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Introduction.  The main aim of this study was to evaluate the doses delivered to heart substructures and calculate nor-
mal tissue complication probability (NTCP) for the intensity modulation radiotherpy (IMRT) irradiated group of left-sided 
post-mastectomy patients.
Material and methods.  In this retrospective study for 30 randomly chosen breast cancer patients, the mean dose, V2, V4, 
V10, V20 and D2% in the heart substructures were evaluated.
Results.  The mean heart dose was 12.3 Gy, the mean left anterior descending artery (LAD) dose was 28.5 Gy. The average 
value of long-term cardiac mortality was 0.17%, pericarditis 0.0%, left ventricle perfusion defects 24.5% and LAD toxic-
ity 0.2%. In the literature, for the IMRT technique for left-sided mastectomy patients, the mean heart dose ranged from 
8.7–14.0 Gy and the V20 10.5–14%. Additional studies are needed to describe the cardiac toxicity.
Conclusions.  It is necessary to contour cardiac substructures for reliable assessment of the dose distribution, although 
the mean heart dose is simplification for modern radiotherapy techniques.
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Introduction
Many large randomized trials have demonstrated that post-
mastectomy irradiation is beneficial, at least for patients with 
high-risk disease [1, 2]. However, for women irradiated on the 
left side, the dose delivered to the heart increases the risk of 
ischemic heart disease [3]. Taylor and co-workers have shown, 
there are many factors that affect doses deposited in the heart. 
The most important being the individual anatomy of a patient 
and the irradiation technique [4]. For older techniques, such 
as the tangential pair technique, the dose distribution in the 
heart and its substructures may be well estimated with the 
maximum heart distance (MHD) [4]. 

According to Darby, the cumulative relative risk of a major 
coronary event increases linearly by approximately 7% for each 
increase of 1 Gy of the mean heart dose in the tangential field 
technique [3]. The cumulative risk of death from ischemic heart 
disease is higher in radiotherapy patients compared to non-
radiotherapy patients [3]. Uwe Schneider suggested [5] that 
in the intensity modulation techniques (IMRT) or volumetric 
modulated arc therapy (VMAT) techniques, with large volumes 
of the heart receiving low doses the risk of major coronary 
events might not be linear as proposed by Darby [3].

Despite these enormous changes in technology and ir-
radiation methods, optimization of dose distributions in the 
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heart is still based on the same assumptions. The dose to 
the heart is most often evaluated with the mean dose to the 
organ at risk. The heart is a complicated organ composed 
of muscular tissue, blood vessels, valves, nerve tissue fibres. 
The risk of damage to various heart structures by dosage 
may require a different quantitative description. Therefore, 
the statistics like the mean heart dose might not be the best 
predictor of all types of complications. An exact description 
of the interplay between radiotherapy and chemotherapy in 
heart damage is required. This is especially true in breast cancer 
patients, where systematic treatment is associated with heart 
toxicity [6, 7]. For post-mastectomy patients, there is a limited 
literature base describing doses received by individual heart 
structures in dynamic radiotherapy techniques [8]. Most of 
the available articles analyse the technique of two tangential 
fields in a group of breast conserving therapy patients (BCT).

The main aim of this study was to evaluate the doses 
delivered to substructures of the heart for the IMRT irradiated 
group of left-sided post-mastectomy patients. The doses to 
heart substructures were described in terms of dosed distri-
bution and the model based on normal tissue complication 
probability (NTCP).

Material and methods
Patients
In this retrospective study for 30 randomly chosen breast 
cancer patients, we analysed the doses delivered to the heart 
and its substructures. All of these patients, of a median age 
of 53 years (32–88), were after a left-sided mastectomy. From 
the group of 30 patients, 29 patients underwent a modified 
radical mastectomy (MRM) with axillary fossa extraction, 1 pa-
tient had a simple mastectomy with a sentinel lymph node 
biopsy. Chemotherapy was applied throughout the group of 
30 patients, 13 patients received pre-surgical chemotherapy. 
Radiotherapy was applied after surgery and chemotherapy. 
Pathological tumour nodus metastases (pTNM) staging was 
made according to the VII edition of the International Union 
Against Cancer (UICC ) [9].

