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 The primary function of intracellular heat shock proteins (HSPs) is to protect the cell by suppressing the effects of va-
rious stress factors by either refolding misfolded proteins or blocking apoptosis. After neoplastic transformation, cells 
overexpress HSPs, which act as factors promoting the neoplastic process by stabilizing proteins responsible for carci-
nogenesis, however, HSPs can be released into the extracellular environment where they act as important modulators 
of the immune response. In a tumor microenvironment, extracellular HSPs are able to induce a pro- or anti-neoplastic 
response, using various mechanisms of affecting immune cells, The study of the role of extracellular HSPs in immuno-
modulation processes is a very important direction in the search for new methods of cancer treatment. This review 
summarizes reports on the use of HSPs in immunotherapeutic cancer strategies, in particular in cancer vaccine design.
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Introduction
The research conducted so far confirms the importance of 
heat shock proteins (HSPs) in such oncological processes as 
cell proliferation, infiltration and metastasis. Heat shock pro-
teins are receiving increased attention as potential therapeutic 
targets. The success of anti-cancer treatment depends on the 
level of the body’s immune protection. Heat shock proteins 
affect the balance between protective and destructive im-
mune responses in the tumor microenvironment, hence the 
concept of using HSPs in cancer immunotherapy and design-
ing cancer vaccines. 

The innate and adaptive immune system is essential for 
the effective recognition and removal of neoplastic cells in 
the process of immune surveillance. Many previous studies 
have demonstrated the importance of natural killer (NK) 

cells, natural killer T-cells (NKT), eosinophils, αb and γδ T- 
and B-lymphocytes in immune surveillance [1, 2]. Studies 
on animal models have shown that mice deprived of any 
of the above-mentioned immune cell populations showed 
an increased susceptibility to methylcholanthrene-induced 
sarcomas [1].

Chemical mediators such as IFN 1, IFN-γ, IL-12, and TNF-α 
are equally important. In patients with immunosuppres-
sion caused by, for example, acquired immunodeficiency 
syndrome (AIDS), transplantation or even old age, cancer 
incidence is several times higher than in patients with nor-
mal immunity [3]. Kaposi’s sarcoma (KS) is a neoplasm that 
defines the diagnosis of AIDS, as the likelihood of developing 
KS in people with AIDS is 175–400 times higher. Before the 
AIDS epidemic, the incidence of this type of sarcoma was 
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not higher than two per million people. The second most 
frequently diagnosed AIDS-related cancer is non-Hodgkin’s 
lymphoma, which is 73 times more common in these patients 
than in the average population [4].

The role of HSPs in immune processes associated 
with cancer
Tumor recognition by the immune system is based on the 
expression of mutant proteins and tissue-specific antigens 
by the neoplastic cells, as well as overexpression of tumor-
-associated antigens (TAAs). One of the key factors enabling 
the development of a neoplastic process in the body is the 
tumor’s ability to avoid immunological detection. This effect 
is achieved through: 
• suppression of the major histocompatibility complex 

(MHC) class I expression on the neoplastic cell surface
• loss or alteration of TAA expression by neoplastic cells 
• inhibition of the mechanisms of cancer cell-specific anti-

gen recognition
• local expression of inhibitory immune molecules such as 

transforming growth factor (TGF) – β and Fas-ligand [5].
Given this, it is clear why scientists are interested in increas-

ing the potential and specificity of the anti-cancer immune 
response. 

The development of the neoplastic process is accom-
panied by changes in the structure and function of protein 
complexes and individual molecules. Protein functions are 
determined by its conformation (spatial structure), which de-
pends on the functioning of heat shock proteins – molecular 
chaperones or stress proteins – highly conserved specialized 
proteins responsible for the correct folding of proteins and 
preventing their unwanted aggregation. HSPs help transport 
proteins into the cells across the membranes. HSP-molecular 
chaperones interact with proteins in equal amounts (stoichio-
metrically), therefore a huge amount of HSPs are synthesized 
at the time of cellular stress, forming complexes with cellular 
proteins. In the process of neoplastic transformation, the cell 
experiences oxidative stress and nutrient deficiency. We ob-
serve high expression of mutated cancer-specific proteins that 
have a destructive effect on the processes of cell proliferation, 
growth and death. This leads to high expression of HSPs [6]. 
Thus, intracellular HSPs play the role of cancer promoters, stabi-
lizing the altered conformation of mutant proteins responsible 
for carcinogenesis [7]. 

