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Introduction:� To assess the dose received by testes during XVI-guided IMRT in prostate cancer patients (PCPs). 
Material and methods:� Testes dose was calculated in 56 PCPs who underwent definitive IMRT using 6 MV or 15 MV 
photon energies. The dose was measured by thermoluminescent dosimeters (TLDs) MTS-N attached to the scrotum 
during the first three fractions of IMRT. Testicular concomitant exposure from XVI was measured using a PTW DIADOS E 
diagnostic dosimeter in ten randomly chosen patients. 
Results:� The mean and standard deviation values of the average calculated testes dose was 123 ± 117 cGy comprising 
1.6% of the prescribed total irradiation dose (Dt). A testicular dose measured by TLDs was 303 ± 110.5 cGy (4% of Dt) and 
depended on the distance from isocenter to testes (r = –0.8). From one XVI scan, the detected testicular mean dose was 
4.3 mGy. Mean XVI scan numbers for all patients was 10.4 so mean concomitant dose in testes was 44.7 mGy (0.06% of Dt). 
Conclusions:� Testicular dose may be significant in the aspect of fertility during IMRT in PCPs. Kilovoltage XVI-contributed 
dose to testes seems to be clinically negligible. 
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Introduction 
Prostate cancer (PC) is the second most common cancer and the 
third most common cause of cancer-related death among men 
in Poland [1]. It is diagnosed mainly in the age group 65–79 years. 
Prostate-specific antigen (PSA) measurement was introduced 
to the diagnosis of PC in 1970 resulting in a growing number 
of younger patients (aged 45–64) suffering from this disease 
[2]. Radiotherapy (external beam radiotherapy, EBRT or/plus 
brachytherapy) is a standard treatment modality in localized PC 
patients (PCPs) [2–4]. As far as EBRT is concerned, it is preferable 
to use more sophisticated techniques (e.g. intensity-modulated 
radiation therapy, IMRT) [5, 6]. Epidemiological changes in the 

PC incidence pattern are enforcing alterations in the approach 
taken by physicians. It seems that the sexual area and even ferti-
lity aspects cannot be neglected in some subset of PCPs. During 
EBRT delivered to the prostate, the testes, which are in close 
proximity to this organ, are unshielded. The specific structure 
(seminiferous tubules are composed of germinal, Sertoli and 
Leydig cells) and functions of the testes (both reproductive and 
endocrine) determine their radiobiological response. Germinal 
cells divide and differentiate to produce spermatocytes, sper-
matids and eventually spermatozoa or sperm cells. In humans, 
the transition time from stem cells to spermatozoa is about 74 
days. Leydig cells produce the male hormone testosterone. 
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Radiotherapy planning and treatment
The IMRTs were planned in accordance with the protocol 
applied for PCPs in Comprehensive Cancer Center in Bialystok, 
Poland. Patients were immobilized in the supine position on 
styrofoam with individually selected accessories such as a kne-
efix or feetfix. Next, computed tomography (CT) scans of the 
pelvic area and testes were performed for patients immobi-
lized in the treatment position, which provided the basis for 
target and OAR delineation. The clinical target volume (CTV) 
comprised the prostate and the base of the seminal vesicles 
(SV). An 8–10 mm margin encompassing the CTV was added 
to create a planning target volume (PTV). The delineation was 
comprised of the following OARs: the bladder, the rectum, 
the heads of the femoral bones and additionally to standard 
protocol – the testes. Inverse planning Oncentra MasterPlan 
V 3.3 SP3 (Nucletron, Veenendaal, The Netherlands) with a 
collapsed cone algorithm (Elekta Corporation, Atlanta, GA) was 
used to create IMRT plans. Measurements in homogeneous 
and inhomogeneous phantoms (Alderson Radiation Therapy 
Phantom, ART) were performed (data not provided) to validate 
the dose calculation accuracy of the Oncentra Masterplan TPS. 
In this study, we did not specifically separate the dose from 
head leakage or collimator scatter which have been measured 
to comprise 0.5% of the fractionated dose (corresponding 
therefore to 0.38 Gy for a radiotherapy treatment delivering 
76 Gy). IMRT plans were created with a configuration of 7–9 
coplanar beams, generated individually for each patient using 
a 1 cm – multileaf collimater (MLC). All the IMRT plans created 
by the Oncentra Masterplan TPS were verified using ion cham-
ber arrays including PTW729 and IBA Matrixx systems before 
treatment. Photon 6 MV or 15 MV beams generated by an 

