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Radiotherapy in the combined treatment

Combined radiotherapy and chemotherapy 
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 Combined radiotherapy and chemotherapy is a standard procedure in radical treatment of many cancers. The objective 
of chemoradiotherapy is to increase loco-regional control, to reduce the risk of distant metastases and to prolong survival, 
and thus to improve treatment efficiency with less mutilating therapies. Concurrent chemoradiotherapy, however, is 
more toxic than chemotherapy and radiotherapy alone or sequential application of these methods. Optimalisation of 
combined treatment requires further research. New possibilities arise with inclusion of targeted treatment and immu-
notherapy in classical chemoradiotherapy. 
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Historically, the first method of treating neoplasms was surgery. 
Inclusion of radiation in neoplasm therapies allowed combina-
tion of those two methods. For several decades, radiotherapy 
supplementing surgery affected improvement of loco-regional 
control. Unfortunately, a range of factors specific for the tumour 
itself and for the patient limited efficiency of surgery alone, 
radiotherapy alone, and combination of the two methods as 
well. Among these factors, one should list impossibility to re-
move excessive tissue volumes and inability to deliver the high 
radiation dose to the target area due to the threat of permanent 
damage to healthy tissues. Inability of efficient anti-cancer the-
rapy using only local treatment methods is also associated with 
infiltration of surrounding tissues beyond outside the primary 
tumour, metastases to distant organs and micro-metastases. 
The concept of multi-modal oncological treatment including 
systemic treatment created a chance to surpass the limitations 
involved in surgery and radiotherapy.

Currently, combination of radiotherapy and chemotherapy 
is a standard procedure in radical treatment of many cancers 
[1–3]. The objective of chemoradiotherapy is to increase loco-
-regional control, to reduce the risk of distant metastases and to 

prolong survival, and thus to improve treatment efficiency. It is 
assumed that combination of these methods makes the tre-
atment less mutilating, allowing for preservation of organs 
and their functions [4, 5].

Chemoradiotherapy was applied for the first time in the 
early 1950s. The first cytostatic agent used in combination with 
radiotherapy was 5-fluorouracil [6]. Before the end of the 1950s, 
5-fluorouracil was successfully implemented in combination 
with radiotherapy in treatment of gastrointestinal cancers, 
cervical cancers and head and neck cancers [7].

Originally, it was believed that radiotherapy and chemo-
therapy are interdependent in terms of efficiency and toxici-
ty. The theoretical background for combining radiotherapy 
and chemotherapy was developed in 1979 by Steel and Pe-
ckham [8]. They described four potential ways how combined 
therapy might improve the therapeutic index, now known as 
Steel Paradigm: 
• spatial cooperation, 
• toxicity independence, 
• better protection of normal tissues, 
• enhancement of tumour response [4, 5, 8]. 
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Spatial cooperation
The concept of spatial cooperation assumes that radiotherapy 
and chemotherapy act entirely independently from each other. 
Radiotherapy acts loco-regionally, destroying the primary neo-
plastic tumour, while the systemic therapy is mainly focused 
on destroying micro-metastases. According to the concept 
of spatial cooperation, no interaction between chemothe-
rapy and radiotherapy is needed – radiotherapy has local 
effect and chemotherapy acts on disease outside a radiation 
field and these effects accumulate. This approach to bene-
fits of chemoradiotherapy can be illustrated with sequential 
chemotherapy and radiotherapy in breast cancer, as well as 
prophylactic brain radiation after completing chemotherapy 
in small-cell lung cancer. 

Toxicity independence
Originally Steel and Peckham [8] assumed that as toxicity of 
cytostatic agents and radiation do not overlap, it would possible 
to kill cancer cells without enhancement of the toxic effect to 
healthy tissue. The concept of spatial cooperation provided exac-
tly for independent toxicity of radiotherapy and chemotherapy, 
enabling relevant protection of healthy tissues and enhanced 
response to treatment with concurrent application of the two 
methods. However, this was not achieved in clinical practice. 
It was shown that concurrent introduction of chemotherapy 
and radiotherapy increases side effects of the anticancer therapy. 
In fakct toxicity adds up and moreover radiation can cause che-
mosensitisation or chemotherapy can cause radiosensitisation 
[4]. The standard of practice is to avoid direct overlap of toxicity 
of cytostatic agents and radiotherapy (e.g. methotrexate with 
radiation to the brain or bleomycin with radiation to lungs). 

