menopause. 2009; 16(5): 897–906, doi: 10.1097/gme.0b013e31819e8930, indexed in Pubmed: 19436226.
- Dizon DS, Suzin D, McIlvenna S. Sexual health as a survivorship issue for female cancer survivors. Oncologist. 2014; 19(2): 202–210, doi: 10.1634/ theoncologist.2013-0302, indexed in Pubmed: 24396051.
- Fobair P, Spiegel D. Concerns about sexuality after breast cancer. Cancer J. 2009; 15(1): 19–26, doi: 10.1097/PPO.0b013e31819587bb, indexed in Pubmed: 19197169.
- Kufel-Grabowska J, Radecka B, Streb J, et al. Breast-conserving surgeries in HER-positive breast cancer patients are performed too rarely in Poland. NOWOTWORY J Oncol. 2020; 70(6): 225–229, doi: 10.5603/njo.2020.0047.
- Kalantarova A, Zembol N, Kufel-Grabowska J. Pregnancy-associated breast cancer as a screening and diagnostic challenge: a case report. NO-WOTWORY J Oncol. 2021; 71(3): 162–164. doi: 10.5603/nio.a2021.0017.
- Danielska J, Moszyńska-Zielińska M, Gottwald L, et al. Pregnancy-related cervical cancer in the material of the Regional Cancer Centre, Łódź, between 2011 and 2014. Nowotwory. Journal of Oncology. 2017; 66(5): 359–366, doi: 10.5603/njo.2016.0065.
- Rottmann N, Gilså Hansen D, dePont Christensen R, et al. Satisfaction with sex life in sexually active heterosexual couples dealing with breast cancer: a nationwide longitudinal study. Acta Oncol. 2017; 56(2): 212–219, doi: 10.1080/0284186X.2016.1266086, indexed in Pubmed: 28080186.

COVID-19

Lung volume irradiation procedures in patients with pneumonia during COVID-19 infection – physical aspects of treatment planning and dosimetry

Krzysztof Ślosarek¹, Adam Gądek¹, Łukasz Sroka¹, Łukasz Dolla¹, Andrzej Biały¹, Michał Radwan¹, Dawid Bodusz², Michał Nachlik², Tomasz Rutkowski³, Jerzy Jaroszewicz⁴

¹Radiotherapy Planning Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland ²Radiotherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland ³1-st Radiotherapy Clinic, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland ⁴Observation and Infection and Hepatology Department of Specialist Hospital No. 1 in Bytom, Poland

Introduction. The paper presents an original, used in our Institute, method of lung volume irradiation in patients with pneumonia during COVID-19 infection.

Material and methods. Procedures such as the simulation of treatment and radiotherapy are performed in a treatment room. Real time radiation treatment planning is realized as 2D planning (Irreg Planning VMS) in a separate room, and the 3D (eclipse VMS) dose distribution is calculated after the treatment. During radiation exposure, a fluence map is measured. **Results.** A method of irradiating the lungs of patients with COVID-19 was developed, which allows to shorten the time the patient is on the treatment table and minimize contacts between the patient and staff.

Conclusions. The presented procedure made it possible to minimize the time of patient's stay in the radiotherapy department and at the same time, it retains all the required quality assurance procedures in radiotherapy treatment.

Key words: COVID-19, cone beam computed tomography, 2D and 3D treatment planning, a fluence map

Introduction

The use of ionizing radiation in the treatment of pneumonia and other inflammatory conditions has a long tradition [1–3]. In contemporary literature [4–7], information can be found on the use of low-dose rate radiotherapy in the treatment of inflammation, including pneumonia. The current pandemic situation is characterized by the dramatic course of pneumonia among certain COVID-19 patients and the relatively high percentage of deaths due to lung failure in this group. Therefore, the guestion should be raised as to whether low-dose radiotherapy can become a treatment method that gives a chance to improve the quality of life and reduce the risk of death for such patients. Such a treatment protocol should determine a radiation dose per lung volume area [8–10] and be positively assessed by the Bioethics Committee.

Objective

The aim of this paper is to present a unique and proprietary procedure of lung radiotherapy in pneumonia patients during

How to cite:

Ślosarek K, Gądek A, Sroka Ł, Dolla Ł, Biały A, Radwan M, Bodusz D, Nachlik M, Rutkowski T, Jaroszewicz J. Lung volume irradiation procedures in patients with pneumonia during COVID-19 infection – physical aspects of treatment planning and dosimetry. NOWOTWORY J Oncol 2021; 71: 238–242.

the course of COVID-19 infection with particular emphasis on the physical aspects of treatment planning and dosimetry. The duration of the procedure (planning and treatment) should be as short as possible.

- The place of the procedure should be limited to a minimum number of rooms. The irradiation session should be image guided.
- 2. The target area refers to the irradiated volume, namely the patient's lungs. The only organ shielded is the spinal canal.
- The dose distribution should be presented in 3D.
 Based on pre-clinical and clinical studies [8–10], a dose in

the range: 0.5–1.5 Gy is considered to have anti-inflammatory properties. Given this, the mean dose in this procedure was set at 1 Gy in whole lungs volume.

Material and methods

Considering the epidemic risk, it was assumed that the patients should be admitted to the Radiotherapy Department through a separate entrance, so as not to cross communication routes dedicated to oncological patients and medical staff. Additionally, both radiotherapy preparation and treatment should take place in a combined complex of rooms isolated from other patients and staff.

One of the TrueBeam Varian Medical Systems (VMS) accelerators was installed near the service entrance to the RT Department. It is equipped with an OBI (On-Board Imager): CBCT and kV/MV imaging. Software Irreg Planning, is an integrated part of the Aria System (16.1.0) VMS, which makes it possible to calculate the treatment time (MU – monitor units) based on the size of the irradiation field (beam), source skin distance (SSD) and the depth of the planning dose definition. Therefore, the MUs is calculated for a density of 1 g/cm³. When this software (Irreg Planning) is used in the irradiation of the chest volume, the calculated treatment time is overstated. This software (2D planning) is used for clinical purposes during simulation in cases where it is particularly important to shorten the preparation time of patients to radiotherapy e.g., analgesic therapy. In the case of a single irradiation session, a CT scan is not required to be performed.

It was assumed that the calculated dose distribution would be three-dimensional, in order to assess the statistical dose in the lungs and critical organs: the heart and the spinal cord. The TrueBeam accelerator is equipped with both kV and MV (on board imager – OBI) imaging systems; CBCT is a routine procedure to verify the patient's position before a therapeutic session. Until now, this study has not been used to plan dose distributions. In this case, however, in order to shorten the overall duration of the treatment procedure, CBCT was used to calculate the dose distribution.

With regard to the clear reduction of the procedure time, it was decided that treatment would be carried out using the TrueBeam VMS. The following procedure stages were developed (fig. 1):

Figure 1. A schematic diagram of patient irradiation procedures. The time the patient stays in the therapeutic position on the table is 30 minutes. The total stay in the RT Department is limited to 45 minutes

- 1. The patient is placed in a therapeutic position on the table of the therapeutic apparatus.
- With the use of kV (X-ray) imaging, the irradiation conditions are simulated by defining the maximum dimensions of the therapeutic beam. The AP (anterior-posterior) dimension is defined in the transverse largest dimension at lung level. Based on this measurement, the depth (half AP dimension) of prescribed dose is determined.

- 3. Based on the simulation image (one, at an angle of 0°) in the Irreg Planning software, MLC is introduced – limiting the irradiation area to the contour of the lungs with the spinal canal being shielded (the MLC collimator should be set at 90°). After copying the field shape defined in this way to the opposite beam, at an angle of 180°, the software adjusts the position of the collimator leaves to the new irradiation angle. The irradiation time is calculated.
- The treatment planning (2D) process is completed by entering the beam parameters (i.e. MU, MLC, table, gantry, collimator position) into the patient management system (ARIA).
- 5. The patient is irradiated and the fluence map is measured by EPID., and at the end of exposure, a CBCT scan is performed.
- 6. The patient completes the treatment and is taken back to their hospital base.
- Dose distribution calculations (3D) are performed for the implemented radiation conditions, i.e., the shape of the radiation beam and exposure time. This stage is designed to accurately determine the dose received by the patient in the volume of each defined area.

Dosimetric preparation

The Irreg Planning software does not consider the heterogeneity of the irradiated medium, and thus the actual radiation dose in this volume can be expected to be higher, since the lung density is less than the water density – 1 g/cm³. That is why it should be verified by calculations based on CT scans. The precise calculation of dose distributions requires the introduction of the calibration curve of the device used for imaging into the treatment planning system (TPS-Eclipse VMS 16.01.03). In this case, it was the OBI-CBCT device of the TrueBeam accelerator. Unfortunately, this proved to be difficult to implement, and thus the differences were checked between the dose distribution calculations made with CT scans for routine treatment planning and CBCT, using the reference calibration curve (fig. 2). For this purpose, phantoms were utilized to calibrate the CT scanner (CIRS-Norfolk, Virginia, USA). Due to the slight differences between the calculations: maximum dose, the examination performed with a calibrated CT scanner – 2.173 Gy, and for CBCT, with a reference calibration curve – 2.176 Gy, it was found that it was possible to perform dose calculations for the patient using the CBCT scanner.

Before the first treatment procedure, all the steps described above were taught to the staff (RT technicians, medical physicists). It was established that in order to optimize the duration of the treatment, the patient's irradiation procedure should be carried out first; only at the end of exposure should a conical CT scan be performed. The width of the area that can be examined during one CT scan is 20 cm. Since the examined lung volume is a much larger area, two CBCT scans need to be performed so that they can be later combined to determine the entire lung volume needed for calculation. This requires changing the centering points, which involves moving the therapy table. The CBCT scan is performed in the SAD technique and the patient is treated in the SSD technique. This requires changing the position of the therapy table.