Stress conditions in a tumor lead to necrotic lysis of 
neoplastic cells accompanied by the release of HSP-pep-
tide complexes (HSP complexes with cellular proteins) into 
extracellular space. Detection of HSPs in the extracellular 
environment suggests that HSPs perform functions other 
than just that of intracellular chaperones. A large number 
of immune cells concentrate around the site of necrosis. It 
has been noticed that HSP-peptide complexes, including 
complexes with neoplastic peptides, can be taken up by 

antigen presenting cells (APC) through endocytosis [8]. The 
absorption of the HSP70-peptide complex by AРС with the 
participation of LOX-1, FEEL-1 and SREC-1 receptors was 
reported [9]. Absorbed peptides are processed by APC and 
participate in antigen cross-presentation. After processing, 
antigenic epitopes in the form of complexes with MHC class 
I and II are presented to T lymphocytes [10]. This results in the 
activation of cytotoxic T lymphocytes (CTL), which induces 
a cytotoxic response, and of helper T cells (Th), which, in turn, 
activate B lymphocytes to induce humoral response. 

HSPs can be released into the extracellular space not only 
during necrotic disintegration, but can also be secreted in 
the form of extracellular milieu HSP (EX-HSP), membrane-
associated HSP (mHSP) and extracellular vesicle HSP (EV-HSP) 
[11]. Extracellular HSPs interact with immune cells, and these 
interactions may have suppressive or stimulating effects [12]. 
The general conclusion that can be drawn from the data pre-
sented so far is that the effect of HSPs on tumor growth de-
pends on the mechanism of their release into the extracellular 
space. HSPs released into the extracellular space by tumor 
cells in result of cellular exocytosis may have an immunosup-
pressive effect. They lead to immune tolerance and anergy 
of immune cells, creating a favorable microenvironment for 
invasive growth and proliferation of neoplastic cells [13, 14].

HSP60 secreted as extracellular milieu (EX-HSP60) shows 
immunosuppressive properties, especially in relation to CTL, 
participating in the increase of CD4(+), CD25 and Foxp3 cell 
population. It also stimulates mononuclear cells to induce the 
production of anti-inflammatory cytokines such as IL-10 and 
IL-6 by CD4(+) T lymphocytes. CD4(+) T lymphocytes stimu-
lated in this way demonstrate immunosuppressive properties 
[15, 16]. It has also been established that HSP60, acting through 
the TLR4 receptor, stimulates B lymphocytes to secrete IL-10 
and IL-6 and also stimulates the proliferation of B-lymphocytes, 
which acquire the ability to stimulate T lymphocytes to secrete 
IL-10 and TNF-α [17]. HSP60 may also induce the produc-
tion of TNF-α by macrophages, promote metastatic processes 
through the interaction with β-catenin and enhance the tran-
scriptional activity of cells [18].

HSP27 secreted into the extracellular space induces the dif-
ferentiation of monocytes into immunotolerant macrophages. 
The latter produce anti-inflammatory mediators, thrombos-
pontin-1 and IL-10, which can induce the anergy of T lympho-
cytes. Macrophages also demonstrate pro-angiogenic activity 
and participate in the formation of new blood vessels, which 
is one of the conditions for tumor progression [6].

Extracellular HSP70 (EX-HSP70) inhibits TNF-α-induced IL-6, 
IL-8 and MCP-1 production, and also inhibits the maturation of 
dendritic cells (DC) and cytokine secretion [19]. Furthermore, 
EX-HSP70 can reduce the T lymphocyte response indepen-
dently of the stimulatory effect of DCs.

In most cases, extracellular vesicle HSP (EV-HSP) also exerts 
immunosuppressive effects. EV-HSP72 stimulates myeloid-
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derived suppressor cells (MDSC) and induces their suppressive 
activity dependent on the Stat3 pathway [13]. The immuno-
suppressive activity of MDSC is manifested by the secretion of 
IL-10, the involvement of regulatory T lymphocytes (Treg) and 
inhibition of CD4(+) and CD8(+) T lymphocytes. 