Protection of normal tissues
Another concept associated with combining chemotherapy and 
radiotherapy, as proposed by Steel and Peckham [8] involved 
a process targeted at protection of healthy tissues from adverse 
effects of radiation (radioprotective properties). However, no 
chemical substances have been identified that would protect 
normal tissues from adverse effects of radiotherapy, thus affec-
ting the therapeutic index. A limited success was achieved with 
amifostine – it was only shown to reduce the risk of xerostomia 
after radiotherapy of the head and neck cancers [9]. 

Enhancement of tumour response 
It seems that an important role in combination of chemothe-
rapy and radiotherapy is radiation sensitisation effect of some 
cytostatic agents, which increases local efficiency of radiation. 
Better loco-regional control concurrent with systemic effect 
of cytostatic effects may also reduce the potential to meta-
stasise. Radiosensitising effect of chemotherapy with respect 
to radiotherapy suggests enhanced efficiency in the case of 
concurrent application of the two methods as compared to 
their sequential use [4, 5]. 

Through the ionisation mechanism, radiotherapy causes 
directly or indirectly physical and chemical changes in the 
cell – mainly in its DNA. Theoretically, radiation sensitisation 
can be achieved by a range of interactions: 
• direct increase of cell sensitivity to radiotherapy by da-

maging DNA, 
• inhibiting accelerated repopulation, 
• inhibiting cell repair, 
• accumulation of cells in the radio-sensitive phase, or 
• elimination of cells in the radio-resistant phase, 
• improvement of cell oxidation [4, 5, 10–12]. 

Damaging DNA
Radiobiological principle of “radiosensitiser” provided that 
a drug would enhance post-radiation DNA damage. If 
a drug particle connects to DNA of a cancer cell or causes 
DNA damage itself, it increases DNA sensitivity to damage 
caused by radiation. Such drugs include 5-fluorouracil 
and cisplatin. 

Inhibiting accelerated repopulation 
When there is a partial cell loss caused by radiation, other 
cancer cells respond with accelerated repopulation. Cytotoxic 
or even cytostatic drugs have anti-proliferation effect and con-
currently with radiation they may prevent accelerated repo-
pulation of cancer cells between each radiotherapy fractions. 
This increases the tumour’s sensitivity to radiation, and thus 
increasing chances for local recovery [13].

Inhibiting damage repair
Cancer cells which can effectively repair DNA damage display 
significant resistance to radiation. This is why compounds 
which interrupt transduction of the DNA damage repair signal 
may exacerbate the toxic effect of irradiation by inhibiting 
repair of sub-lethal and potentially lethal damages. Some 
chemotherapeutical agents disturb biosynthesis of nucleoti-
des – for example 5-fluorouracil, gemcitabine, methotrexate, 
etoposide, cisplatin. Further, compounds which intervene in 
cell cycle may inhibit DNA repair indirectly. 

Affecting cell distribution in the cell cycle
The highest sensitivity to radiation is recorded in cells in the G2 
and M phases of the cell cycle and the lowest – in the S phase. 
A range of chemotherapeutical agents are phase-specific. 
Radiation efficiency is increased by compounds which may 
accumulate cells in radiation-sensitive phases and those which 
may eliminate cells from radiation-resistant phases. Taxanes 
and nucleoside analogues, as well as modified pyrimidines 
seem to have exactly this effect [14, 15].

Improvement of cell oxidation
Solid tumours contain areas of lower-oxidation cells. Hypoxia 
reduces efficiency of radiotherapy, as its effect relies mainly 
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on generating free radicals. This is why drugs which reduce 
hypoxia may increase efficiency of radiation. Through cyto-
toxic effect, chemotherapy may simply reduce tumour size, 
thus reducing parenchymal pressure and making oxygen flow 
into cells easier. Further, with the death of quickly proliferating 
cells, hypoxic cells get closer to vessels [16]. Additionaly, such 
drugs as nitroimidazole compounds may imitate / replace 
oxygen in hypoxic areas, reducing the negative effects of 
hypoxia [17].

Different sensitivity to treatment of different cell clones           
A never concept explaining the benefits of chemoradiotherapy 
assumes that radiotherapy and chemotherapy kill various cell 
clones independently from each other [13]. With the hetero-
genous nature of cancers, some neoplastic cells are resistant 
to radiation, but they may prove to be sensitive toconcurrent 
administered chemical compound. An example of such co-
operation may be found in application of hypoxic cytotoxins, 
e.g. tirapazamine in combined therapy of the head and neck 
cancers. 

The cytotoxic agents improving effectiveness of 
radiotherapy 
Antimetabolites 
5-fluorouracil affects cell distribution in the cell cycle, in-
fluencing cells in the S phase of the cell cycle, which are 
radiation resistant. It also causes re-oxygenation of hypoxic 
cells [12, 15, 18]. Administration of 5-fluorouracil during ra-
diotherapy by continous infusion or orally is more efficient 
than in bolus [19]. 