The first patient

The patient was admitted to the RT Department on December 15th, 2020 at 5:12 pm. A 50-year-old woman with COVID-19 (based on a real time polymerase chain reaction of SARS-CoV-2 RNA) has been admitted to the hospital with symptoms and radiographic pneumonic consolidations of COVID-related pneumonia. 96 hours after admission, an RT procedure was carried out. Oxygen saturation level [SpO₂] with O₂ supplementation via facial mask with reservoir bag was 88% prior to RT.

The first procedure involved placing the patient on a therapeutic table in the treatment position – on their back with their hands along their body and head supported (part of the AiO system – ORFIT company). No immobilization systems were used. A simulation image was produced using the MV beam. Then, the shape of the irradiation field was defined by determining the lung area by placing the collimator leaves

Figure 2. A comparison of phantom dose distributions with different densities. A. CT scans obtained by a CT scanner dedicated for treatment planning (AS-Siemens), a calibration curve introduced into the treatment planning system; B. scans obtained by a therapeutic device, with CBCT. Dose distribution calculations were made with the use of the treatment planning system Eclipse v 16.1.0 by Varian Medical Systems based on the reference calibration curve

Figure 3. A simulation image with a prepared beam shape – MLC, beam entry at an angle of 0°. One should remember to set the collimator angle to 90°; to use the collimator leaves to shield the spinal canal (the direction of the collimator leaves' movement). The position of the collimator leaves is copied to the opposite beam at an angle of 180°

on the image obtained in the MV examination. Finally, the irradiation field determined at an angle of 0° was copied to the opposite beam at an angle of 180° by adjusting the shape of MLC (fig. 3).

The next stage involved calculating the irradiation time, for a dose of 1 Gy, at a depth equal to ½ of the AP (anterior – posterior; in this case, it was 13.7 cm). The X-ray beam of 6 MV was applied and the SSD technique (100 cm) was used. The calculations were performed using the Irreg Planning 16.1.0 software by Varian Medical Systems [11], which is dedicated to calculations in 2D planning.

The patient was irradiated and a CBCT scan was performed at the end of the exposure. Due to the maximum volume that can be obtained in one CBCT rotation, two scans had to be performed, moving them relative to each other to cover the entire lungs.

During radiation exposure, a fluence map was measured on the extended EPID (Electronic Portal Imaging Devices) using the integrated dose option of the Varian Medical Systems' ARIA 16.1.0 software for both 0° and 180° radiation beams. The patient left the Radiotherapy Department at 5:50 pm. The whole described procedure lasted 38 minutes in total. However, the patient was on the therapeutic table, in the treatment position for only 20 minutes.

The 3D dose distribution planning, based on CBCT, is performed without the patient's presence in the RT Department. The dose distribution (3D) is calculated in the Eclipse v 16.1.0 VMS planning system, for irradiation time and beam geometry predefined in the Irreg Planning – ARIA VMS software (fig. 4). It is worth emphasizing at this point once again that this procedure is performed without the presence of the patient in the RT Department. It aims to precisely determine the dose received by the patient as the dosage calculation algorithm (Acuros 16.1.0-VMS) considers the actual tissue density obtained from CBCT.

The calculated dose distributions (Acuros algorithm 16.1.0--VMS), considering heterogeneity in density, indicate that the patient received an average dose of 1.091 Gy in the lungs. The average dose in the lungs was found to be higher than assumed, since the time calculated in the Irreg Planning option was for a medium with a density of 1g/cm³, while, in fact, lung tissue has a lower density. This makes the actual doses slightly higher. The modal dose in the spinal cord was 0.016 Gy. These differences do not exceed the therapeutic assumptions and significantly shorten the duration of the entire treatment procedure.

24 hours after the RT procedure, an increase in SatO₂ was noticed and continued over the next days. 24 hours after RT, there was also significant decrease in CRP, IL6 and ferritin

Figure 4. Dose distributions calculated for beam geometry: shapes and the number of monitoring units previously calculated in the Irreg Planning-VMS software 16.1.0

Table I. The change of biochemical parameters in the selected days after RT

Marker/day	0	1	5	7	14
Sat	88%	90%	94%	97%	92%
CRP	166.73	7.68	2.47	1.58	1.58
Ferrytyna	2453	685.52	783.95	601.95	556.76
IL6	23.38	2.04	3.06	2.19	

Sat – oxygen saturation; CRP – C-reactive protein; IL6 – interleukin 6

level (tab. I). Clinically, improvement started 24 hours after RT and continued to the state that the patient was discharged from the hospital 14 days later with their overall status being very good.

Conclusions

The presented procedure of lung irradiation in patients with pneumonia during the course of COVID-19 infection made it possible to minimize the patient's stay in the Radiotherapy Department. At the same time, it ensures all the required radiotherapy treatment quality assurance procedures are adhered to. The dose received by the patient was consistent with the therapeutic requirements. The irradiation process was controlled from both a dosimetric (a fluence map) and an imaging (real-time MV imaging) perspective. The procedure also involved the calculation of three-dimensional dose distribution, which allows for the presentation of full statistics of dose distribution to the critical organs (spinal cord, heart).

Conflict of interest: none declared

Adam Gądek

Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch Radiotherapy Planning Department ul. Wybrzeże Armii Krajowej 15 44-102 Gliwice, Poland e-mail: adam.gadek@io.gliwice.pl

Received: 1 Apr 2021 Accepted: 23 May 2021

- ECalabrese EJ, Dhawan G. How Radiotherapy Was Historically Used To Treat Pneumonia: Could It Be Useful today ? Yale Journal Of Biology And medicine. 2013; 86: 555–570i.
- Park SH, Lee J. Radiotherapy, a New Treatment Option for Non-malignant Disorders: Radiobiological Mechanisms, Clinical Applications, and Radiation Risk. Journal of Rheumatic Diseases. 2017; 24(2): 74, doi: 10.4078/jrd.2017.24.2.74.
- Musser JH. A study of metabolism in leukaemia, under the influence of the x-ray. TraAm Physician. 1905; 20: 294–323.
- Arenas M, Gil F, Gironella M, et al. Anti-inflammatory effects of low-dose radiotherapy in an experimental model of systemic inflammation in mice. Int J Radiat Oncol Biol Phys. 2006; 66(2): 560–567, doi: 10.1016/j. ijrobp.2006.06.004, indexed in Pubmed: 16965998.
- Torres Royo L, Antelo Redondo G, Árquez Pianetta M, et al. Low-Dose radiation therapy for benign pathologies. Rep Pract Oncol Radiother. 2020; 25(2): 250–254, doi: 10.1016/j.rpor.2020.02.004, indexed in Pubmed: 32140081.
- Moldeveanu B, Otmishi P, Jani P, et al. Inflammatory mechanisms in the lung. Journal of Inflammation Reaserch. 2009: 1–11.
- Schröder S, Kriesen S, Paape D, et al. Modulation of Inflammatory Reactions by Low-Dose lonizing Radiation: Cytokine Release of Murine Endothelial Cells Is Dependent on Culture Conditions. J Immunol Res. 2018; 2018: 2856518, doi: 10.1155/2018/2856518, indexed in Pubmed: 29967799.
- Ameri A, Rahnama N, Bozorgmehr R, et al. Low-Dose Whole-Lung Irradiation for COVID-19 Pneumonia: Short Course Results. Int J Radiat Oncol Biol Phys. 2020; 108(5): 1134–1139, doi: 10.1016/j. ijrobp.2020.07.026, indexed in Pubmed: 32707264.
- Kirkby C, Mackenzie M. Is low dose radiation therapy a potential treatment for COVID-19 pneumonia? Radiother Oncol. 2020; 147: 221, doi: 10.1016/j.radonc.2020.04.004, indexed in Pubmed: 32342871.
- Taghizadeh-Hesary F, Akbari H. The powerful immune system against powerful COVID-19: A hypothesis. Med Hypotheses. 2020; 140: 109762, doi: 10.1016/j.mehy.2020.109762, indexed in Pubmed: 32388390.
- 11. ECLIPSE Photon and Electron Algorithms Reference Guide, P1020505--003-C, Varian Medical Systems. Acesso em: July 2018.

32 years of follow-up after double breast reconstruction with silicone implants after a subcutaneous mastectomy

Andrzej Kułakowski

Retired director Warsaw Oncology Centre, Poland

Figure 1. The patient's condition 32 years after the placement of silicone teaching implants sterilised with the radioisotope cobalt-60 in 1988

In 1988, a female patient (year of birth: 1947) reported to me with bilateral fibrotic and cystic lesions of the breasts. Imaging diagnostics and a multiple cytological assessment of the fluid from the cysts were not indicative of cancer lesions, however, severe and prolonged pain and multiple biopsies of the cyst made the patient decide to search for a more definite treatment.

I suggested the possibility of undergoing a bilateral subcutaneous mastectomy with immediate implant reconstruction. In 1988 in Poland, the only method of obtaining implants was to purchase them abroad with foreign currency, something far beyond the financial means of the patient, whilst breast reconstruction surgery was also only in its early stages in the 1980s [1, 2]. That is why I wrote to the implant producer in the United States (Dow Corning Corporation) asking them for assistance. In response, I received a package with a price list and 4 full-value teaching implants, unsterilised (described as: *Do not implant*). I decided that these could be implanted after sterilisation. Together with radiotherapists, we considered all the available possibilities and we sterilised the prostheses with the use of the radioisotope cobalt-60, which had just been installed in the Radiotherapy Department of the Warsaw Oncology Centre.