However, the presence of HSPs in the extracellular space, 
especially as a result of necrotic or apoptotic tumor cell death, 
including destruction induced by chemotherapy or radia-
tion therapy, may result in pro-inflammatory activation of im-
munocytes in both the tumor microenvironment and the 
entire immune system, thereby inhibiting tumor growth and 
metastasis.  Acting as endogenous signaling factors, HSPs 
facilitate the functional maturation of APCs – dendritic cells 
and macrophages – which enhance the expression of MHC 
molecules and activate adaptive immune responses.

It should be pointed out that the role of EV-HSP in im-
munological processes is ambiguous, as they may also exhibit 
immunostimulatory properties (e.g. EV-HSP70 may induce 
chemotaxis of NK cells and enhance their cytolytic function) 
[20]. The immunostimulatory effect was also observed in rela-
tion to mHSP, for example mHSP70, which is able to activate 
the production of TNF-α by macrophages and the cytolytic 
activity of NK [21].

The immunostimulatory properties of HSP have been 
studied to establish their possible use in the development of 
anti-cancer therapies. The first publications describing HSPs as 
immune regulatory molecules appeared in the 1980s. It was 
shown that gp96 is a carrier of TAA acting as a TAA transporter 
[22]. The gp96 protein in combination with tumor antigens can 
stimulate immune response against the tumor cells it has been 
isolated from. A similar ability to enhance anti-tumor immunity 
has been demonstrated for HSP70 and HSP90 combined with 
tumor peptides [23].

Several examples of the immunostimulatory effects of 
HSPs have been described. Extracellular HSP70 activates NK 
and, in particular through the CD94 receptor, stimulates their 
proliferation and specific migration [24, 25]. HSPs located on 
the surface of neoplastic cells increase their sensitivity to NK. 
Increased lysis of cells under the influence of NK was observed 
in osteosarcoma and breast cancer expressing HSP70 on the 
cell membrane surface [27]. When interacting with CD91, 
CD14, TLR4 receptors on the surface of APC, HSPs are able to 
induce the production of pro-inflammatory cytokines (IL-1, IL-6, 
IL-12, TNF). Moreover, HSPs as molecular chaperones, are ca-
pable of binding TAA and these complexes may be presented 
by APCs, including DCs, through MHC I and II molecules. This 
leads to the anti-tumor activation of CD8(+) and CD4(+) T lym-
phocytes, stimulation of macrophages and NK cells, as well as 
activation of B lymphocytes [27]. HSPs are able to stimulate 
the maturation and migration of DCs. In this case, they can act 
“independently” without forming complexes with peptides or 
using ATP energy, i.e., acting not only as a chaperon but also 
having a cytokine-like function [28, 29]. 

Receptor-mediated HSPs have been observed to stim-
ulate the maturation of CD11c + DCs that enhance MHC 
class II expression. In addition to increased MHC class II ex-
pression, HSP-activated DCs have been found to exhibit 
increased CD86 expression and TNF-α and IL-12 production 
[30]. Moreover, nitric oxide is released by dendritic cells and 
macrophages during the stimulation of HSPs, namely gp96 
and HSP70, which in turn leads to a cytolytic or cytostatic 
effect on neoplastic cells in vivo [31]. Chemoattraction of 
DC and T lymphocytes in tumors following the exposure to 
hyperthermia leads to the release of HSP70. It was found that 
DCs are activated upon contact with HSP70 released from 
tumor cells and that this activation is dependent on TLR4 
[32]. This demonstrates the ability of endogenous heat shock 
proteins to stimulate DCs via TLR4.

As chaperones, HSPs can bind to specific receptors on 
DCs, contributing to the cross-presentation of their peptides 
[33]. Typically, the antigen interaction with APC, especially DCs, 
leads to its presentation in the complex with MHC class II and 
its subsequent recognition by helper T lymphocytes (CD4(+)) 
in lymph nodes. The mechanism of antigen cross-presentation 
lies in the ability of DCs to process and present the antigen by 
means of MHC class I molecules. The МНС І-antigen complex is 
recognized by the CD8(+) T lymphocyte receptor and activates 
these cells to differentiate into mature cytotoxic T lymphocytes. 
HSPs have the ability to bind to antigenic peptides present 
on tumor cells and stabilize their conformation by forming 
permanent complexes with them (HSP-TAA).