CT scan and contouring
Patients were placed supine in the treatment position, with 
their arms raised above their head, immobilized with On-
coPoRT board. Computed tomography (CT) scans for treat-
ment planning were acquired during free breathing, with 
1.5 mm slice thickness, using a Siemens CT scanner. Scans 
were acquired from the hyoid bone to the end of the thoracic 
vertebrae, with 10 mm tissue-equivalent bolus placed on the 
thoracic wall. Next, the target volumes and organs at risk were 
delineated on the CT scans. For planning, the clinical target 
volume (CTV) included chest wall (CTVchest) and axillary, infra 
and supraclavicular nodal areas (CTVnodes) being delineated. 
Planning target volume (PTV) was created by adding a 6 mm 
isotropic margin to CTV. Organs at risk included the heart, 

lungs, coronary arteries, defined as 6 mm margins of the heart 
anterior wall and the spinal canal.

For the purpose of a retrospective analysis of the doses 
absorbed to the heart, additional heart substructures were seg-
mented based on Mary Feng Cardiac Atlas Heart [10]. The con-
toured heart substructures were: the pericardium defined as 
2 mm sac, created as margin from internal and external of the 
heart surface, ascending aorta, aortic arch, descending aorta, 
superior vena cava (SVC), inferior vena cava (IVC), pulmonary 
artery, coronary arteries: left coronary artery (LCA), left anterior 
descending coronary artery (LAD), left circumflex artery (LCX) 
and right coronary artery (RCA), left atrium, right atrium, left 
ventricle, right ventricle (fig. 1). Contoured structures were 
approved by a radiation oncologist. 

Treatment planning and dose evaluation 
For each patient, the IMRT treatment plan was prepared in 
Eclipse version 15 (Varian) treatment planning system. The to-
tal dose was 45 Gy, delivered in 2.25 Gy fraction doses. Dose 
distribution was calculated with the Analytical Anisotropic 
Algorithm (AAA) version 15. From five to seven 6 MV coplanar 
photon fields were used arranged in a fan pattern. The dose 
was prescribed to the CTV (CTVwall + CTVnodes) mean dose. Dur-
ing plan preparation, the following dose-volume constraints 
were used: for the PTV D98% > 95%, D2% < 107%, for the heart 
the mean dose <16 Gy and V20 < 14%, for the lungs the mean 
dose <12 Gy, V20 < 14% and V30 < 9%.

Treatment plans were retrospectively analysed. In each 
heart substructure the mean dose, V2, V4, V10, V20 and D2% 
were evaluated.

Calculation of the NTCP
To calculate the NTCP, the Lyman Kutcher Burman (LKB) model 
was used (equations 1–3) [11]. 

NTCP = e dx1 t x2

2

-∞√—2π
   (1)

t = 
Deff –TD50

mTD50
     (2)

Deff = (∑iViDi
1/n)n    (3)

where: Deff is the dose that, if given uniformly to the entire 
volume, will lead to the same NTCP as the non-uniform dose 
distribution, TD50 is the uniform dose delivered to the entire 
organ that results in a 50% complication risk, m is a measure of 
the slope of the sigmoid curve, n is the volume effect param-
eter, and Vi is the fractional organ volume receiving a dose Di. 

End-point model parameters were taken from the lit-
erature. Long term cardiac mortality (TD50 = 52.3 Gy, n = 1, 
m = 0.28, α/β = 3 Gy) [10], pericarditis (TD50 = 50.6 Gy, n = 0.64, 
m = 0.13, α/β = 2.5 Gy) [11], left ventricle perfusions defect 
(TD50 = 29 Gy, n = 0.16 m = 0.41 α/β = 2.5 Gy) [12], LAD toxicity 
(TD50 = 48 Gy, n = 0.35, m = 0.10, α/β = 2.5 Gy) [13].
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Statistical Analysis
Data was described by the average value (AVG) and stand-
ard deviation (SD) of all analysed statistics obtained for 
the 30 patients – AVG (SD). For the relationship between 
dose distribution statistics and NTCP, dose fitted curves 
were done.

Results
Dose distribution in heart structures
Heart dose distribution parameters are summarised in table 
I. The average value of the mean heart dose was 12.3 Gy 
(1.1 Gy). The lowest average value of the mean dose was in 

IVC 5.5 Gy (1.4 Gy), the highest value of the mean dose was 
in LAD 28.5 Gy (5.0 Gy). The average value of V20 Gy in the 
heart was 11.5% (5.3%). The lowest average value of V20 Gy 
was in the descending aorta 0% (0%), IVC 0% (0%), SVC 0% 
(0%) and LCX 0% (0%). The highest average value of V20 Gy 
was in the LAD 73.3% (21.0%). The average value of the V10 
in the heart was 59.9% (8.7%), the lowest average V10 value 
was in the vena cava inferior 0.2% (1.2%), the highest in the 
LAD 99.3% (3.4%). The average values of V2–V4 were high in 
all heart structures, 100% (0.2%) and 98.1%. The lowest value 
of V2 and V4 was in the descending aorta 87.1% (9.4%) and 
72.6% (17.5%).