On 29th December 1988, I performed a subcutaneous mastectomy from the inframammary fold incision with immediate placement of both implants. The histopathology assessment confirmed the presence of significant fibrotic and cystic lesions. The patient remained under my supervision over the years for follow-ups and was very satisfied with the aesthetic effect. The implants, for 32 years, have not been damaged – despite the passing of time and skiing trauma endured on the anterior side of the patient's chest.

According to the best of my knowledge, this is one of the longest follow-up periods in Poland concerning an uncom-

How to cite:

Kułakowski A. 32 years of follow-up after double breast reconstruction with silicone implants after a subcutaneous mastectomy. NOWOTWORY J Oncol 2021; 71: 243–244.

plicated placement of silicone implants sterilised with the radioisotope cobalt-60.

- Bartlett E, Kołacińska A, Spiegel A. Flap-based breast reconstructions. Nowotwory. Journal of Oncology. 2017; 66(6): 463–469, doi: 10.5603/ njo.2016.0083.
- Kułakowski A. Pierwsze przypadki rekonstrukcji piersi w Instytucie Onkologii w Warszawie. Nowotwory Journal of Oncology. 2008; 58(4): 364–368.

Oncogeriatrics

Treatment of gastric cancer in the older population

Jakub Kenig, Piotr Richter

Department of General, Gastrointestinal, Oncologic Surgery and Transplantology, I Chair of General Surgery, Jagiellonian University Medical College, Krakow, Poland

Gastric cancer (GC) is predominantly a disease of the elderly as approximately 60% of all patients are 70 years of age or older. At present, there are no guidelines dedicated to this group, and current treatment strategies are mainly based on evidence from clinical trials often carried out on younger patients.

The GC in older patients is typically located in the distal third of the stomach and it is well/moderately differentiated, having mainly an intestinal type of tumor by Lauren's criteria. Lymph nodes and peritoneal metastases have been reported less frequently in comparison to younger patients.

Older patients are a very heterogeneous population in terms of co-morbidity, physical reserve, cognitive function, and social support. Treatment side effects can cause more serious problems than cancer itself, so the comprehensive geriatric assessment (CGA) is as important as the cancer staging. Chronological age alone is not a contraindication for treatment. Surgery is the preferred standard treatment option for resectable GC. However, the prognostic significance of surgery and other treatment options is unknown in the frail group. Fitter patients, according to the CGA, should qualify for the same treatment as younger patients. Frail patients should be discussed during oncogeriatric meetings. Surgery, the benefits of limitation of the surgical resection, and no or non-selective lymphadenectomy should all be analyzed. In experienced hands, minimal invasive surgery is favorable in the short- and long-term. In cases of severe frailty, the best supportive care can often be the best option.

Key words: older patients, gastric cancer, frailty

The prevalence of gastric cancer (GC) has gradually decreased over the last decades, nevertheless, it remains a major cause of cancer-related death and remains the fifth most common cancer in the world. GC is also predominantly a disease of the elderly as approximately 60% of all patients are 70 years and older. Subsequently, an aging population means that the number of older patients with GC is increasing continuously [1].

Surgery is the preferred standard treatment option for resectable GC. However, the prognostic significance of surgery and other treatment modalities is still unknown in frail patients. At present, there are also no guidelines dedicated to older patients and current treatment strategies are mainly based on evidence from clinical trials frequently carried out on younger patients [2]. Therefore, surgeons and oncologists experience many difficulties when making decision in this age group. Very often these decisions are taken based on comorbidity burden, subjective assessments or are age driven.

The clinical and pathological characteristics of GC in older patients

There is a male predominance among older patient with GC, which contrasts with younger patients where the gender ratio is typically closer to 1:1. There is usually no family history. The GC is typically located in the distal third of the stomach and it is

How to cite:

Kenig J, Richter P. Treatment of gastric cancer in the older population. NOWOTWORY J Oncol 2021; 71: 245–250.

well/moderately differentiated. Moreover, histologically, older patients present mainly with an intestinal type of tumor by Lauren's criteria. It frequently metastasizes to the liver. Lymph nodes and peritoneal metastases have been reported less frequently in comparison to younger patients [3].

According to the Japanese classification of GC, the predominant type of early gastric cancer (EGC) in older patients is the superficial depressed type IIc, followed by the superficial elevated type IIa, and the polypoid type I [4]. Genetically, older patients have more frequent TP-53 and HER2 overexpression, and more microsatellite instability-high tumors [5].

Preoperative assessment and treatment decisions

As was mentioned in our previous publications, the population of older patients is very heterogeneous in terms of co-morbidity, physical reserve, cognitive function, and social support [6]. Current routine pre-operative assessment also cannot adeguately identify patients at risk. Therefore, the comprehensive geriatric assessment (CGA) was introduced to help determine the primary status of the older patient, to diagnose frailty syndrome (surrogate of the biological age), and to identify how to optimize the patient's condition before the start of the treatment. Many older adults have unidentified, uncommunicated, and therefore unaddressed aging-related conditions that are associated with morbidity and early mortality [7, 8]. The natural life expectancy of older people is surely shorter than that of younger people. Considering their limited remaining lifetime, their postoperative quality of life is as valuable as the need to cure or remove the cancer. Therefore, the International Society of Geriatric Oncology (SIOG) and The European Society for Medical Oncology (ESMO) recommends the use of the CGA to determine biological age before the beginning of the treatment.

In general, based on the CGA, we can differentiate three groups of older patients:

- Fit: patients without any deficits in the CGA domains and less than 80 years old. In this group, standard oncologic treatment can be offered and the postoperative outcomes are comparable with younger patients.
- 2. Pre-frail: patients with one or two deficits in the CGA domains or more than 80 years old. In these patients, rehabi-

litation should be recommended to improve resilience to surgical stress by, at least, augmenting functional capacity and nutritional status before surgery.

 Frail patients: patients with three or more impaired domains in the CGA or 80 years old with two deficits in the CGA. A tailored approach should be discussed in a geriatric multidisciplinary team meeting [9].

It is also possible to determine the severity of the frailty using a cumulative deficit model for the CGA [10].

Treatment of gastric cancer in older patients

The therapeutic options for GC depending on the cancer stage [11, 12] including options for frailer, older patients, are presented in table I.

Patients with early GC (T1) can undergo endoscopic resection using an endoscopic submucosal dissection (ESD) technique. The ESD, in experienced hands, is an effective and safe procedure for older patients, with clinical and oncological outcomes comparable to younger population. A higher prevalence of cardiopulmonary problems was reported during the procedure when compared to the younger group. However, they were managed effectively during the procedure without further clinical sequelae. Therefore, the ESD should be the standard treatment for management of early GC fulfilling the Japanese criteria of a negligible risk of lymph node metastasis for both fit and frail patients [13, 14].

At present, surgical resection is the main curative treatment option for patients with gastric cancer GC stage T1b and higher. However, it can cause high morbidity and mortality, particularly in the older population. Improvement in anesthesiology, standardization of the surgical technique, and perioperative care improve the 30-day outcomes significantly in comparison to previously reported data. Katai et al. and Zhou et al. reported that surgery can be safely performed with an excellent prognosis in older patients with GC [15, 16]. In contrast, Fujisaki et al. observed that after gastrectomy there was as higher rate of postoperative non-surgical complications (pneumonia, heart failure, and liver dysfunction) in comparison to younger patients [17]. In turn, Wakahara et al. observed a 10% increase in the overall postoperative morbidity, including the rate of anastomotic leakage that was significantly elevated in the older group [18]. Mengardo et al. concluded that \geq 80 years of age is

Table I.	Therapeutic o	ptions for gastric c	ancer depending on th	e cancer stage [11, 12	2], including options for	frail, older patients
----------	---------------	----------------------	-----------------------	------------------------	---------------------------	-----------------------

Stage factors	Fit patients	Frail patients
T1N0	endoscopic resectionlimited resection	endoscopic resectionbest supportive care in severe frailty
T2-4 N0-2	 preoperative chemotherapy, followed by total/subtotal gastrectomy and postoperative chemotherapy surgery followed by adjuvant chemotherapy 	 subtotal/partial gastrectomy with no or selected lymphadenectomy palliative treatment best supportive care in severe frailty
not-resectable metastatic	 palliative treatment clinical trials	best supportive care

a negative independent factor impacting overall survival (OS), thus, these patients should be carefully selected for surgery [19]. Endo et al. reported on a heterogeneous population of patients aged 85 years who underwent surgery for gastric cancer. This group had a better prognosis than those who did not undergo surgery. Females, patients aged 85–89 years, and patients with stage IB–IIIC cancer had significantly better OS with surgery than without. For males, patients aged 90 years of age, or stage IA patients, the decision to perform surgery should be carefully discussed, and best support care may be an optimal strategy [20]. Most of the postoperative deaths in these patients were due to pneumonia and not due to GC. However, the most important limitation of the study is that the authors divided the patients based on their chronological age alone and not on the presence of frailty factors (a surrogate of biological age). Therefore, I would view the group of 90-year-old patients in this study as being equivalent to a severe frailty group.

To conclude, it appears that fit and mildly frail patients can and should be operated on with acceptable short-term outcomes. In the case of severe frailty, surgery might not be the optimal option. However, currently studied patients were fit older patients mostly defined based on their chronological age and/or comorbidity burden and not on the biological age. We are still lacking good data on the long-term outcomes of frail patients, because their risk of mortality after hospitalization remains particularly high during the first 6 months. Moreover, surgery is a well-known trigger for postoperative institutionalization and dependency on other people in older patients. Therefore, quality of life as an end point is even more important than OS or disease-free survival (DFS).