Alkylating drugs 
Mitomycin C inhibits DNA and RNA synthesis by interrupting 
cross bonds, mainly at guanine and cytosine pairs. Although 
mitomycin C is not cell cycle-specific, it arrests cells in the G2/M 
phase of the cycle. In combination with radiation, mitomycin 
C acts as radiosensitiser for cells in hypoxia and prevents re-
population [20–23]. 

Temozolomide damages DNA by DNA methylation in the 
position of 0-6 guanine. The methylation triggers the abnormal 
DNA repair pathvay, leading to increased cell sensitivity to irra-
diotion and leads them to the apoptosis [24, 25]. Additionaly 
temozolomide inhibits repopulation of cancer cells [12, 18].

Platinum-base drugs 
Cisplatin consolidates DNA damages induced by irradiation 
– potentially repairable changes (e.g. interruption of the DNA 
strand) become lethal damage. It inhibits DNA synthesis and 
transcription, inhibiting repair of post-radiation damage to 
DNA [12, 26–28]. Cisplatin acts both in well oxidated and 
hypoxic cells [29]. Meanwhile, radiation facilitates cisplatin 
penetration into cancer cells and formation of its active me-
tabolites [30–32].

Drugs affecting microtubules of the spindle 
apparatus 
Vinca alkaloids affect the cell cycle itself – they cause depoly-
merisation of microtubules and interrupt functioning of the 
mitotic spindle. This results in arresting cells in the radiothera-
py-sensitive M phase. They also inhibit repair of radiotherapy-
-induced DNA damage [33].

Taxanes stabilise microtubules, thus inhibiting centroso-
mes, which leads to deceleration of mitosis and cumulation of 
cells in G2 and M phases of the cell cycle [12, 33–35]. Taxanes 
reduce parenchymal pressure and thus allow better oxidation 
of cancer cells, making them more sensitive to irradiation [12, 
16, 34]. Taxanes induce apoptosis [12, 35].

Topoisomerase inhibitors
Etoposide and topotecan inhibit repair of post-radiation DNA 
damage, they arrest cells in G2 phase, process single breaks 
of DNA strands into double ones [12, 36, 37].

Examples of application  
of chemoradiotherapy 
There are various ways to combine chemotherapy with ra-
diotherapy. Chemotherapy can be applied as neoadjuvant or 
adjuvant therapy, as sequential / alternating with radiotherapy 
or concurrent with radioteherapy. 

Anal cancer 
In the 1970s for the first time it was showed that anal cancer 
can be cured effectively with chemoradiotherapy applying 
5-fluorouracil and mitomycin C without a surgical treatment 
[38]. Two out of three patients treated with 5-fluorouracil, 
mitomycin C and radiation achieved full pathologic response 
and progression-free survival was 14 months [38]. These results 
were confirmed in further studies [39–42]. The EORTC phase 
III study showed that chemoradiotherapy with 5-fluorouracil 
and mitomycin C provides better local control and longer 
colostomy-free survival as compared to radiotherapy alone 
[40]. The reduction of risk of death related to the anal cancer 
and  prolongation of overall survival (7.6 vs. 5.4 years) was 
observed [43]. Patients who received 5-fluorouracil and mi-
tomycin C significantly less frequently underwent colostomy, 
and 4-year progression-free survival in this group is higher as 
compared to patients treated with 5-fluorouracil only (73% 
and 51%, respectively) [44]. Concurrent chemoradiotherapy 
based on 5-fluorouracil and mitomycin C is currently con-
sidered standard management of the anal cancer. Modern 
radiotherapy techniques allow reduction of toxicity, but they 
do not contribute to improvement of overall survival [45].

Rectal cancer 
Four big trials indicated that addition of chemotherapy to 
the preoperative radiotherapy in the rectal cancer in stage II 
and III, increases the rate of complete responses and improve 
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with non-small cell lung cancer treated with concurrent 
chemoradiotherapy is almost 5% higher that with sequential 
treatment, reaching 15%. Concurrent therapy is associated 
with a high risk of oesophageal toxicity and pneumonia. Cur-
rently, standard treatment of the locally advanced inoperable 
non-small cell lung cancer involves concurrent platin-based 
chemotherapy and radiotherapy. 

Urinary bladder cancer 
Concurrent chemoradiotherapy was shown to ensure better 
survival as compared to radiotherapy alone in the case of 
invasive urinary bladder cancer [73]. However, compared to 
radical cystectomy, chemoradiotherapy is associated with 
lower median of overall survival (32.8 vs. 36.1 months) [74, 75]. 