Figure 1. CT scan with heart substructures: cyan heart, red ascending aorta, magenta aortic arch, cyan descending aorta, blue superior vena cava, brown 
inferior vena cava, pink pulmonary artery, orange left atrium, green right atrium, yellow left ventricle, purple right ventricle, yellow LCA, white LAD, white 
LCX, blue RCA
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Left ventricle perfusions defect 
The average value of left ventricle perfusion defects in 30 pa-
tients was 24.5% (8.0%). The graphs present the NTCP-dose 
relationship for which the value of R2 > 0.5. For the relationship 
between left ventricle perfusion defects and D2%, the second-
degree polynomial was fitted (R2=0.97), for V20 (R2  =  0.68) 
a linear fit was applied (fig. 5–6).

LAD toxicity
The average value of LAD toxicity in 30 patients was 0.2% 
(0.4%). The graphs presents the NTCP-dose relationship for 
which the value of R2 > 0.5. For the relationship between 
LAD toxicity and the mean LAD dose (fig. 7), a two-parameter 
exponential function was fitted (R2 = 0.95).

NTCP values
Long term cardiac mortality 
The average value of the long-term cardiac mortality for 
30 patients was 0.17% (0.04%). Graphs present the NTCP-
dose relationship for which the value of R2 > 0.5. For the 
relationship between long-term cardiac mortality and the 
mean heart dose, the second degree polynomial was fitted 
(R2 = 0.96), for V20 (R2 = 0.76) and for V10 (R2 = 0.70) a linear fit 
was used (fig. 2–4). 

Pericarditis
In the group of 30 patients, the average value of the calculated 
NTCP for pericarditis was 0.0% (0.0%).

Table I. Average values and SD of dose distribution statistics in the group of 30 patients

V2 [%] V4 [%] V10 [%] V20 [%] D m. [Gy] D2% [Gy]

heart 100 (0.2) 98.1 (2.7) 52.9 (8.7) 11.5 (3.3) 12.3 (1.1) 33.8 (3.6)

pericardium 99.7 (1.1) 95.8 (5.3) 54.0 (7.6) 23.7 (6.1) 14.7 (1.7) 39.7 (3.3)

right ventricle 99.9 (0.3) 99.8 (1.3) 82.2 (13.3) 20.1 (9.5) 15.7 (2.3) 31.4 (5.5)

left ventricle 100 (0.1) 99.4 (1.6) 68.5 (17.5) 12.9 (5.6) 13.7 (1.7) 33.1 (5.1)

right atrium 99.9 (0.3) 96.2 (7.8) 19.9 (19.1) 0.1 (0.3) 7.9 (1.7) 13.8 (3.1)

left atrium 100 (0.0) 93.9 (11.7) 14.1 (15.3) 0.1 (0.1) 7.4 (1.6) 12.7 (2.6)

ascending aorta 100 (0.0) 99.9 (0.3) 49.5 (29.2) 3.7 (8.0) 10.8 (2.6) 17.8 (5.5)

aortic arch 100 (0.0) 100 (0.1) 70.5 (27.3) 11.0 (20.3) 13.4 (4.3) 21.1 (7.7)

descending aorta 87.1 (9.4) 72.6 (17.5) 5.3 (6.2) 0.0 (0.0) 5.5 (1.4) 10.7 (2.9)

SCV 100 (0.0) 98.5 (5.6) 16.8 (25.8) 0.0 (0.0) 8.0 (2.2) 10.7 (2.9)

IVC 100 (0.0) 85.8 (18.5) 0.2 (1.2) 0.0 (0.0) 5.7 (1.3) 7.3 (1.3)

pulmonary artery 100 (0.0) 99.4 (2.2) 65.9 (19.1) 12.1 (12.0) 13.1 (3.0) 25.6 (5.9)

LCA 100 (0.0) 100 (0.0) 65.9 (35.2) 0.6 (2.0) 11.7 (2.4) 14.8 (3.5)

LAD 100 (0.0) 100 (0.0) 99.3 (3.4) 73.3 (21.0) 28.5 (5.0) 40.3 (4.1)

LCX 100 (0.0) 98.4 (6.1) 45.3 (35.8) 0.0 (0.0) 9.7 (2.4) 12.5 (2.8)

RCA 100 (0.0) 100.0 (0.0) 73.8 (35.9) 6.3 (17.1) 12.9 (3.6) 15.8 (4.9)