The next question is the extent of the surgery. Total/subtotal gastrectomy with a D2 lymphadenectomy is recommended for most fit patients with resectable advanced GC as a standard surgical procedure. In the case of older patients, the essential clinical question is whether perioperative trauma can be limited which, in turn, may reduce the risk of postoperative morbidity/ mortality and increase the quality of life. Therefore, there is a trend among surgeons to perform a subtotal gastrectomy, since a total gastrectomy in this age group had been associated with higher rates of postoperative morbidity and mortality. A Dutch study reported that older patients gualified to total gastrectomy had a relative risk of 2.15 for in-hospital mortality and 3.25 for morbidity, as compared to those who had undergone a partial gastrectomy [21]. Similarly, Katai et al. demonstrated that total gastrectomy in octogenarian patients was associated with higher operative and 90-day mortality [22]. Moreover, the 5-year overall survival was better in older patients in partial as opposed to total gastrectomy (86% vs. 67%). There are also studies showing the benefit to limit the resection to specific margins in the case of cancers with beneficial histology [23].

To conclude, the extent of the resection, if there is any possibility, should be limited in older patients. However, similarly as above, we do not have good studies using biological age as opposed to chronological.

Limited data are also available to clarify the survival benefit of D2 lymphadenectomy for older patients. Shinozuka et al. analyzed 3484 patients from many centers who received surgical resection for GC. The authors selected patients aged \geq 80 years with T2–4 GC. Their performed propensity score matching to balance the essential variables (stage of disease and gastrectomy type). The D2 group had significantly longer operative times, more blood loss, and more retrieved lymph nodes than the non-D2 group. The D2 group had a greater incidence of intra-abdominal abscesses (grade ≥II in the Clavien-Dindo classification) than the non-D2 group. The overall, disease-specific and relapse-free survival rates of the D2 group tended to be worse than those of the non-D2 group (hazard ratios: 1.49, 1.70 and 1.14, respectively). The non-D2 group had a slightly longer relapse-free survival compared with that of the D2 group, indicating that limited lymphadenectomy did not increase the risk of disease recurrence [24].

Also essential, is that postoperative complications after gastrectomy influence the prognosis. Wang et al. and Kanda et al. showed that morbidity following gastrectomy shortens the long-term survival of older patients with GC; D2 lymphadenectomy was an independent risk factor of postoperative complications [25–27]. In turn, Takeda et al. recommend that standard radical lymph node dissection should be used for tumors extending through the serosa (T3) and/or involving extragastric lymph nodes (N2), even in patients aged 80 years or more [28].

To conclude, it seems that in fit (based on the CGA) older patients a standard D2 lymphadenctomy can be carried out. However, the more severe the frailty, the more selective the lymphadenectomy should be. Larger prospective studies are required to clarify the necessity of D2 lymph node dissection to treat older, frail patients.

Most of the studies on minimal invasive surgery in older patients with the GC report have comparable oncological results and good short-/long-term outcomes both in unmatched and propensity-matched patients aged 80 years and older [29]. Total gastrectomy, a Charlson comorbidity index \geq 4, and pathological N stage were identified as independent prognostic factors for overall survival in patients undergoing a laparoscopic gastrectonmy [30]. The first Western experience in laparoscopic distal gastrectomy was published by Rausei S. et al. this year, including 46 patients aged 80 years and older. The authors concluded that the laparoscopic approach reduces the effect of surgical trauma without compromising the oncological results [31]. There are also the first studies analyzing frailty as a prognostic factor in the laparoscopic group of older patients with GC. Tanaka et al. reported that operative complications (especially systemic complications) were positively associated with an increase in clinical frailty scores. Moreover, the overall 5-year survival rate and the 5-year survival rates for those with a clinical frailty score of 1–2, 3–4, and 5–7 were respectively 70.9%, 59.8%, and 35.1%. Therefore, the authors conclude that frailty has a great impact on operative morbidity and prognosis in the elderly, and the CFS score could be a promising prognostic predictor, especially for frail patients with advanced gastric cancer [32].

To conclude, minimal invasive gastrectomy has the potential to provide a balance between oncological clearance and guality of life issues that remain crucially important in the older population. However, full a comprehensive geriatric assessment was not performed in any of the studies. The legal point of view is also interesting. Older cancer patients are offered a standardized treatment model geared toward younger adults by their physicians, due to the fear of being accused of undertaking the incorrect oncological treatment. In this context, it may be useful to surgeons to highlight the Polish Supreme Court verdict from September 24, 2015 (V CSK 738/14 - the extent of obligation to provide information by physicians), discussed in the article by dr. Radosław Drozda from the Department of Forensic Medicine at the Wroclaw Medical University. It concluded that "the choice between alternative treatment methods belongs to the patient, and the clinician should present the patient with all available treatment options that are possible in their physical condition – at most with an indication as to which of these options is the most beneficial according to the doctor..." and "... it is the patient – despite a lack of medical training - who should make the ultimate decision on the surgical method that they will be subjected to. The role of the physician is to convince the patient why (and for what medical reasons) it might be worth undergoing a riskier procedure. The patient however has the right (driven by personal reasons or even superstition) to pick a method that would be less invasive and is likely to have a lower efficacy than the method proposed by the clinician" [33].

Perioperative chemotherapy

Due to high recurrence rates, multimodal treatment is a standard for GC in stage IB disease and higher. However, concerns remain regarding chemotherapy in older patients due to the risks of perioperative morbidity from toxicity. Therefore, to determine the feasibility of treating patients over the age of 65, a predefined exploratory subgroup analysis of patients within the randomized phase II FLOT 65+ trial compared patients treated with perioperative FLOT (5-fluorouracil, oxaliplatin and docetaxel) or FLO (without docetaxel). In the study, a high level of adherence among older patients was observed: 85% of patients received all 4 preoperative cycles of FLOT, and there was no clinically significant increase in grade 3-4 toxicity postoperatively. Mortality and morbidity rates were comparable to other trials, including patients across all ages. The authors concluded that neoadjuvant FLO or FLOT chemotherapy is therefore a reasonable option in older patients with locally advanced resectable gastric cancer [34-36]. It

must be stressed that, although, there was no upper age limits included in the study, the patients were generally fit. In turn, Slagter et al. evaluated treatment-related toxicity, treatment compliance, surgical complications, and event-free survival in older (>70 years) versus younger (<70 years) patients who underwent perioperative treatment for GC. 788 patients with resectable gastric cancer were randomized before the start of any treatment, and received preoperative chemotherapy (3 cycles of epirubicin, cisplatin or oxaliplatin and capecitabine), followed by surgery, followed by either postoperative chemotherapy or chemoradiotherapy (45 Gy, cisplatin, capecitabine). During preoperative chemotherapy, 77% of older adults versus 62% of younger adults experienced severe toxicity (p < 0.001) and older adults received significantly lower relative dose intensities for all chemotherapeutic drugs. Equal proportions of older and younger adults underwent curative surgery (80% vs. 81%), with comparable postoperative complications and postoperative mortality; 64% of older patients and 78% of young patients started adjuvant chemotherapy (p < 0.001). There was no difference in the severe toxicity rate between the groups; however, older adults received significantly lower relative dose intensities for all chemotherapeutic drugs [37]. The question as to whether this kind of treatment can be proposed to frail patients with good short- and long-term outcomes still remains unanswered.

In the case of patients with resected gastric cancer who have not received preoperative chemotherapy, adjuvant chemotherapy is recommended [38]. However, adjuvant chemotherapy is, generally, less well tolerated than preoperative chemotherapy. Therefore, the latter may be the preferential option. An interesting study was published this year by Schendel et al. including 75-year and older patients with GC from Canada. The 5 year DFS for the surgery only group was 67.3% and for the multimodality group was 52.9% (p = 0.25). The 5 year OS for the surgery only group was 38.9% and for the multimodality group was 47.1% (p = 0.52). The authors concluded that even with surgery alone, selected older patients with non-metastatic gastric cancer can obtain prolonged survival, despite not receiving standard of care multimodality therapy [39].

Concluding, limited data on these topics are available from the Western world. Most of the studies were conducted in Asia and the applicability of these results in Europe remains uncertain, not to mention the evaluation of frailty based on the comprehensive geriatric assessment.

Palliative treatment

Currently, there is little evidence of the role of palliative resection in GC in older patients. The REGATTA trial including patients with incurable gastric cancer, randomizing them to palliative chemotherapy alone or to gastrectomy with chemotherapy, showed no survival advantage of surgery, with the median OS at 16.6 months (95% Cl: 13.7–19.8) with chemotherapy versus 14.3 months (95% Cl: 11.8–16.3) with surgery and chemotherapy. The included patients were young, between 49 and 67 years old. It seems that palliative gastrectomy should not be considered in patients with advanced gastric cancer, unless there are other indications (bleeding or obstruction) [40].

As far as palliative chemotherapy is concerned, in patients over 70, it is recommended to consider tailored treatment based on biological age with two/three-drug chemotherapy regimens and dose reduced therapy.

Conclusions

Chronological age should not be a contraindication for multimodal radical treatment in older patients. The frailty (surrogate of the biological age) evaluation should be the basis for the discussion on treatment planning. At present, it is one of the most reliable factors predicting functional decline in different organs, making it more difficult for older patients to overcome surgical stress. Moreover, the potential benefits of surgery for frail patients with GC must be explored in the context of their shorter life expectancy compared to younger patients.