A mean testicular dose as low as 100 cGy leads to a temporary 
reduction in the number of spermatozoa while 150 cGy may 
cause temporary sterility. Azoospermia lasting several years 
occurs after 2 Gy and permanent azoospermia occurs after 
a dose of about 6 to 8 Gy in 2-Gy fractions [7, 8]. In turn, even 
much higher doses have little effect on the Leydig cells in the 
adult so whereas irradiation of the testes can lead to sterility, it 
has little or no effect on the libido [7, 9]. What is of paramount 
importance is the fact that fractionated radiotherapy or even 
low-doses of scattered radiation reaching the testes during 
pelvic area irradiation are more harmful to germinal cells than 
single high-dose exposure. This results from the fact that some 
proportion of the stem cells move from a radioresistant phase 
of the cell cycle into more radiosensitive phases in the course 
of definitive fractionated irradiation [8]. Animal studies have 
revealed that low-dose radiotherapy would result in persistent 
double-strand breaks in the spermatogonial stem cells [10], 
injury to the blood-testis barrier [11] and temporarily observed 
testosterone abnormal function [12].  

IMRT allows the delivery of a higher total dose than 3-D 
conventional radiotherapy (CRT) to the target volume without 
exceeding the tolerance dose to the organs at risk (OARs) such 
as the rectum or the bladder, by careful modulation of photon 
fluence within a subset of the beams [5, 6, 13, 14]. On the other 
hand, a considerable increase in the number of beams and 
monitor units (MUs) for IMRT produces a risk of the delivery 
of  a higher equivalent dose in the OARs located outside the 
target volume (secondary scattered radiation from the patient) 
[15]. In addition, tissues outside the primary beam trajectory 
may be also exposed to low doses of scattered and leakage 
radiation attributable to imperfections in the radiation delivery 
devices – secondary scattering from the machine head or the 
floor and walls of the room [15, 16]. Furthermore, during the 
course of IMRT, the patient is subjected to an additional dose 
called “concomitant exposure” from image-guided localization 
and verification procedures (IGRT), e.g. kilovoltage X-ray volu-
me imaging (kV XVI) [17–20].

Although the dose received by the testes during CRT on 
the pelvic area guided by portal films has been widely investi-
gated [2, 21–24], little is known about the testes-dose contribu-
ted by IMRT (MV energy) and XVI (kV energy) in PCPs. The aim 
of the present study was to assess the quantity of undesired 
testicular doses during XVI-guided IMRT for localized PCPs. 

Material and methods
The calculations were performed in 56 localized PCPs (Tab. I) 
who underwent small field step-and-shoot IMRT with curative 
intent. The work was carried out in accordance with The Code 
of Ethics of the World Medical Association (the Declaration 
of Helsinki) for experiments involving humans. Approval for 
this study was obtained from the Human Care Committee of 
the Medical University in Bialystok, Poland. Informed written 
consent was obtained from the patients. 

Table I. Characteristics of the studied group – prostate cancer patients (n = 
56) treated with definitive small field step-and-shoot intensity-modulated 
radiation therapy (IMRT) 

Characteristics Value

Age (year), mean      
min–max

70
54–83

TNM* (n†):
T1N0M0
T2N0M0
T3N0M0
T4N0M0

13
39
2
2

PSA [ng/ml], mean 28.5

Gleason score, mean 6.9

Fraction dose [Gy] 2

Total dose [Gy], mean 74

Total dose [Gy], 
min–max

66–76

Photon beam energy – X [MV]:
6
15 

29
27 

TNM*: T – tumour, N – lymph node, M – metastase; n† – number of patients
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Elekta (Elekta, Stockholm, Sweden) linear accelerator using 
the XVI technique (Elekta, XVI R4.5) as IGRT were used for the 
treatment process (Tab. I). 

Testicular dose calculated in the treatment 
planning system (TPS) 
Based on the CT datasets of the 56 PCPs, the testes dose was 
calculated in the TPS. The 3D dose distributions, mean, me-
dian, maximum and minimum doses regarding testes were 
analyzed for a total dose of 76 Gy delivered to the prostate in 
38 fractions. The correlation between CTV, PTV volume and 
testes dose was analyzed.