VX – volume receiving X Gy and more; D m. – mean dose; D2% – near-maximum dose
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Discussion
Dose distribution in heart structures
In our group of patients, the average value of the mean heart 
doses was 12.3 Gy (1.1 Gy) and the average volume V20 was 
11.5% (3.3%). In the literature, for the IMRT technique for left-
sided mastectomy patients, the mean heart dose ranged from 
8.7 Gy to 14.0 Gy [12, 13] and the V20 value from 10.5% (5.2%) 
to 14% (6%)[12, 14, 15]. A large dispersion of the V10 also occurs 
in literature, a V10 ranged from 17.8% (7.1%) to 55.7% (29.6%) 
[12, 13, 15, 16].

Due to the proximity of the heart to PTV, the mean dose 
received by the left ventricle was 13.7 Gy (1.7 Gy) and 15.7 Gy 
(2.3 Gy) for the right ventricle. The D2% were 33.1 Gy (5.1 Gy) 
for the left ventricle and 31.4 Gy (5.5 Gy) for the right ven-
tricle. In Li Zhang’s article, a similar analysis was carried out 
for the IMRT technique and the mean left ventricle dose 
and the maximum left ventricle dose came to 12.7 Gy and 
48.7 Gy, respectively, whereas the right ventricle mean dose 
was 14.7 Gy [8].

Among coronary arteries, the highest average values of 
mean dose of 28 Gy (5 Gy), was obtained for LAD. In Li Zang’s 

article describing the IMRT technique for post-mastectomy 
patients, a high mean dose value of 37.7 Gy for LAD was 
obtained [8]. The high dose values received by LAD were 
also reported by other authors. In J. Caudrelier’s article about 
the IMRT technique in BCT patients, a higher median dose 
and maximum doses for LAD of 10.8 Gy (7.8 Gy) and 26.7 Gy 
(15.7 Gy) and RCA of 12.4 Gy (5.7 Gy) and 27.0 Gy (12.4 Gy) were 
reported [17]. In our group of patients, the RCA average values 
of the mean dose were 12.9 Gy (3.6 Gy), and D2% – 15.8 Gy 
(4.9 Gy). In the LCA, average values of the mean dose were 
11.7 Gy (2.4 Gy) and D2 – 14.8 Gy (3.5 Gy). The lowest values 
of the mean dose – 9.7 Gy (2.4 Gy), and D2% – 12.5 Gy (2.8 Gy) 
were obtained by the LCX  similar to J. Caudrelier’s article where 
the median dose was 4.5 Gy (1.7 Gy) and a maximum dose was 
8.8 Gy (3.2 Gy) for LCX [17].

In the case of the IMRT technique, many therapeutic beams 
are used to achieve a conformal dose distribution. This results 
in an increased amount of scattered radiation which leads to 
an increase in the volume of tissues exposed to low doses. 
The dose range of 2–4 Gy covers from 100% to 72.6% of the 
volume of the heart structures. 
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Figure 6. Relationship between V20 left ventricle dose and left ventricle 
perfusion defects

Figure 7. Relationship between mean LAD dose and LAD toxicity

Figure 5. Relationship between D2% left ventricle dose and left 
ventricle perfusion defects
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NTCP values in IMRT
NTCP models take the form of empirical models based on 
dose distribution statistics from the treatment planning system 
and data from prospective and retrospective clinical trials. 
The values of the parameters used in radiobiological models 
are obtained by fitting curves to clinical data. The calculated 
NTCP value is always susceptible to the limitations of the used 
model and results from the uncertainty parameters used for 
modelling. The complicated structure of the heart causes 
that the probability of injuries of different heart structures is 
unlikely to be well described with a single parameter of dose 
distribution eg. mean dose [3]. 

Long term cardiac mortality
Darby estimated [3] the linear increase in the risk of major coronary 
events with a rising mean heart dose. This result was obtained 
for breast cancer patients irradiated with two tangential fields. In 
this technique, a small volume of the heart receives a high dose 
but the mean dose in the heart is smaller than in IMRT. Uwe Sch-
neider suggested [5], that in IMRT, VMAT techniques there were 
large volumes of the heart receiving low doses the risk of major 
coronary events might not be linear as proposed by Darby [3]. 
The NTCP calculated by Schneider with Darby’s data showed that 
the risk has a sigmoidal nature; it can be considered negligible if 
the mean heart dose does not exceed 15 Gy. 