Therefore, before treatment begins, the following questions should be discussed:

- Is the currently planned treatment strategy correct? Are there alternative treatment options?
- What is the result of the comprehensive geriatric assessment? Can frailty syndrome be diagnosed in the patient?
- What is the risk of complications?
- What would the patient's lifespan be without treatment?
- What are the goals, preferences, and expectations of the patient? What effect might the treatment have on these goals?
- Is it possible to improve the patient's state prior to the surgical procedure?

Fit patients, according to the comprehensive geriatric assessment, should be gualified for the same treatment as younger patients. Prefrail patients should undergo pre rehabilitation and be reevaluated. Frail patients should be discussed in the oncogeriatric meeting. In the case of surgical treatment, the limitation of the resection's extent, no or selective lymphadenectomy should be considered. In experienced hands, minimal invasive surgery may be beneficial regarding the short- and long-term outcome. In the case of severe frailty, best supportive treatment can be the optimal option. The goal of the modifications is to reduce surgical stress. In older patients (aged 75 years or older), the pathological outcome and postoperative complications are predictors of survival, whereas pathological outcome and chemotherapy are predictors of survival in the younger population (aged 74 years or less). Thus, the prevention of postoperative morbidity may contribute to improved prognosis for older patients with gastric cancer [41].

However, we still need better designed studies on a larger group of patients using frailty evaluation. Existing studies on this topic are limited, too small, and lack important details with satisfactory statistical clout. In clinical observational studies, overall survival is usually considered the gold standard endpoint because it is simple and reliable to measure. Overall survival could be diluted by non-cancer-related deaths, especially in the older population. Therefore, cancer-specific survival and relative survival should be used in this group [42, 43]. Moreover, novel endpoints should be explored such as patients reported outcomes to establish appropriate treatment guidelines for frail, older patients.

Conflict of interest: none declared

Jakub Kenig

Jagiellonian University Medical College I Chair of General Surgery Department of General, Oncologic, Gastrointestinal Surgery and Transplantology ul. Jakubowskiego 2 30-688 Kraków, Poland e-mail: jkenig@cm-uj.krakow.pl

Received: 4 Jul 2021 Accepted: 6 Jul 2021

- Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz Gastroenterol. 2019; 14(1): 26–38, doi: 10.5114/pg.2018.80001, indexed in Pubmed: 30944675.
- Gaitonde S, Fischer T, Jones M, et al. Young age, disparities, and survival in gastric adenocarcinoma: Implications for screening strategies. J Clin Oncol. 2017; 35(4_suppl): 17–17, doi: 10.1200/jco.2017.35.4_suppl.17.
- Joharatnam-Hogan N, Shiu KK, Khan K. Challenges in the treatment of gastric cancer in the older patient. Cancer Treat Rev. 2020; 85: 101980, doi: 10.1016/j.ctrv.2020.101980, indexed in Pubmed: 32065879.
- Fujiya T, Endoh K, Mikuni J, et al. Clinicopathological Characteristics and Surgical Outcome of Gastric Carcinoma with Regard to Aging. Jpn J Gastroenterol Surg. 1997; 30(7): 1699–1705, doi: 10.5833/jjgs.30.1699.
- Wu CW, Chen MH, Huang KH, et al. The clinicopathological characteristics and genetic alterations between younger and older gastric cancer patients with curative surgery. Aging. 2020; 12(18): 18137–18150, doi: 10.18632/aging.103627.
- Kenig J. Oncogeriatrics (part 1.). Frailty in older adults with cancer. Nowotwory. Journal of Oncology. 2019; 69(2): 55–57, doi: 10.5603/ njo.2019.0010.
- Loh KP, Soto-Perez-de-Celis E, Hsu T, et al. What Every Oncologist Should Know About Geriatric Assessment for Older Patients With Cancer: Young International Society of Geriatric Oncology Position Paper. J Oncol Pract. 2018; 14(2):85–94, doi: 10.1200/JOP.2017.026435, indexed in Pubmed: 29436306.
- Klabunde CN, Ambs A, Keating NL, et al. The role of primary care physicians in cancer care. J Gen Intern Med. 2009; 24(9): 1029–1036, doi: 10.1007/s11606-009-1058-x, indexed in Pubmed: 19597893.
- Grodzicki T, Kenig J. Problemy okołooperacyjne u osób w wieku podeszłym. PZWL Wydawnictwo Lekarskie, Warszawa 2018.
- Kenig J, Szabat K. Oncogeriatrics (part 7.). Geriatric assessment for older patients with cancer. Nowotwory. Journal of Oncology. 2020; 70(4): 153–157, doi: 10.5603/njo.2020.0031.
- Smyth EC, Verheij M, Allum W, et al. ESMO Guidelines Committee. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016; 27(suppl 5): v38–v49, doi: 10.1093/annonc/ mdw350, indexed in Pubmed: 27664260.
- Kulig J, Wallner G, Drews M, et al. Polish Consensus on Treatment of Gastric Cancer; update 2017. Pol Przegl Chir. 2017; 89(5): 55–68.
- Yang TC, Hou MC, Chen PH, et al. Clinical Outcomes and Complications of Endoscopic Submucosal Dissection for Superficial Gastric Neoplasms in the Elderly. Medicine (Baltimore). 2015; 94(44): e1964, doi: 10.1097/ MD.00000000001964, indexed in Pubmed: 26554806.
- Sinagra E, Luppino I, Messina M, et al. Endoscopic approach to early gastric cancer in older adults. J Geriatr Oncol. 2021; 12(1): 160–162, doi: 10.1016/j.jgo.2020.05.005, indexed in Pubmed: 32467026.

- Katai H, Sasako M, Sano T, et al. Gastric cancer surgery in the elderly without operative mortality. Surg Oncol. 2004; 13(4): 235–238, doi: 10.1016/j.suronc.2004.09.007, indexed in Pubmed: 15615661.
- Zhou CJ, Chen FF, Zhuang CL, et al. Feasibility of radical gastrectomy for elderly patients with gastric cancer. Eur J Surg Oncol. 2016; 42(2): 303– 311, doi: 10.1016/j.ejso.2015.11.013, indexed in Pubmed: 26710992.
- Fujisaki M, Shinohara T, Hanyu N, et al. Laparoscopic gastrectomy for gastric cancer in the elderly patients. Surg Endosc. 2016; 30(4): 1380– 1387. doi: 10.1007/s00464-015-4340-5. indexed in Pubmed: 26123337.
- Nie RC, Chen FP, Yuan SQ, et al. Evaluation of objective response, disease control and progression-free survival as surrogate end-points for overall survival in anti-programmed death-1 and anti-programmed death ligand 1 trials. Eur J Cancer. 2019; 106: 1–11, doi: 10.1016/j. ejca.2018.10.011, indexed in Pubmed: 30453169.
- Mengardo V, Cormack OMc, Weindelmayer J, et al. Multicenter Study of Presentation, Management, and Postoperative and Long-Term Outcomes of Septegenerians and Octogenerians Undergoing Gastrectomy for Gastric Cancer. Ann Surg Oncol. 2018; 25(8): 2374–2382, doi: 10.1245/s10434-018-6543-1, indexed in Pubmed: 29868974.
- Endo S, Shimizu Y, Ikenaga M, et al. Survival benefit of gastrectomy for gastric cancer in patients ≥85 years old: A retrospective propensity score-matched analysis. Surgery. 2017; 161(4): 984–994, doi: 10.1016/j. surg.2016.10.012, indexed in Pubmed: 27894711.
- Songun I, Putter H, Kranenbarg EMK, et al. Surgical treatment of gastric cancer: 15-year follow-up results of the randomised nationwide Dutch D1D2 trial. Lancet Oncol. 2010; 11(5): 439–449, doi: 10.1016/S1470--2045(10)70070-X, indexed in Pubmed: 20409751.
- Katai H, Sasako M, Sano T, et al. The outcome of surgical treatment for gastric carcinoma in the elderly. Jpn J Clin Oncol. 1998; 28(2): 112–115, doi: 10.1093/jjco/28.2.112, indexed in Pubmed: 9544826.
- Shuto K, Yamazaki M, Mori M, et al. [Partial Gastrectomy for Elderly Patients with Early-Stage Gastric Cancer]. Gan To Kagaku Ryoho. 2018; 45(13): 1824–1826, indexed in Pubmed: 30692366.
- 24. Shinozuka T, Kanda M, Ito S, et al. D2 lymph node dissection confers little benefit on the overall survival of older patients with resectable gastric cancer: a propensity score-matching analysis of a multi-institutional dataset. Surg Today. 2020; 50(11): 1434–1442, doi: 10.1007/ s00595-020-02021-7, indexed in Pubmed: 32451713.
- Suzuki S, Kanaji S, Matsuda Y, et al. Long-term impact of postoperative pneumonia after curative gastrectomy for elderly gastric cancer patients. Ann Gastroenterol Surg. 2018; 2(1): 72–78, doi: 10.1002/ ags3.12037, indexed in Pubmed: 29863154.
- Wang S, Xu L, Wang Q, et al. Postoperative complications and prognosis after radical gastrectomy for gastric cancer: a systematic review and meta-analysis of observational studies. World J Surg Oncol. 2019; 17(1): 52, doi: 10.1186/s12957-019-1593-9, indexed in Pubmed: 30885211.
- Kanda M, Ito S, Mochizuki Y, et al. Multi-institutional analysis of the prognostic significance of postoperative complications after curative resection for gastric cancer. Cancer Med. 2019; 8(11): 5194–5201, doi: 10.1002/cam4.2439, indexed in Pubmed: 31353821.
- Takeda J, Tanaka T, Koufuji K, et al. Gastric cancer surgery in patients aged at least 80 years old. Hepatogastroenterology. 1994; 41(6): 516–520, indexed in Pubmed: 7721236.
- Tanaka R, Lee SW, Imai Y, et al. Advantages of Laparoscopic Surgery for Gastric Cancer in Elderly Patients Aged Over 80 Years: A Propensity Score Matching Analysis. World J Surg. 2021 [Epub ahead of print], doi: 10.1007/s00268-021-06157-6, indexed in Pubmed: 34019135.