SRECI and LOX-1 are the two most important DC recep-
tors that allow the cross-presentation of HSP-TAA complexes. 
SRECI binds to a wide variety of HSPs (HSP60, HSP70, HSP90, 
HSP110, gp96 and GRP170), while LOX-1 binds mainly to HSP60 
and HSP70 [34]. The interaction of the HSP-TAA and MHC class 
I complex with the immature CD8(+) T lymphocyte recep-
tor leads to the activation of the latter. Activated CD8(+) T 
lymphocytes acquire cytotoxic properties, and therefore may 
induce apoptosis of tumor cells in which the aforementioned 
HSP-TAA complexes have been formed. Cross-presentation of 
peptides plays an important role in immune surveillance as 
the bound peptide is not only protected from degradation 
but the efficiency of cross-presentation in DCs is also higher. 
Moreover, some neoplastic cells express very little neoantigens, 
which limits the possibility of their presentation. Thus, cross-
presentation of the HSP-peptide complex widens the range of 
complexes available as targets for the immune system (fig. 1).

There is also a known phenomenon of the reduction of 
surface molecules of the MHC class I presentation pathway in 
neoplastic cells, which can be used as a protective mechanism 
in tumor proliferation. It has been demonstrated to restore 
the presentation of MHC class I molecules on the cell surface 
after transfection with human HSP70. B16 melanoma cells with 
primary presentation deficiency have thus become available 
for recognition by CTL.
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• monoclonal antibodies against neoplastic antigens, e.g., 
trastuzumab [40],

• adaptive cell therapy, i.e., the transfer of ex vivo activated 
tumor infiltrated lymphocytes (TILs), and chimeric antigen 
receptors (CARs) [41, 42].
Cancer vaccines provide an example of active immuno-

therapy [43]. The main strategy of cancer vaccine design is 
to identify immune response targets (TAAs), to create im-
munogenic forms and conditions for the recognition of such 
antigens, and to induce proliferation and increase the activity 
of immunocompetent cells. Cancer vaccines can be divided 
into three main groups:
• cell vaccines based on the use of the whole or lysed au-

tologous or allogeneic tumor cells and DCs modified by 
various in vitro or in vivo methods, 

• peptide vaccines based on the identified tumor antigens; 
they are autologous, recombinant or synthetic vaccines 
based on peptides, heat shock proteins, 

• genetic vaccines – this method consists in introducing 
DNA sequences coding for the tumor antigen to the pa-
tient. 
All of these strategies have been and continue to be ex-

tensively researched and have their advantages and disad-
vantages. The effectiveness of the treatment depends not 

We can therefore say that the HSP-TAA complex contains 
not only a tumor associated antigen capable of stimulating 
specific immune response, but also an immunoadjuvant (in 
this case HSP) which is responsible for stimulating nonspecific 
immunity. This makes the HSP-TAA complexes very prom-
ising objects for their use in the design of cancer vaccines 
[5]. Moreover, cross-presentation of antigens in a complex 
with HSP derived from a tumor of a certain haplotype, has 
the ability to initiate CTL upon administration of the second 
haplotype to the recipient [36]. This broadens the arsenal of 
possible tools in the technology of designing immunological 
cancer treatments.

Immunological cancer treatment strategies
The search for methods of enhancing the immune response 
to TAA is a very dynamic area of contemporary research in 
oncology. The immunotherapeutic strategies developed so 
far can be divided into non-specific and specific. The main 
goal of the former is the nonspecific activation of immune 
responses by means of cytokines such as IL-2 [37–39], or 
by means of immune checkpoint inhibitors – anti-CTLA4 
or anti-PD-1 drugs. Specific immunotherapy strategies can 
be classified as passive and active. Passive immunotherapy 
includes the use of:
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Figure 1. Antitumor immunomodulatory role of extracellular HSP70 (EX-HSP70) – [35] with modification