The probability of heart damage related with the mean 
heart dose analysed in this paper for IMRT for left-sided mas-
tectomy patients showed similarity with Schneider’s results. For 
a mean heart dose of 12 Gy, the LKB model based the prob-
ability of long term cardiac mortality at only 0.17%. A limitation 
of this approach is to use the same mean heart dose parameter 
to calculate NTCP for IMRT and the tangential field technique, 
due to different dose distributions in the heart. 

Pericarditis
Pericarditis is the first clinical symptom for which dose-volume 
effect was found. In patients undergoing mediastinal radio-
therapy, estimated pericarditis was about 6% if more than 50% 
of the external heart contour was in the radiation therapy field 
[18]. The probability of pericarditis was reduced from 20% to 7% 
by using left ventricle shielding and reduced to about 2.5% by 
shielding the left ventricle after 30 Gy [19]. Martel considered 
a mean dose of 27.1 Gy and a maximum dose of 47 Gy as 
predictors of pericarditis [20]. Wei and co-authors considered 
the volume of pericardium receiving a dose of 30 Gy and more 
(V30) as statistics associated with the occurrence of complica-
tions [21]. The probability of pericarditis estimated by Wei was 
about 13%, if the V30 < 46% or a mean dose <26 Gy. If the mean 
dose exceeds 26 Gy and the V30 exceeds 46%, the probability 
increases to about 73% [21]. 

In the analysed group of 30 patients irradiated with IMRT, 
for a mean pericardial dose of 14.8 Gy and V20 of 23.7%, the LKB 
model based the probability of pericarditis at 0%. 

Left ventricle perfusion defects
The clinical manifestation of subclinical perfusion defects is not 
well understood and the perfusion changes themselves can be 
reversible [22]. Based on single-photon emission computed to-
mography (SPECT) perfusion scans, Marks et al. demonstrated 
perfusion defects, limited to the part of the myocarcium which 
had received a dose higher than 15 Gy [22]. In the five-year 
follow-up, a reduction of the left ventricular wall contractil-
ity was demonstrated. The NTCP of left ventricular perfusion 
defects, estimated by Das et al. by LKB and relative seriality 
(RS) models, shows that this complication can be classified as 
for a serial organ [23]. Marks et al. analysed the left ventricu-
lar perfusion defects in a group of 73 breast cancer patients 
irradiated by the tangential fields technique [22]. The prob-
ability of damage was estimated to be below 20% if less than 
5% of the left ventricle volume was in the therapeutic field. 
The probability of perfusion defects increases if more than 5% 
of the left ventricle volume is in the therapeutic field. Literature 
reports indicate a proportional increase in risk with an increase 
in the left ventricular volume and an increase in the mean left 
ventricle dose when the tangential field technique is used [24]. 

The average value of the LKB model based the probability 
of left ventricular perfusion in the group of 30 IMRT patients 
at 24.5% (8.0%) with a serial-like nature of the complication. 
An increase in the D2% in the left ventricle results in increas-
ing NTCP .

LAD toxicity
Literature indicates the high sensitivity of coronary arteries to 
exposure from ionizing radiation. This is particularly important 
for the LAD, as an artery associated with the development of 
myocardial infarction in breast cancer patient radiotherapy [25]. 
The studies showed a higher percentage of LAD stenosis in 
patients undergoing left-sided radiotherapy for breast cancer, 
due to the presence of LAD in the therapeutic field and the 
large doses received by this artery [26–29]. The relationship 
between the occurrence of radiation damage and the coronary 
arteries indicated that the coronary arteries should be treated 
as a separate organ at risk, and tolerance doses may differ from 
the doses of tolerance for the remaining structures of the heart 
[30]. Some authors claim that high point doses in the coronary 
arteries can lead to an increased risk of myocardial infarction 
within 10 years from the application of radiotherapy [24]. 

The average LKB model based  probability of LAD toxicity 
was 0.2% (0.4%). For the mean LAD dose and NTCP pseudo-
threshold relationship was shown (R2 = 0.95). Below 30 Gy of 
the mean LAD dose, the probability seems to be negligible. 
Pseudo-threshold may by caused by small group of patients, 
so can greatly impact the fit. Due to the small amount of data 
available and the difficulty in precise contouring, modelling 
LAD damage is challenging. Additional studies are needed to 
describe the LAD threshold doses and dose-volume relation-
ships. 
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Conclusions
The collected data show that the assessment of the quality of 
the treatment plan for patients after a left-sided mastectomy 
performed only with the mean heart dose can be a significant 
simplification for modern radiotherapy techniques. It seems 
necessary to draw individual heart substructures for reliable 
assessment of the dose distribution and NTCP calculation.
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