- Mikami R, Tanaka E, Murakami T, et al. The safety and feasibility of laparoscopic gastrectomy for gastric cancer in very elderly patients: short-and long-term outcomes. Surg Today. 2021; 51(2): 219–225, doi: 10.1007/s00595-020-02078-4, indexed in Pubmed: 32676846.
- Rausei S, Galli F, Milone M, et al. Laparoscopic distal gastrectomy in old-old patients: the first Western experience. Updates Surg. 2021 [Epub ahead of print], doi: 10.1007/s13304-021-01063-x, indexed in Pubmed: 33900551.
- Tanaka T, Suda K, Inaba K, et al. Impact of Frailty on Postoperative Outcomes for Laparoscopic Gastrectomy in Patients Older than 80 Years. Ann Surg Oncol. 2019; 26(12): 4016–4026, doi: 10.1245/s10434-019-07640-0, indexed in Pubmed: 31359279.
- Drozd R. Kto powinien wybierać metodę leczenia operacyjnego pacjent czy lekarz? Chirurgia po Dyplomie. 2017; 2(12): 34–36.
- 34. Al-Batran SE, Homann N, Pauligk C, et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet. 2019; 393(10184): 1948–1957, doi: 10.1016/s0140-6736(18)32557-1.
- Lorenzen S, Pauligk C, Homann N, et al. Feasibility of perioperative chemotherapy with infusional 5-FU, leucovorin, and oxaliplatin with (FLOT) or without (FLO) docetaxel in elderly patients with locally advanced esophagogastric cancer. Br J Cancer. 2013; 108(3):519–526, doi: 10.1038/bjc.2012.588, indexed in Pubmed: 23322206.
- van Hagen P, Hulshof MC, van Lanschot JJB, et al. CROSS Group. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012; 366(22): 2074–2084, doi: 10.1056/NEJMoa1112088, indexed in Pubmed: 22646630.
- Slagter AE, Tudela B, van Amelsfoort RM, et al. Older versus younger adults with gastric cancer receiving perioperative treatment: Results from the CRITICS trial. Eur J Cancer. 2020; 130: 146–154, doi: 10.1016/j. ejca.2020.02.008, indexed in Pubmed: 32208351.
- Smyth EC, Verheij M, Allum W, et al. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016; 27(5): 38–49.
- 39. Schendel J, Jost E, Mah M, et al. Gastric cancer management in elderly patients: a population-based study of treatment patterns and outcomes in gastric cancer patients ≥ 75 years from Alberta, Canada. Am J Surg. 2021; 221(4): 839–843, doi: 10.1016/j.amjsurg.2020.03.006, indexed in Pubmed: 32222273.
- Fujitani K, Yang HK, Mizusawa J, et al. Gastrectomy plus chemotherapy versus chemotherapy alone for advanced gastric cancer with a single non-curable factor (REGATTA): a phase 3, randomised controlled trial. Lancet Oncol. 2016; 17(3): 309–318, doi: 10.1016/s1470-2045(15)00553-7.
- Ueno D, Matsumoto H, Kubota H, et al. Prognostic factors for gastrectomy in elderly patients with gastric cancer. World J Surg Oncol. 2017; 15(1): 59, doi: 10.1186/s12957-017-1131-6, indexed in Pubmed: 28284210.
- 42. Nie RC, Chen FP, Yuan SQ, et al. Evaluation of objective response, disease control and progression-free survival as surrogate end-points for overall survival in anti-programmed death-1 and anti-programmed death ligand 1 trials. Eur J Cancer. 2019; 106: 1–11, doi: 10.1016/j. ejca.2018.10.011, indexed in Pubmed: 30453169.
- Howlader N, Ries LAG, Mariotto AB, et al. Improved estimates of cancer-specific survival rates from population-based data. J Natl Cancer Inst. 2010; 102(20): 1584–1598, doi: 10.1093/jnci/djq366, indexed in Pubmed: 20937991.

Personalised medical management of patients with melanoma (part 2)

Justyna Gil¹, Izabela Łaczmańska^{1, 2}, Maria M. Sąsiadek¹, Marcin Ziętek^{3, 4}

¹Department of Genetics, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland ²Department of Molecular Diagnostics of Cancer, Lower Silesian Oncology Centre, Wroclaw, Poland ³Department of Surgical Oncology, Department of Oncology, Wroclaw Medical University, Wroclaw, Poland ⁴Surgical Oncology Ward, Lower Silesian Oncology Centre, Wroclaw, Poland

In recent years, a dynamic increase has been observed in occurrence of melanomas, especially in young and middle-aged patients. This is the reason why curing these patients has become a priority also in the economic context. Melanomas belong to a group of neoplasms of very high genetic heterogeneity. The most common genetic alterations concern two signalling pathways: mitogen activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathway. Identification of the characteristic molecular changes in the neoplastic tissue allows optimisation and individualisation of the therapy. Thus, it contributes to an increase in successful cancer treatment, reduction of treatment side effects and to improvement of the patients' quality of life. Currently, the standard management of skin melanoma patients involves – along with surgical treatment and classical chemo/radiotherapy which is now less frequently used – also introduction of targeted therapy focused on molecular changes within the tumour tissue as well as immunotherapy which relies on activating the immune system.

Key words: melanoma, BRAF, NRAS, targeted therapy

The basic method of treating melanoma is surgery, which involves removal of the primary tumour with a relevant margin of unchanged tissue. The size of the margin depends on the depth of the melanoma infiltration. To detect micrometastases to the lymphatic system, sentinel lymph node biopsy (SLNB) is often additionally performed. Patients with pT1b-T4b stage of melanoma are routinely qualified for SLNB (after excluding disease dissemination). If cancer cells are found in a lymph node, radical lymphadenectomy remains an option for consideration [1]. Moreover, in order to reduce the risk of disease recurrence, in advanced cases (resectable stage III and IV tumours), adjuvant treatment aimed at molecular changes or immunotherapy is implemented. Patients with disseminated disease are treated with similar methods, but the treatment is palliative in their case.

Molecular changes-targeted treatment

BRAF

If V600 mutations are found in the *BRAF* gene in a metastatic melanoma, the treatment involves application of targeted BRAF inhibitors which are competitive to ATP (BRAFi) – vemurafenib (FDA recommendations from 2011) or dabrafenib (FDA recommendations from 2013) [2, 3]. BRAF inhibitors lead to tumour regression in approximately 90% of cases in metastatic

How to cite:

Gil J, Łaczmańska I, Sąsiadek MM, Ziętek M. Personalised medical management of patients with melanoma (part 2). NOWOTWORY J Oncol 2021; 71: 251–254.
patients with the *BRAF* V600 mutation. Response time varies from several months to more than 1.5 years [4].

Combined treatment – together with selective MEK inhibitors – is more effective than BRAFi monotherapy. Results from clinical trials on first-line treatment with trametinib (Mekinist) in combination with dabrafenib (Tafinlar) (COMBI-v and COMBI--d) showed a 5-year survival in approximately 30% of patients with metastatic or unresectable melanoma [5]. Also, clinical studies of patients treated with the combination therapy, i.e. cobimetinib (Cotellic) with vemurafenib (zelboraf) (coBRIM, BRIM-2, BRIM-3, BRIM-7) showed a higher median of overall survival (*OS*) and progression-free survival (PFS) compared to BRAFi monotherapy [6, 7]. However, both of these treatments have side effects such as fever and photosensitivity. On the other hand, with the combination of BRAF/MEK inhibitors (encorafenib + binimetinib), fewer side effects and high treatment efficacy are reported (COLUMBUS study) [4].

According to Polish recommendations, in line with ESMO and NCCN guidelines, in patients with confirmed *BRAF* mutation, combination therapy with BRAF and MEK inhibitors is recommended in certain clinical situations [1]. From September 2020, under the drug programme "Treatment of melanoma of the skin or mucous membranes" in patients with a BRAF activating V600 mutation and with metastatic or unresectable melanoma, state funding covers the molecularly targeted therapy: encorafenib (Braftovi) + binimetinib (Mektovi). Further, provisions regarding other combinations of BRAFi and MEKi have been standardised, which makes it easier for physicians to qualify patients for appropriate therapies.

Despite the use of combined treatment with two antibodies, resistance mechanism is often observed in patients, and some of them do not benefit from treatment at all. This means that further research is needed to help identify the mechanisms of resistance [8].

NRAS

Despite many years of research, targeted therapy in the form of direct inhibitors of the NRAS protein is still a serious challenge because small-molecule GTPase is a very difficult target for conventional drugs [9]. Therefore, research was focused on therapies targeted on (downstream) effector pathways activated by *NRAS*: MAPK and PI3K as the best-known ones in the aetiopathogenesis of melanomas. In patients with advanced melanoma and the *NRAS* mutation, promising results have been obtained so far for the MEK inhibitor (MEK-162) [10]. Such results have not yet been obtained for the PI3K pathway. Although clinical trials are still pending (e.g., NCT03932253), preliminary data suggest that molecularly targeted therapies (MEK1/2 inhibitors) will soon become available for this subset of patients.