EX-HSP70 complexes with TAAs allowing them to be taken up by APC via CD91 (or other uptake receptors). EX-HSP70 provides a cross-presentation of TAA 
on MHC class I or II molecules, and promotes a signal cascade that activates CD8(+) and CD4(+) T lymphocytes. mHSP70 provides specific stimulation of 
NK-cells through the CD94 receptor. EX-HSP70 stimulates NK cells indirectly through the MICA receptor on NK cells, which binds to the NKG2D activation 
receptor. Activated NK cells increase the release of granzyme B, which triggers the process of perforin-independent apoptosis of cells by binding to the 
neoplastic mHSP70. Through binding to the TLR4 receptor of dendritic cells, EX-HSP70 stimulates their maturation and increases the expression of MICA, 
which, in this case, is a ligand for NKG2D
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only on the specific medicinal preparation but also on the 
method of administration, dose, number of repeats as well as 
the nature of the TAA itself. The strategy for using cellular vac-
cines is to administer autologous APC preparations that act as 
immune activators through antigen presentation by MHC class 
I and II. Dendritic vaccines provide an example of this type of 
therapy. During treatment with dendritic cells, monocytes are 
removed from the patient’s blood, forced to differentiate into 
dendritic cells that “get acquainted” with the antigens isolated 
from that patient’s tumor, and are then introduced into the 
body. Dendritic cells present TAA to cytotoxic T lymphocytes 
and activate them to fight cancer. Increased interest in these 
type of vaccines appeared after the approval of the first ac-
tive cancer vaccine “Sipuleucel-T” in the treatment of patients 
with asymptomatic or minimally symptomatic metastatic 
castration-resistant prostate cancer [44]. Other approaches 
in cell vaccine design involve the use of whole tumor cells of 
autologous or heterologous origin that are pre-devitalized. In 
the future, they will act as immunogenic targets to stimulate 
specific and innate anti-tumor immunity. This vaccine provides 
the immune system with all potential tumor antigens in every 
individual patient. Another advantage of this approach is that 
tumor antigens and their epitopes and presentation methods 
do not require identification. However, these vaccines suffer 
from a number of disadvantages, including the difficulty of 
obtaining enough tumor tissue for sustained therapy and the 
tolerance to the patient’s “own” tumor antigens of patient’s 
immune system. 

Another type of cancer vaccine consists in protein or pep-
tide vaccines, based on the use of native antigens or specific 
antigen epitopes, the introduction of which stimulates an 
immune system response in the form of a cascade of reac-
tions, which leads to the targeted lysis of tumor cells.  These 
proteins/peptides induce T lymphocytes by their presentation 
in a complex with MHC class II. The use of peptide vaccines in 
oncological patients is able to activate a specific anti-tumor 
immune response and is not accompanied by symptoms of 
toxicity. The disadvantage of this type of vaccine is the lack 
of the possibility of significant CTL stimulation. Therefore, many 
protein vaccine design strategies use adjuvants to enhance the 
immunostimulatory properties of these vaccines.

The basic principle of using genetic vaccines is to intro-
duce mRNA or DNA sequence coding for the neoplastic an-
tigen to the patient [45]. The sequence is placed in a plasmid 
and controlled by a promoter. When the vaccine is adminis-
tered, the body cells that have absorbed the DNA synthesize 
the encoded protein. Then it is transported to the nearest 
lymph node, where it induces a specific immune response 
[46]. There are several options for the delivery of genetic 
vaccines. Viral vector-based cancer vaccines are considered 
a subtype of genetic vaccines. Viral vectors such as adeno-
viruses [47], pox or avipox viruses [48], some herpes viruses, 
and the like are used to create viral cancer vaccines. The 

virus in the vaccine is attenuated and contains a nucleotide 
sequence encoding the tumor antigen. The advantages of 
these vaccines include high transgene expression in infected 
cells, high immunostimulatory capacity and relative ease of 
production [49]. A drawback of using viral vectors is their 
ability to elicit an antiviral immune response to the vector. 
Similar advantages and disadvantages exist when using bac-
terial vectors, in particular in the case of intracellular bacteria 
Listeria monocytogenes [50]. This type of vaccine allows the 
attraction of the endogenous presentation of the encoded 
antigens by MHC class I. Stimulation of the CTL via the en-
dogenous presentation pathway is a very desirable feature 
of active anti-cancer therapy since a stable CTL response is 
essential for anti-tumor immunity. HSPs are used as antigens, 
chaperones or adjuvants of DNA or peptide based vaccines 
[51]. It has been demonstrated that specific immunostimula-
tion is induced for a wide range of antigens (including HER2/
neu, mucin-1, E7, AFP, MAGE-3, gag, survivin and PSCA) with 
HSP70-mediated DNA vaccines [52–54]. 

Despite the significant anti-tumor activity of various immu-
notherapeutic strategies demonstrated in preclinical studies, 
the efficacy required in the drug registration processes has not 
been obtained. Research is still ongoing. The involvement of 
immunologically active HSPs is one of the investigated cancer 
immunotherapy strategies.