Testicular dose measured by thermoluminescent 
dosimeters (TLD)
Thermoluminescent dosimeters (TLDs) MTS-N (Radcard, Krakow, 
Poland) were attached to the scrotum in close proximity to the 
testes for each of ten randomly chosen patients during the first 
three fractions of definitive IMRT (6 MV). Dose measurements 
were obtained using lithium-fluorine round chips with a diameter 
of 4.5 mm and a thickness of 0.9 mm. All TLDs were previously 
prepared in a MagmaTherm laboratory furnace and calibrated. 
Annealing was started by dosimeters heating to a temperature 
of 400 ± 5°C  for 1 h and this was followed by a cooling down 
to 80°C for 17 h. Calibration was performed in an X-ray beam 
of narrow spectrum N-80, N-l00, N-l20, N-150. A Mikrolab RA’04 
device (Mikrolab, Krakow, Poland) was used to readout the dose 
as measured. Final calculations were obtained using calibration 
factors. The total doses to the testes of each patient were calcu-
lated from the mean dose of the three TLD measurements and 
extrapolated for a treatment course of 38 fractions. The mean 
distance from isocenter to detector was 12.2 cm. The overall 
number of TLD measurements was 30. The accuracy of in vivo TLD 
measurements was verified using an anthropomorphic phantom 
and multidetector matrix PTW 729 with PMMA phantom.

kV XVI-contributed testes dose measurements
Concomitant testicular dose was measured in 10 randomly 
chosen patients included in the study. A PTW DIADOS E dia-
gnostic dosimeter with semiconductor detector of the T60004 
type (PTW, Freiburg, Germany), previously calibrated in the 
Central Laboratory for Radiological Protection in Warsaw, was 
used to measure testes dose contributed by kV XVI. Calibration 

was performed using an X-ray beam of narrow spectrum N-80, 
N-l00, N-l20, N-150. The dosimeter was placed in the area of 
the testes. An M15F1 (M15: medium collimater, size 15 cm; F1: 
bow-tie filter; 120 kVp, 64 mA, acquisition angle range –180; 
180, acquisition time 120s) was used in procedures. 

In accordance with protocol, XVI was performed before 
the 1st, 2nd, 3rd and every 7th fraction as well as in each case 
of more than 5mm displacement in pelvic area. The number 
of XVI procedures performed for each patient was counted 
so that the total testes dose contributed by XVI over the full 
course of treatment could be calculated. 

QA procedures were performed in line with the instruc-
tions covered in “Customer Acceptance Tests” as well as “In-
structions For Use” in the XVI 4.5 manuals.

The data was statistically analyzed using the computer 
software Microsoft Excel and Statistica ver.10. Spearman’s 
test ranks were chosen for verification of the hypotheses. 
A confidence level of 0.05 was accepted. A correlation test of 
Spearman’s ranks was used for correlation analysis, which is 
a nonparametric measure of statistical dependence between 
random variables.

Results

MV-testicular dose calculations
The mean and standard deviation (mean ± SD) value of the 
average testes dose was 123 ± 117 cGy comprising 1.6% of 
the prescribed treatment dose (76 Gy). The mean values of 
minimum and maximum doses were 53 and 370 cGy, respec-
tively. The smallest calculated dose in the testes was 0 Gy, the 
highest – 35.19 Gy (Tab. II). 

A trend for increased testes dose in patients irradiated with 
higher energy was observed. However, dosimetric compari-
sons between IMRTs using 6 MV and 15 MV photon energies 
were not significantly different – mean testes doses were 100 
vs 130 cGy, respectively (p > 0.05). 

Mean volume of CTV, PTV and testes was 87.5, 264.5 and 
57.4 cm3, respectively. There was no correlation between CTV 
(r = 0.2) or PTV volume (r = 0.3) and mean testicular dose. 