KIT

So far, over a dozen clinical trials have been carried out concerning administration of various small molecule inhibitors of KIT. Imatinib (Glivec) – initially used against BCR-ABL fusion in chronic myeloid leukaemia - has also proven to be an effective KIT inhibitor. The best response was recorded in patients with exon 11 and 13 mutations and gene amplification.

Another KIT inhibitor is nilotinib (Tasigna), which is comparable or more potent than imatinib. Dasatinib also has anti--mutation / amplification activity against *KIT* and further targets Src family kinases. Sunitinib, which in addition to blocking KIT, inhibits also the vascular endothelial growth factor receptor (VEGFR), has also been approved for the treatment of melanoma [11]. Further, therapy targeted at KIT and downstream pathways may probably help control cancer progression. It was also shown that KIT inhibition contributed to enhancement of the immune response, thus increasing anti-neoplastic effect through activation of T lymphocytes and clonal expansion of cytotoxic cells (natural killers - NK). The results of studies on therapies applying KIT inhibitors indicate improvement in the general condition of patients and prolonged progression-free time. In single cases complete disease remission was observed. However, improvement occurs only in some of the treated patients, therefore, further studies are necessary in patients with mutations in the KIT gene [11].

Immunotherapy

One of the hallmarks of cancer is its ability to escape from the immune system's effects. However, the literature describes cases of patients with spontaneous activation of the immune system and cancer's auto-aggression [12]. This has brought scientists' attention to the potential for modulating the immune system to fight cancer.

In patients with unresectable or metastatic melanoma, the immune checkpoints is blocked, which in physiological conditions is responsible for maintaining homeostasis and preventing autoimmune reactions [12].

The first approved drug to block immune checkpoints was ipilimumab, a monoclonal antibody against a cytotoxic antigen (anti-CTLA-4 [cytotoxic T cell antigen 4]). CTLA-4 is an antigen present on the surface of activated T lymphocytes, which competes with CD28 for the binding of CD80 (B 7.1) and CD 86 (B 7.2) ligands present on the sufrace of antigen-presenting cells [13]. CD28 is constantly present on the surface of T cells and it is first to bind CD80 and CD86. This in turn triggers intracellular activation which leads to CTLA-4 translocation to the lymphocyte surface. In comparison to CD28, CTLA-4 has a greater affinity for CD80 and CD86 ligands. This leads to a silencing / inhibition of the immune reaction (negative feedback) [14]. Blocking CTLA-4 by ipilimumab does not suppress the immune response, and T cells remain active to fight cancer cells. However, the response to treatment with ipilimumab is observed only after several months, therefore the drug should be used in patients in good general condition. In addition, response is only seen in a small percentage of patients (approximately

10%) and immune-related adverse effects (irAEs) are serious. They include:

- inflammation of various tissues, most frequently the skin,
- gastrointestinal reactions (enteritis),
- hepatitis,
- endocrinopathies [15].

Much fewer side effects are observed in immunotherapy directed at the programmed death checkpoint, which is the PD-1 receptor (programmed cell death protein 1) present on T lymphocytes. Under physiological conditions, the PD-1 receptor binds with PD-L1 ligands (programmed death-ligand 1) and PD-L2 (programmed death-ligand 2) present on different cells of the body. Thus, autoimmune reactions are avoided [16, 17]. Frequently, overexpression of PD-L1 is observed on the surface of neoplastic cells, which is associated with "concealment" of the tumour from the immune system. Blocking the PD-1 receptor increases the activity of T lymphocytes [13].

Currently, two anti-PD-1 monoclonal antibodies are used in the immunotherapy of advanced melanoma: nivolumab and pembrolizumab. For both nivolumab and pembrolizumab, statistically significant increases in overall survival and progression-free survival were reported in patients with metastatic melanoma as compared to patients treated with ipilimumab [16, 17]. Interestingly, retrospective studies indicate that patients with the *NRAS* mutation gain more from immunotherapy than patients with other genetic changes [18, 19]. This is probably related to the increased expression of PD-L1 on the tumour cell surface in patients with the *NRAS* mutation.

Further clinical trials revealed that double blockade of the immune system's checkpoints by combined administration of ipilimumab and nivolumab increased the patients' progression-free survival and overall survival as compared to separate application of immunotherapies (Checkmate 067 and 069 studies). Additionally, trials concerning treatment with reduced dose of ipilimumab and prembrolizumab showed a strong antineoplastic effect, lasting response, positive long-term survival and controllable toxicity (KEYNOTE-029 study) [20–22].

In Poland, from 1 September 2020, a new therapeutic scheme (referred to as combo) is funded by the public health insurance system for a selected group of patients. It allows simultaneous administration of nivolumab (Opdivo) + ipilimumab (Yervoy) in a combination therapy as the first-line treatment of metastatic or unresectable melanoma. However, since January 2021, immunotherapy (pembrolizumab or nivolumab) and combined targeted therapy using BRAFi + MEKi (dabrafenib + trametinib) are available in the drug scheme as a part of adjuvant treatment in patients with stage III resectable melanoma. Thus, Polish patients have gained access to state-of-the-art treatment which reduces the recurrence risk by about 20%.

Conclusions

Genetic analysis of somatic changes in melanomas has allowed introduction of personalised therapy against oncogenes and/

or signalling pathways that are activated as an expression of loss of function of genes that are essential in a given pathway. The best-known treatment target is inhibition of *BRAF* in patients with metastases and *BRAF* activating mutation. It has been shown that targeted therapy with BRAF inhibitors has a huge impact on the natural course of advanced melanoma, which in turn has led to development of new targeted therapies, including activation of natural defence mechanisms. Currently, drugs are sought that will inhibit both the primary and secondary pathways of oncogene activation, leading to the acquisition of resistance during treatment.

Conflict of interest: none declared

Justyna Gil

Wroclaw Medical University Chair and Department of Genetics ul. Marcinkowskiego 1 50-368 Wrocław, Poland e-mail: justyna.gil@umed.wroc.pl

Received: 24 Mar 2021 Accepted: 25 Mar 2021

References

- Rutkowski P, Wysocki PJ, Nasierowska-Guttmejer A, et al. Cutaneous melanomas. Oncol Clin Pract. 2020; 16(4): 163–182, doi: 10.5603/ OCP.2020.0021.
- Mikula H, Stapleton S, Kohler RH, et al. Design and Development of Fluorescent Vemurafenib Analogs for Imaging. Theranostics. 2017; 7(5): 1257–1265, doi: 10.7150/thno.18238, indexed in Pubmed: 28435463.
- Kosela H, Świtaj T, Rutkowski P. Zastosowanie inhibitorów BRAF i MEK w terapii zaawansowanego czerniaka. Onkol Prak Klin. 2011; 7(5): 246–253.
- Giunta EF, De Falco V, Napolitano S, et al. Optimal treatment strategy for metastatic melanoma patients harboring mutations. Ther Adv Med Oncol. 2020; 12: 1758835920925219, doi: 10.1177/1758835920925219, indexed in Pubmed: 32612709.
- Robert C, Grob JJ, Stroyakovskiy D, et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. N Engl J Med. 2019; 381(7): 626–636, doi: 10.1056/NEJMoa1904059, indexed in Pubmed: 31166680.
- Lewis KD, Larkin J, Ribas A, et al. Impact of depth of response on survival in patients treated with cobimetinib ± vemurafenib: pooled analysis of BRIM-2, BRIM-3, BRIM-7 and coBRIM. Br J Cancer. 2019; 121(7): 522–528, doi: 10.1038/s41416-019-0546-y, indexed in Pubmed: 31417188.
- Spagnolo F, Ghiorzo P, Orgiano L, et al. BRAF-mutant melanoma: treatment approaches, resistance mechanisms, and diagnostic strategies. Onco Targets Ther. 2015; 8: 157–168, doi: 10.2147/OTT.S39096, indexed in Pubmed: 25653539.
- Kozar I, Margue C, Rothengatter S, et al. Many ways to resistance: How melanoma cells evade targeted therapies. Biochim Biophys Acta Rev Cancer. 2019; 1871(2): 313–322, doi: 10.1016/j.bbcan.2019.02.002, indexed in Pubmed: 30776401.
- Smalley KSM, McArthur GA. The current state of targeted therapy in melanoma: this time it's personal. Semin Oncol. 2012; 39(2): 204–214, doi: 10.1053/j.seminoncol.2012.01.008, indexed in Pubmed: 22484192.
- Ascierto P, Schadendorf D, Berking C, et al. MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol. 2013; 14(3): 249–256, doi: 10.1016/s1470-2045(13)70024-x.
- Pham DD, Guhan S, Tsao H. KIT and Melanoma: Biological Insights and Clinical Implications. Yonsei Med J. 2020; 61(7): 562–571, doi: 10.3349/ ymj.2020.61.7.562, indexed in Pubmed: 32608199.
- Ricci SB, Cerchiari U. Spontaneous regression of malignant tumors: Importance of the immune system and other factors (Review). Oncol Lett. 2010; 1(6): 941–945, doi: 10.3892/ol.2010.176, indexed in Pubmed: 22870091.