Design and application of vaccines based on HSP
Research on the use of anti-cancer properties of HSPs began 
in the mid-1980s [55]. The first trials involved vaccinating mice 
with attenuated tumor cells [56]. This enabled immune reac-
tion against live cancer cells, but only in relation to allogeneic 
neoplasms. In the next stage, researchers started searching 
for molecules in neoplastic cells that may be responsible 
for the development of immunity. Tumor cell lysates were 
biochemically fractionated and the individual fractions 
were tested for their ability to vaccinate mice and generate 
an immune response against live tumor cells of the same 
type. It was shown that the fractions capable of inducing an 
immune response contained HSPs [57, 58]. HSPs obtained 
from autologous tumor tissue turned out to be associated 
with tumor-specific antigens, forming the so-called “antigenic 
imprint” of the tumor. The immunoadjuvant properties of 
HSPs are based on two mechanisms – the ability to induce 
an adaptive cytotoxic response of T lymphocytes to TAA in 
combination with HSPs and non-specific stimulation of im-
mune cells. The development of HSP-based cancer vaccines 
is based on four main assumptions: 
• HSPs obtained from other organisms act as classical foreign 

antigens, eliciting an immune response against their non-
conservative epitopes, 

• HSPs are able to elicit an immune response in the case of 
autologous administration in the absence of tolerance 
of the host’s immune system to them, 
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• HSPs can cause the development of an immune response 
against a specific protein in the presence of cross-reactivity 
between HSPs and the protein, 

• HSP-TAA are able to stimulate a specific immune response 
against the antigens included in the complex, while an 
immune response to HSPs will not develop.
The last of the described mechanisms determines the 

direction of the development of HSP-based vaccines that can 
be used in the prevention and treatment of various conditions, 
including infectious and neoplastic diseases[59]. Such vaccines 
were initially demonstrated to be effective in animals (e.g., in 
the treatment of liver cancer in rats [57]), and in the mid-1990s, 
studies of HSP-based vaccines were initiated in cancer patients. 

The active ingredient in such vaccines is not a single HSP, 
but HSP-TAA complexes. There are two variants of such vac-
cines: recombinant cancer vaccines obtained by ex vivo forma-
tion of a complex using HSP and/or recombinant peptides, and 
cancer vaccines obtained by isolating HSP-TAA from a patient’s 
tumor tissue that contains a specific tumor antigen set. The 
use of linked HSP-TAA complexes in the development of vac-
cines increases the ability of APCs to present TAA through 
MHC class I and II with subsequent activation of CD8(+) and 
CD4(+) T lymphocytes. 

The ability of HSP or HSP-TAA complexes to induce anti-
tumor immunity is dose dependent. Low doses of HSP-TAA 
complexes are effective in stimulating an anti-tumor immune 
response, while high doses do not, and may even be immuno-
suppressive. High doses of gp96-peptide complexes induce 
immunological tolerance, hence the attempts to use them in 
the treatment of autoimmune diseases [60, 61].

Currently, HSPs are being studied as immunostimulatory 
molecules in various therapeutic models. The promising results 
have been obtained in animal models of tumor growth. Extra-
cellular HSP70 derived from the L1210 leukemia cell was used 
to immunize DBA/2 mice. The specific activation of CTL was 
found, which inhibited the growth of the implanted tumor [62]. 
These results have been confirmed in animal models of colon 
cancer and melanoma. An increased expression of HSP70 in 
the exosomes of the hyperthermically treated tumor cells was 
detected. The immune response in animals with cancer after 
the introduction of HSP70-enriched allogeneic exosomes was 
significantly higher than when using exosomes derived from 
cells without prior hyperthermia. As a result, increased IgG2a 
and IFN-γ production and tumor regression were observed [63].

 In a study in the J558 myeloma model, the effectiveness 
of stimulating an anti-tumor immune response with exosomal 
forms of HSP70 was tested. The J558 myeloma cell line that 
produced the transgenic form of membranę-bound HSP70 in 
the exosome (mHSP70-EV) was developed, and the efficacy of 
these exosomes was tested compared to the exosomes from 
heat-shocked tumour cells expressing cytoplasmic HSP70. Ex-
osomes released from these cells were used to immunize mice. 
mHSP70-EV significantly stimulated cytotoxic CD4(+) type 1 

(Th1) and CD8(+) T lymphocytes, specifically activated NK cells, 
which significantly exceeded the effects of HSP70-EV [64].