MV-testicular dose measurements
The secondary testes dose was measured for ten PCPs during 
the first three fractions of definitive IMRT (total dose 76 Gy, 

Table II. Testes doses calculated for prostate cancer patients who underwent definitive small field IMRT (n = 56, prescribed treatment dose 76 Gy, daily dose 
2 Gy, SD – standard deviation) 

Value Calculated testes dose  

Mean dose [cGy] Median dose [cGy] Minimum dose [cGy] Maximum dose [cGy]

Mean ± SD 123 ± 117 122 ± 70 53 ± 42 370 ± 69

Median
(25–75%)

98
(56–150)

97
(60–150)

55 
(19–78)

102 
(160–317)

Min–Max 9–73 9–234 0–166 15–3519
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38  fractions, 6 MV photon energy). A mean testicular dose 
of 7.97 ± 2.9 cGy (min-max 5.17–11.62 cGy) was delivered 
during one fraction of IMRT (with the mean value taken from 
3 measurements for 10 patients). The total testes dose after 38 
fractions for these patients was calculated to be 303 ± 110.5 
cGy (min–max 196.5–441.6 cGy) and correlated with the di-
stance from the isocenter to the testes (r = –0.84) (Tab. III). 

Concomitant kV-testicular dose measurements
In all 10 patients the detector was located outside the XVI veri-
fication field. A single XVI procedure delivered a mean dose of 
4.3 ± 2.0 mGy (min-max: 2.1–9.1 mGy) to the testes. The mean 
number of XVI verifications performed during radiotherapy 
was 10.4 (min-max: 7–16) so that the total mean dose from XVI 
procedures was 46.3 mGy (min–max: 24.5–136.5 mGy) (Tab. IV). 

Conclusions
Testicular dose contributed by megavoltage IMRT, as well as 
concomitant dose added by the kV XVI procedure were ana-
lyzed in the current study. According to the data indicated in 
the literature, the testes dose originating from neutrons gen-
erated at high energies is very small (0.04% of the treatment 
dose) and has not been taken into consideration in this analysis 
[25, 26]. Unfortunately, the minimum dose which affects testes 
function in irradiated PCPs has not been precisely determined. 
Based on patient studies of testicular injury following conven-
tionally fractionated irradiation, it seems that doses smaller 
than 20–50 cGy should not cause hormonal impairment [22, 
24] while doses ranged 100–350 cGy are sufficient to impair 
germinal cells [7, 24, 27–32]. The standard total dose applied 
for PCPs treated with definitive IMRT in the present study was 
76 Gy (38 fractions). The dose constraints were not specified 
for the testes to determine the dose distribution in a standard 
situation where testes are not contoured as critical structures. 
We found that for these patients the mean doses to the testes 
were 123 cGy (calculated by TPS) or 303 cGy (measured by 
TLDs), comprising 1.6 or 4.0% of the total treatment dose. 
The difference between the calculated and measured doses 
may result from the fact that TLDs detected only a superficial 
dose in one point of the scrotum while TPS assessed the dose 
distribution throughout the whole organs. Moreover, it is well 
known that TPS may undercalculate the peripheral dose in 
irradiated patients [33].  

Importantly, the doses detected by both methods indicate 
that IMRT may be associated with testes function impairment 
if no constraints are determined during the planning process. 
If the testes are not imaged and delineated, the treatment 
planning system does not regard them as “worth-protection”, 
resulting in beam fluence through the genitalia. Additionally, 
a high number of MUs delivered during IMRT may increase 
internal scattering leading ultimately to a clinically significant 
testicular dose. Intensity modulation techniques require the 
accelerator to be energized 3–4 times longer than that for 
3D-CRT methods, thus increasing linear accelerator head le-
akage and the overall exposure of the patient to secondary 
radiation [15, 23, 34–37]. The equivalent doses for the whole 
body produced by IMRT are greater than those seen when 
using conventional radiation [38, 39]. On the other hand, due 
to multileaf collimater (MLC) movements, the effective field 
size in IMRT is smaller than in 3-D CRT which may help reduce 
the dose received by nearby out-of-field organs, such as the 
gonads in PCPs [15, 34, 39]. The results of other studies have 
shown that the testes, despite the increased number of MUs 
for IMRT, receive as much as a 2.5 times lower dose during 
IMRT than 3-D CRT when regarded as critical structures [34, 
40]. Data presented by Deng et al. [41] and Martin et al. [42] 
showed that, during definitive IMRT, testes doses contributed 
by photon scattering may be as low as 0.7–1.4 cGy per fraction 
(in our study – 3.2 cGy). Basing on the available literature, mean 
testicular doses from CRT calculated to 76 Gy ranged from 
206.9 to 234 cGy comprising 2.72–3.08% of the prescribed 
dose, thus being higher than the doses presented for IMRT 
[2, 21, 31]. This is why dynamic techniques are the method 
of choice in PCPs with plans for a family, providing the testes 
are given high priority as an avoidance structure in order to 
minimize beam fluence through the genitalia.