- Isakov N. Cancer immunotherapy by targeting immune checkpoint receptors. World J Immunol. 2018; 8(1): 1–11, doi: 10.5411/wji.v8.i1.1.
- Chae YK, Arya A, Iams W, et al. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). J Immunother Cancer. 2018; 6(1): 39, doi: 10.1186/ s40425-018-0349-3, indexed in Pubmed: 29769148.
- Callahan MK, Postow MA, Wolchok JD. Immunomodulatory therapy for melanoma: ipilimumab and beyond. Clin Dermatol. 2013; 31(2): 191–199, doi: 10.1016/j.clindermatol.2012.08.006, indexed in Pubmed: 23438382.
- Sahni S, Valecha G, Sahni A. Role of Anti-PD-1 Antibodies in Advanced Melanoma: The Era of Immunotherapy. Cureus. 2018; 10(12): e3700, doi: 10.7759/cureus.3700, indexed in Pubmed: 30788189.
- Munhoz RR, Postow MA. Clinical Development of PD-1 in Advanced Melanoma. Cancer J. 2018; 24(1): 7–14, doi: 10.1097/ PPO.000000000000299, indexed in Pubmed: 29360722.

- Johnson DB, Lovly CM, Flavin M, et al. Impact of NRAS mutations for patients with advanced melanoma treated with immune therapies. Cancer Immunol Res. 2015; 3(3): 288–295, doi: 10.1158/2326-6066. CIR-14-0207, indexed in Pubmed: 25736262.
- Rose AAN, Armstrong SM, Hogg D, et al. Biologic subtypes of melanoma predict survival benefit of combination anti-PD1+anti-CTLA4 immune checkpoint inhibitors versus anti-PD1 monotherapy. J Immunother Cancer. 2021; 9(1), doi: 10.1136/jitc-2020-001642, indexed in Pubmed: 33483342.
- Coit DG, Thompson JA, Albertini MR, et al. Cutaneous melanoma, version 2. JNCCN. 2019; 17: 367–402, doi: 10.6004/jnccn.2019.0018.
- Simeone E, Ascierto PA. Anti-PD-1 and PD-L1 antibodies in metastatic melanoma. Melanoma Manag. 2017; 4(4): 175–178, doi: 10.2217/mmt-2017-0018, indexed in Pubmed: 30190923.
- Carlino MS, Menzies AM, Atkinson V, et al. Long-term Follow-up of Standard-Dose Pembrolizumab Plus Reduced-Dose Ipilimumab in Patients with Advanced Melanoma: KEYNOTE-029 Part 1B. Clin Cancer Res. 2020; 26(19): 5086–5091, doi: 10.1158/1078-0432.CCR-20-0177.

Letter to the Editor

NOWOTWORY Journal of Oncology 2021, volume 71, number 4, 255–256 DOI: 10.5603/NJ0.a2021.0039 © Polskie Towarzystwo Onkologiczne ISSN 0029–540X, e-ISSN: 2300-2115 www.nowotwory.edu.pl

Paper mill-derived cancer research: the improbability of prostate cancer in women, and ovarian and breast cancer in men

Jaime A. Teixeira da Silva

Independent researcher, Kagawa-ken, Japan

Paper mill-derived research has penetrated biomedical literature, and it is affecting the integrity and reliability of research [1]. The use of paper mills (i.e., pay-to-create services) is an act of misconduct if the use of such services is not declared since it gives the false impression of the authors' effort, input, and originality, when in fact none was involved; moreover authorship is false since the data is created or fabricated by others, and not generated honestly in a laboratory by the authors themselves. Paper mill-derived research has itself become an academic cancer in urgent need of a cure and solutions.

Several sleuths, anonymous and named, continue to examine cancer literature, and their efforts may or may not be related to the cancer reproducibility project by the Center for Open Science. Independent of the source of these discoveries, the discoveries themselves are cause for concern and alarm. In the most recent paper mill exposé, which may or may not be related to other paper mills, three papers are highlighted in this letter: Hu et al. (2018), Pan et al. (2019), and Liu et al. (2020) [2–4]. What is curious about these papers was the discovery of breast cancer in males (Hu et al. [2]), ovarian cancer in males (Liu et al. [4]), and prostate cancer in females (Pan et al. [3]). In all three studies, genders were described as binary, i.e., exclusively biological male and female, and none of the study subjects were indicated as being transgender, which might be associated with altered hormone levels [5] and thus the possibility of confusing genders.

While it is not unusual to discover breast cancer in males, it is a very rare (about 1% of all cases of breast cancer) phenomenon [6]. Despite this, Hu et al. [2] reported a >59% incidence of breast cancer in males (38/64 subjects), apparently detected using a quantitative real-time polymerase chain reaction (qRT--PCR) with a long non-coding RNA (IncRNA), LINC01116. Not only the extremely high value, but also the fact that cases in males were higher than in females (a potentially first extraordinary finding in the cancer literature) suggest that these findings are too good to be true, or, in other words, false.

In Liu et al. [4], ovarian cancer was found in 28 males among 49 subjects, i.e., >57% incidence, as apparently detected by LINC00675, while in Pan et al. [3], prostate cancer was found in 27 females among 52 subjects, i.e., an almost 52% incidence, as apparently detected by microRNA-605-3p, both using qRT--PCR. In these cases, the incidence of ovarian cancer in males and prostate cancer in females should theoretically be 0%, since, evidently, biological males do not have an ovary while biological females do not have a prostate. Would it thus be safe to assume that these findings are either extraordinary, or that they are false? The clue may lie in the fact that Pan et al. (2019) has already been retracted for very opaque reasons.

How to cite:

Jaime A. Teixeira da Silva. Paper mill-derived cancer research: The improbability of prostate cancer in women, and ovarian and breast cancer in men. NOWOTWORY J Oncol 2021; 71: 255–256.

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.

Its retracted status is (unfortunately) not – but should be – indicated on its PubMed entry.

This case also draws concern about the journal in which three papers were published – the European Review for Medical and Pharmacological Sciences – which has a 2019 Clarivate Analytics Journal Impact Factor (JIF) of 3.024 and is indexed in the Web of Science and PubMed. The fact that it is an open access journal fortifies the risk of potentially fictitious paper mill-derived cancer research because it is so easy to access, and thus cite. In fact, a Google Scholar search for Hu et al. (2018), Pan et al. (2019), and Liu et al. (2020) [2–4] reveals that they have been cited 44, 4, and 0 times, respectively. In the case of Pan et al. (2019), those citations could be considered to be *unfair* contributors to the journal's JIF, and the JIF itself would need to be adjusted downwards to account for the retracted paper's citations [7].

This letter provides a bird's-eye view of three papers among dozens or hundreds of papers on cancer with potentially fabricated data and findings, most likely derived from one (and the same) or more paper mills that might have served multiple clients with recycled or fabricated data, including figures, tables, and text, often confusing cancer cell lines within and among papers. Ultimately, readers are left confused, doubt regarding the validity of the findings increases, and mistrust in some of the most basic elements of *trust* in biomedical and academic publishing, such as the blind claim of the peer review, and the *quality* aspect of PubMed [8], Clarivate Analytics and the JIF, are now on the increase.

This letter has obvious limitations: it only provides a brief three-paper snapshot of a potentially far-reaching problem regarding the integrity of peer-reviewed and indexed cancer literature. This letter also focuses on one issue almost exclusively, namely the improbability of prostate cancer in women, and ovarian and breast cancer in men, or at least at the levels reported by Hu et al. (2018), Pan et al. (2019), and Liu et al. (2020) [2–4]. There are many other issues in these related papers that need to be explored and discussed. The criminality of individuals working for and supporting paper mills, and the networks of researchers, editors, journals, and publishers that may be involved, deserves heightened awareness and further investigation.

Confict of interest: none declared

Jaime A. Teixeira da Silva

P. O. Box 7 Ikenobe 3011-2 Kagawa-ken 761-0799, Japan e-mail: jaimetex@yahoo.com

Received: 15 May 2021 Accepted: 8 Jun 2021

References

- Teixeira da Silva JA. Paper mills and on-demand publishing: Risks to the integrity of journal indexing and metrics. Med J Armed Forces India. 2021; 77(1): 119–120, doi: 10.1016/j.mjafi.2020.08.003, indexed in Pubmed: 33100486.
- Hu HB, Chen Q, Ding SQ. LncRNA LINC01116 competes with miR-145 for the regulation of ESR1 expression in breast cancer. Eur Rev Med Pharmacol Sci. 2018; 22(7): 1987–1993, doi: 10.26355/eurrev_201804_14726, indexed in Pubmed: 29687853.
- Pan MZ, Song YL, Gao F. MiR-605-3p inhibits malignant progression of prostate cancer by up-regulating EZH2. Eur Rev Med Pharmacol Sci. 2019; 23(20): 8795–8805, doi: 10.26355/eurrev_201910_19274, indexed in Pubmed: 31696466.
- Liu ZH, Liu WJ, Yu XY, et al. Circ_0005276 aggravates the development of epithelial ovarian cancer by targeting ADAM9. Eur Rev Med Pharmacol Sci. 2020; 24(20): 10375–10382, doi: 10.26355/eurrev_202010_23387, indexed in Pubmed: 33155193.
- Light AD, Obedin-Maliver J, Sevelius JM, et al. Transgender men who experienced pregnancy after female-to-male gender transitioning. Obstet Gynecol. 2014; 124(6): 1120–1127, doi: 10.1097/ AOG.000000000000540, indexed in Pubmed: 25415163.
- Jain S, Gradishar W. Male breast cancer. The Breast. 2018: 974–980.e2, doi: 10.1016/b978-0-323-35955-9.00076-3.
- Teixeira da Silva JA, Dobránszki J. Citing retracted papers affects education and librarianship, so distorted academic metrics need a correction. J Libr Sch Commun. 2018; 6(1), doi: 10.7710/2162-3309.2258.
- Teixeira da Silva JA. Is the validity, credibility and reliability of literature indexed in PubMed at risk? Medical J Armed Forces India. 2021, doi: 10.1016/j.mjafi.2021.03.009.