The ability of NK cells to specific activation and damage 
mHSP70-positive tumor cells has also been demonstrated in 
animal models of lung cancer and glioblastoma. Combina-
tion therapy consisting of NK cells activated ex vivo with the 
natural HSP70 peptide (TKD) and a low dose of IL-2 (TKD/
IL-2) was demonstrated. The adaptive transfer of TKD/IL-2 ex 
vivo activated murine NK cells resulted in inhibition of tumor 
growth and improved survival of the animals. This regimen 
therapy was well-tolerated. The antitumor activity was asso-
ciated with a massive infiltration with CD8(+) T and NK cells 
in both tumor models and a decreased in PD-1 expression in 
immune effector cells [65].

Recent reports concern the use of immunotherapy using 
recombinant HSP70 in CT-26 Colon cancer and B16 melanoma 
models. The introduction of recombinant HSP70 to the tumor 
cel stimulates the transport of endogenous HSP70 to the extra-
cellular space of the tumor, leading to a rapid activation of the 
immune response. The immunomodulatory effect of HSP70-
bearing exosomes was manifested by CD8(+) activation, the 
accumulation of antitumor cytokines and the activation of NK 
cells, which had a positive effect on the reduction in tumor 
growth rate and elevation of life span in mice [66].

Furthermore, HSP70 enriched exosome derived from 
immune cells may also be of interest in anticancer immu-
notherapy. Scientists investigated the therapeutic effect of 
macrophage-derived HSP70 enriched exosome in the WEHI-
164 fibrasarcoma model both in vitro and in vivo. Heat shock has 
been shown to increase the expression of membrane-bound 
HSP70 in macrophage-derived exosomes. In addition, the im-
munization of animals with these exosomes reduces the num-
ber of tumor cells, indicating a potential immunoadjuvant role 
of HSP70 in cancer immunotherapy [67].

In all the above-mentioned studies, the researchers 
showed that HSPs play an important role in anticancer im-
munity. At present, achievements in the field of HSP-based on-
coimmunology are widely integrated into the phase of clinical 
trials. A study of the safety and efficacy of the antitumor vaccine 
based on the HSP-96 peptide complex (HSPPC-96), prepared 
from tumor specimens of patients with metastatic melano-
mas, was conducted. Activation of the immune response to 
HSP-96 related peptides was observed in patients receiving 
the vaccine weekly for 4 consecutive weeks. The overall sur-
vival of patients who showed an immune response was 82%. 
Moreover, the toxicity of the vaccine was very low [68]. Other 
studies confirm the effectiveness of the HSP-96 vaccination. 
Phase I and II clinical trials were conducted to investigate the 
efficacy of the HSPPC-96 vaccine in patients with recurrent 
glioblastoma multiforme. The study involved 41 patients. The 
primary endpoint was overall survival of 6  months. Studies 
have confirmed that the HSPPC-96 vaccine is safe and deserves 
further research [69]. 
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Studies have shown that Vitespen, an autologous tumor 
derived heat shock protein gp96 peptide complex vaccine, has 
shown positive results in phase III clinical trials in patients with 
melanoma and renal cell carcinoma. It has been observed that 
Vitespen elicits a major MHC I mediated immune response in 
many types of cancer, as well as a clinical response in patients 
with early stage disease. In addition, the vaccine has a relatively 
low incidence of side effects [70, 71]. Another study investigated 
the safety, immunogenicity and clinical efficacy of an autolo-
gous vaccine of leukocyte-derived HSP70 peptide complexes 
in patients with chronic myeloid leukemia. Treatment with the 
vaccine was performed in conjunction with imatinib mesylate. 
Clinical responses were observed in 13 of 20 patients and were 
significantly correlated with the activation of immune responses, 
including an increase in the frequency of CML-specific IFN-γ 
producing cells and IFN-γ secreting NK cells. In addition, there 
were no side effects, indicating the safety of this vaccine [72]. 