In addition, our findings suggest that lower MV-energy 
is associated with reduced testicular dose. These results are 

Table III. Testes dose measured for prostate cancer patients who underwent definitive 6 MV small field IMRT (n = 10, prescribed treatment dose 76 Gy, daily 
dose 2 Gy) 

Value
Measured testes dose 

Distance isocenter-detector [cm]   One fraction – 2 Gy [cGy] 38 fractions – 76 Gy  [cGy]

Mean ± SD 7.97 ± 2.9 303 ± 110.5 12.2 ± 1.35

Median 
(range 25–75%)

6.74
(5.8–10.5)

256.1
(220.8–399.8)

12
(11.6–13.5)

Min–Max 5.17–11.62 196.5–441.6 9–14.5

Table IV. Assumed XVI-contributed testes dose for whole course of 
treatment (10.4 scans) 

Testes dose per scan 
[mGy]

Testes dose (10.4 scans) 
[mGy]

Mean ± SD Min–Max Mean Min–Max

4.3 ± 1.99 2.1–9.1 44.7 21.84–94.64
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in agreement with other studies which have shown a weak 
dependence of photon dose outside the treatment field on 
beam energy [16, 43]. According to King et al. [44] the photon 
scattered dose in the testes is about 1.3 times higher with 
15 MV beams compared with 6 MV beams. The dependence of 
testicular dose on CTV/PTV volume was also described [44–46]. 
In our study, where all patients were irradiated on small fields, 
a correlation between CTV, PTV volume and mean testicular 
dose was not observed. 

It would be impossible to determine on the basis of this 
study what the exact components of the measured dose are. 
According to van der Giessen [43], the major contributors of 
dose to tissues in close proximity to the field edge are collima-
tor scatter and patient scatter. As the distance increases from 
the field edge collimator scatter decreases, and patient scatter, 
as well as head leakage, becomes more dominant [15, 47, 48]. 

In the current study, the testicular dose decreased with 
increasing distance from the isocenter to the testes. Many 
studies have shown such an association and out-of-field dose 
data are often presented as a function of distance from the 
field edge or central axis relative to the tumor target in the 
patient [15, 19, 47, 49, 50]. 

Concomitant exposure – XVI
It is assumed that the additional imaging dose should be lo-
wer than 2% of the therapy dose variation in order to comply 
with the ALARA convention rule [51]. In the present study we 
found that kV XVI increased the total testicular dose by 4.3 mGy 
per fraction (max 9.1 mGy). There are very few studies in the 
literature exploring the impact of CBCT-based prcoedures (XVI 
Elekta, Varian OBI system) on the testes dose in PCPs [35, 50]. 
Both Hyer et al. [52] and Deng et al. [41] determined the mean 
testicular dose from one procedure of CBCT as 29 mGy. Most 
importantly, the results from the Deng study comprise mean 
testes doses for different OBI field spans. The testes dose for 
a 30 cm-field produced 57 mGy while for 10 cm-field – only 
2 mGy (this calculation is similar to ours, received for a 15 cm 
XVI field from the measured method). In Hyer’s investigation 
[52], the detector was placed in some cases within the XVI 
field which also increased the testes doses and may explain 
the differences with the present study where the detector 
was never located in the field. The testes concomitant dose 
deserves additional investigation on a large group of patients 
with different XVI settings.

The results of the current study indicate that the dose in 
the testes may be significant from a fertility perspective during 
IMRT in PCPs. It seems that the IMRT protocol for PCPs who 
have not completed family planning should involve the deter-
mination of the testes as an avoidance structure to keep the 
dose as low as reasonably achievable during the optimization 
process. The kilovoltage XVI-contributed dose to the testes 
seems to be clinically negligible, especially if verifications are 
performed once or twice a week using a small field span. To 

minimize the testicular dose in PCPs with plans for a family, 
the establishment of a specific quality assurance protocol for 
XVI-guided IMRT is warranted.
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