Head and neck cancers 
The first study which showed significant advantage of 
the  combined treatment with 5-fluorouracil and cisplatin 
as compared to radiotherapy alone was done for nasopha-
ryngeal cancers (five-year overall survival of 67% and 37% 
respectively) [76]. There were over 100 randomised studies 
concerning chemoradiotherapy of head and neck cancers, 
showing absolute increase of five-year overall survival by 
6.5%, prolonged time to progression, improved local con-
trol and increased chance of organ preservation [77]. Better 
results were achieved with concurrent than sequential che-
moradiotherapy – both as the radical therapy and as post-
-operative treatment [78–80]. Currently a standard method 
of treating patients with locally advanced head and neck 
cancers is concurrent cisplatin-based chemoradiotherapy. 
However, this management is associated with intensified 
early and late adverse effects.

Conclusions 
It has been demonstrated that chemoradiotherapy brings 
significant benefits in local control of the disease, organ pre-
servation and overall survival of patients with some cancers.

However, concurrent chemoradiotherapy is more toxic 
than chemotherapy alone and radiotherapy alone or sequ-
ential application of these methods. This concerns both early 
and late complications and it may have negative impact on the 
patients’ quality of life. Further studies are needed to optimise 
combined treatment. Nowadays, addition of targeted treat-
ment and immunotherapy to chemoradiotherapy is already 
changing  standardsof cancer treatments There are many 
trials underway to assess effectiveness and potential toxicity 
of particular scheme combinations.

The basic prerequisite for good combined treatment of 
cancer is proper diagnosis and its comprehensive organization, 
giving the opportunity to make the right clinical decisions by 
multidisciplinary teams.

Conflict of interest: none declared

local control [46–50]. Preoperative chemoradiotherapy was 
shown to be more effective than post-operative chemoradio-
therapy with respect to local control and sphincter preserva-
tion. This aproche was less toxic than adjuvant treatment [51]. 
Neoadjuvant chemoradiotherapy is nowadays a standard in 
treatment of locally advanced rectal cancer.

Oesophageal cancer 
The RTOG study (85–01) showed that radiotherapy combined 
with chemotherapy (5-fluorouracil and cisplatin) improved 
significantly the five-year overall survival (26% vs. 0%) [52, 
53]. This was also confirmed by newer studies [54, 55] and 
a meta-analysis [56]. Preoperative chemoradiotherapy affects 
improved results of the surgical treatment. The CALGB 9781 
study showed that patients treated with neoadjuvant che-
moradiotherapy had significantly better prognosis (median 
overall survival of 54 vs. 21.6 months; 5-year overall survival of 
39% vs. 16%) [57]. Similar findings were recorded in the study 
published by van Hagen et al. (median overall survival of 49.4 vs. 
24 months; 5-year overall survival of 47% vs. 34%) [58]. Preope-
rative chemoradiotherapy contributed to significant reduction 
of the locoregional recurrence as compared to surgery only 
(from 34% to 14%) [59]. The current standard of treatment of 
the locally advanced oesophageal cancer is  surgery preceded 
by chemoradiotherapy or chemoradiotherapy  alone(cisplatin 
with docetaxel or paclitaxel).

Cervical cancer
A large randomised trial found that cisplatin-based chemo-
radiotherapy improved disease-free survival as compared 
to neoadjuvant chemotherapy followed by a radical surgery 
(77% vs. 69%) [60]. Many randomised studies showed better 
rate of disease-free survival and overall survival with chemo-
radiotherapy as compared to radiotherapy alone in locally 
advanced cervical cancer [61–64]. For the locally advanced 
cervical cancer chemoradiotherapy has become a standard 
treatment. Currently, the following is seen as the most pro-
mising scheme: neoadjuvant chemotherapy (carboplatin / 
paclitaxel) and then chemoradiotherapy [65, 66]. Although 
it has been found that chemoradiotherapy is associated 
with significantly higher risk of toxicity to the rectum, uri-
nary bladder and vagina three months after the treatment, 
after two years the risk was not higer (with the exception of 
vaginal toxicity) [60].

Non-small cell lung cancer
Three big randomised trials published in the 1990s sho-
wed improvement in treatment results of locally advanced 
non-small cell lung cancer with application of sequential 
chemotherapy and radiotherapy [67–69]. With sequential 
chemoradiotherapy, an increase of five-year overall survival 
was recorded from 5% to 10% [67, 70, 71]. Auperin et al. 
showed in 2010 [72] that five-year overall survival of patients 
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