Encouraging results from the phase II vaccine trials, based 
on a heat shock protein fused to sequences from the onco-
genic E7 protein of HPV-16 in woman with high-grade cervical 
intraepithelial neoplasia was obtained. Four injections of HPV-
16 HSP E7 fusion protein were given 3 weeks apart. Complete 
regression of intraepithelial neoplasia was observed in 35% of 
women and was correlated with the immune response [73].

DNA-HSP65, a DNA vaccine encoding the 65 kDa heat 
shock protein Mycobacterium leprae (HSP65), was tested in 
phase I clinical trials of hsp65 DNA in patients with advanced 
head and neck cancer. 42% of patients showed disease stability 
or regression following immunization. DNA-HSP65 induced 
some degree of immunostimulation with no evidence of 
pathological autoimmunity [74].

Was reported of a phase I clinical trials to evaluate the 
safety and immunogenicity of a therapeutic human papil-
lomavirus administered to women with HPV-16 + cervical 
intraepithelial neoplasia (CIN)2/3. In the above study it was 
applied HPV-16 DNA vaccine [a plasmid expressing a Sig-
E7-detox]-heat shock protein 70 fusion protein. Complete 
histologic regression occurred in 33% individuals. This vaccine 
was safe and well tolerated [75]. 

In this study, researchers examined a vaccination strategy 
using dendritic cells (DC) loaded with apoptotic and necrotic 
cell bodies derived from autologous tumors. Using this ap-
proach, clinical and immunologic responses were achieved in 
33% patients with relapsed indolent non-Hodgkin’s lymphoma 
(NHL). The achievement of clinical and immunological re-
sponse was significantly associated with the degree of surface 
expression of calreticulin and HSP90 in DC antigenic cargo [76]. 

Other authors in phase I clinical trials tested a strategy for 
treating patients with of colon and lung cancer patients, with 
ex vivo heat shock protein 70-peptide-activated, autologous 
natural killer cells. After stimulation, the activity of NK cells 
against HSP70 membrane-positive colon carcinoma cells was 
enhanced in 10 of 12 patients [77]. 

Activation of CTL against neoplastic cells has been dem-
onstrated through administering dendritic cells transfected 
with HSP70 mRNA (HSP70-DC) to patients with hepatocel-
lular carcinoma associated with hepatitis C virus [78]. HSP105 
peptide vaccines used in patients with colorectal cancer and 
esophageal cancer showed the ability to induce an immune 
response in phase I studies [79]. Cellular vaccines, the effect 
of which is related to overexpression of HSP70, have shown 
immunostimulatory effects in models of glioblastoma and 
ovarian carcinoma [80, 81]. Preparations designed with the use 
of pure HSP70 protein turned out to be active when tested in 
the B16 glioma and melanoma model [82]. Recombinant chap-
erones are an alternative source of HSPs for the development of 
cancer vaccines based on immunogenic peptides. When deliv-
ered to the tumor, recombinant HSP70 increases the sensitivity 
of cancer cells to the cytolytic activity of lymphocytes, reduces 
the level of immunosuppressive T regulatory cells and lowers 
the production of IL-10 [83]. The use of HSP70-TAA complexes 
has an immunostimulatory effect in models of leukemia, lung 
and ovarian cancer [84]. In addition, HSP70 in complex with 
antigenic peptides such as the Melan-A, MAGE-A1, tetanus 
toxin and influenza HA protein has been used to stimulate an 
antigen-specific immune response [85]. 

Attempts are also being made to combine HSP70-based 
vaccines with other anti-cancer drugs, such as immune check-
point inhibitors, which researchers believe may improve ef-
ficacy. Intratumoral HSP70 injections have also been used in 
conjunction with local hyperthermia, irradiation or cationic 
magnetite liposomes [86, 87].

Conclusions 
In recent years, the potential of HSP as an immunothera-
peutic tool has been gaining more and more recognition. 
The influence of HSPs on the functioning of the immune 
system, manifested in particular by the activation of den-
dritic cells, increased activity of T lymphocytes, NK cells and 
increased antigenic presentation of TAA, allows the use of 
these proteins as therapeutic targets in oncology, including 
the development of cancer vaccines. A number of studies 
have demonstrated the anti-cancer efficacy of HSP-based 
vaccines, setting directions for further research. It should be 
noted that the safety and efficacy of cancer vaccines also 
depend on the route of administration, dose and vaccination 
schedule. Combining vaccines with other treatments can 
improve their effectiveness.
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